
3/6/19

1

From Last Time
How many ways are there to tile a 2×#

board with dominoes?

CS4102 Algorithms
Spring 2019

1

How many ways to
tile this: With these?

Today’s Keywords
• Dynamic Programming
• Log Cutting

3

CLRS Readings
• Chapter 15

4

3/6/19

2

Homework

• Hw4 Due Tonight at 11pm
– Sorting
–Written

5

Midterm
• Wednesday March 6 in class
– Covers all content through last Monday
–We will have a review session
• Tonight! 7pm, Olsson 120
• Will be recorded, so you’ll have it if you can’t make it

6

How many ways are there to tile
a 2×# board with dominoes?

7

Two ways to fill the final column:

− 1

− 2

&'() # = &'() # − 1 +&'()(# − 2)

&'() 0 = &'() 1 = 1

3/6/19

3

How to compute !"#$(&)?

8

Tile(n):
if n < 2:

return 1
return Tile(n-1)+Tile(n-2)

Problem?

Recursion Tree

9

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!
Run time: Ω(2$)

Computing !"#$(&)with Memory

10

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

M

0

1

2

3

4

5

6

3/6/19

4

Computing !"#$(&)with Memory
“Top Down”

11

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

12! − 1 ! − 2

Generic Divide and Conquer Solution
def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem: # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
13

3/6/19

5

Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

14

Computing !"#$(&)with Memory
“Top Down”

15

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order

Better !"#$(&)with Memory
“Bottom Up”

16

Tile(n):
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:

M[i] = M[i-1] + M[i-2]
return M[n]

M

0

1

2

3

4

5

6

3/6/19

6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”

17

Log Cutting

18

Given a log of length !
A list (of length !) of prices " ("[$] is the price of a cut of size $)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ',… , ℓ* such that:
∑ℓ, = !
to maximize ∑"[ℓ,] Brute Force: .(21)

Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the
best option “right now”
– Select the most profitable cut first

19

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

3/6/19

7

Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the
best option “right now”
– Select the “most bang for your buck”
• (best price / length ratio)

20

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50

6

Dynamic Programming
• Idea:

1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”

21

1. Identify Recursive Structure

22

!"#(%) = value of best way to cut a log of length %

ℓ)
!"#(% − ℓ))

!"# % = max
!"# % − 1 +0 1
!"# % − 2 +0 2
…
!"# 0 +0[%]

Last Cutbest way to cut a log of length 6− ℓ6

0 7 = value of a cut of length 7

3/6/19

8

Dynamic Programming

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”

23

2. Select a Good Order for Solving Subproblems

24

10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 0 = 0

0

2. Select a Good Order for Solving Subproblems

25

10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 1 = !"# 0 + +[1]

1

3/6/19

9

2. Select a Good Order for Solving Subproblems

26

10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 2 = max !"# 1 + . 1
!"# 0 + . 2

2

2. Select a Good Order for Solving Subproblems

27

10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 3 = max !"# 2 + . 1
!"# 1 + . 2
!"# 0 + .[3]

3

2. Select a Good Order for Solving Subproblems

28

10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 4 = max
!"# 3 + .[1]
!"# 2 + . 2
!"# 1 + . 3
!"# 0 + .[4]

4

3/6/19

10

Log Cutting Pseudocode

29

Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: !(#$)

How to find the cuts?
• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

30

Remember the choice made

31

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size
of the last cut

3/6/19

11

Reconstruct the Cuts

32

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Backtracking Pseudocode
i = n
while i>0:

print Choices[i]
i = i – Choices[i]

33

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”

34

