
Warm up
How many arithmetic operations are required to multiply a !×#

Matrix with a #×$ Matrix?
(don’t overthink this)

CS4102 Algorithms
Spring 2019

1

!

#

#

$

×

How many arithmetic operations are required to multiply a !×#
Matrix with a #×$ Matrix?

• # multiplications and additions per element
• ! ⋅ $ elements to compute
• Total cost: # ⋅ ! ⋅ $

2

!

#

#

$

!

$

× =

Today’s Keywords

• Dynamic Programming
• Matrix Chaining
• Seam Carving
• Longest Common Subsequence

3

CLRS Readings

• Chapter 15

4

Administrativa

• HW5 out by tomorrow morning

– Due March 27 at 11pm

– Seam Carving!

– Dynamic Programming (implementation)

– Java or Python

• Midterm

– Grading underway! Should be returned tomorrow

• HW4 grading in-progress

5

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

6

Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

7

Matrix Chaining

8

!"#"

$"

#%×

$%

!'#'

$'
× × #(

$(

• Given a sequence of Matrices (!",… ,!,),
what is the most efficient way to multiply
them?

!% !(

Order Matters!

• !"×!$ ×!%
– uses &" ⋅ (" ⋅ &$ + c$ ⋅ (" ⋅ &% operations

9

!"("

&"

($×

&$

!%(%

&%
×!$

("

&$

&" = ($
&$ = (%

Order Matters!

• !"×(!%×!&)
– uses c" ⋅ r" ⋅ +& + (c% ⋅ -% ⋅ +&) operations

10

!"-"

+"

-%×

+%

!&-&

+&
×!%

-%

+&

+" = -%
+% = -&

Order Matters!

• !"×!$ ×!%
– uses &" ⋅ (" ⋅ &$ + c$ ⋅ (" ⋅ &% operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• !"×(!$×!%)
– uses &" ⋅ (" ⋅ &% + (c$ ⋅ ($ ⋅ &%) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160

11

&" = ($
&$ = (%

&" = 10
&$ = 20
&% = 8
(" = 7
($ = 10
(% = 20

!" = 7×10
!$ = 10×20
!% = 20×8

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

12

1. Identify the Recursive Structure of the Problem

13

!"#"

$"

#%×

$%

!'#'

$'
× × #(

$(

!% !(

)*+, 1, / = cheapest way to multiply together !" through !1

)*+, 1,4 = min
)*+, 2,4 + #"#%$(

$(

#%

1. Identify the Recursive Structure of the Problem

14

!"#"

$"

#%×

$%

!'#'

$'
× × #(

$(

!% !(

)*+, 1, / = cheapest way to multiply together !" through !1

)*+, 1,4 = min
)*+, 2,4 + #"#%$(

$(
#'

$%

#"

)*+, 1,2 +)*+, 3, 4 + #"#'$(

1. Identify the Recursive Structure of the Problem

15

!"#"

$"

#%×

$%

!'#'

$'
× × #(

$(

!% !(

)*+, 1, / = cheapest way to multiply together !" through !1

)*+, 1,4 = min
)*+, 2,4 + #"#%$(

$'

#"

)*+, 1,2 +)*+, 3, 4 + #"#'$(
)*+, 1,3 + #"#($(

1. Identify the Recursive Structure of the Problem

• In general:

16

!"#$ %, ' = cheapest way to multiply together)* through)+

!"#$ 1, - = min

!"#$ 2, - + 343567
!"#$ 1,2 + !"#$ 3, - + 343967
!"#$ 1,3 + !"#$ 4, - + 343;67
!"#$ 1,4 + !"#$ 5, - + 343=67
…
!"#$ 1, - − 1 + 343767

!"#$ %, ' = min
+@4
AB* !"#$ %, C + !"#$ C + 1, ' + 3*3AD46+

!"#$ %, % = 0

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

17

1. Identify the Recursive Structure of the Problem

• In general:

18

!"#$ %, ' = cheapest way to multiply together)* through)+

!"#$ 1, - = min

!"#$ 2, - + 343567
!"#$ 1,2 + !"#$ 3, - + 343967
!"#$ 1,3 + !"#$ 4, - + 343;67
!"#$ 1,4 + !"#$ 5, - + 343=67
…
!"#$ 1, - − 1 + 343767

!"#$ %, ' = min
+@4
AB* !"#$ %, C + !"#$ C + 1, ' + 3*3AD46+

!"#$ %, % = 0
Save to M[n]

Read from M[n]
if present

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

19

2. Select a good order for solving
subproblems

20

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0
4 =

= 2
0

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

21

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0

./01 1,2 = min ./01 1,1 + ./01 2, 2 + @&@(B(

0 15750

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

2. Select a good order for solving
subproblems

4 =
= 2

22

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0

./01 2,3 = min ./01 2,2 + ./01 3, 3 + @(@)B)

0 15750

0 2625

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

2. Select a good order for solving
subproblems

4 =
= 2

23

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

2. Select a good order for solving
subproblems

4 =
= 2

24

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6
./01 1,3 = min ./01 1,1 + ./01 2, 3 + @&@(B)

./01 1,2 + ./01 3, 3 + @&@)B)

@&@(B) = 30 ⋅ 35 ⋅ 5 = 5250
@&@)B) = 30 ⋅ 15 ⋅ 5 = 2250

0

0

2625

15750

2. Select a good order for solving
subproblems

7875

4 =
= 2

25

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

2. Select a good order for solving
subproblems

To find ./01(2, 4): Need all preceding
terms of row 2 and column 4

Conclusion: solve in order of diagonal

4 =
= 2

Longest Common Subsequence

26

30

35

×%& 35

15

×%(
15

5

×%) 5

10

×
%*

10

20

×%, 20

25

%-

./01 2, 4 = min
9:&
;<= ./01 2, > + ./01 > + 1, 4 + @=@;A&B9

./01 2, 2 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

./01 1,6 = min

./01 1,1 + ./01 2, 6 + @&@(B-

./01 1,2 + ./01 3, 6 + @&@)B-

./01 1,3 + ./01 4, 6 + @&@*B-

./01 1,4 + ./01 5, 6 + @&@,B-

./01 1,5 + ./01 6, 6 + @&@-B-

15125

4 =
= 2

Run Time

1. Initialize !"#$[&, &] to be all 0s
2. Starting at the main diagonal, working to the upper-right,

fill in each cell using:
1. !"#$ &, & = 0

2. !"#$ &, . = min
234
567 !"#$ &, 8 + !"#$ 8 + 1, . + :7:5;4<2

27

Θ(?@) cells in the Array

Θ(?) options for each cell

Θ(?B) overall run time

Backtrack to find the best order

2828

“remember” which choice of ! was the minimum at each cell

0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

()*+ 1,6 = min

()*+ 1,1 + ()*+ 2, 6 + 232456
()*+ 1,2 + ()*+ 3, 6 + 232756
()*+ 1,3 + ()*+ 4, 6 + 232856
()*+ 1,4 + ()*+ 5, 6 + 232956
()*+ 1,5 + ()*+ 6, 6 + 232656

15125

()*+ :, ; = min
<=3
>?@ ()*+ :, ! + ()*+ ! + 1, ; + 2@2>A35<

()*+ :, : = 0
31

5

; =
= :

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

29

In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
30https://www.youtube.com/watch?v=pSB3HdmLcY4

https://www.youtube.com/watch?v=pSB3HdmLcY4

Seam Carving
• Method for image resizing that doesn’t

scale/crop the image

32

Seam Carving
• Method for image resizing that doesn’t

scale/crop the image

33

Seam Carving
• Method for image resizing that doesn’t

scale/crop the image

34

Cropped Scaled Carved

Cropping

35

• Removes a “block” of pixels

Cropped

Scaling

36

Scaled

• Removes “stripes” of pixels

Seam Carving

37

Carved

• Removes “least energy seam” of pixels
• http://rsizr.com/

http://rsizr.com/

Seattle Skyline

38

Energy of a Seam

• Sum of the energies of each pixel
– ! " = energy of pixel "

• Many choices
– E.g.: change of gradient (how much the color of this pixel differs from

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

39

Identify Recursive Structure
Let ! ", $ = least energy seam from the bottom of the image up
to pixel &',(

40

&',(

Finding the Least Energy Seam

41

!",$

Want the least energy seam going from bottom to top, so delete:
min
(
$)* +(-, .)

-

0

Computing !(#, %)
Assume we know the least energy seams for all of
row # − 1
(i.e. we know !(# − 1, ℓ) for all ℓ)

42

*+,,

Known
through
− 1

-

Computing !(#, %)

43

Assume we know the least energy seams for all
of row # − 1 (i.e. we know !(# − 1, ℓ) for all ℓ)

S(n-1,k-1)

*+,,

S(n-1,k) S(n-1,k+1)

S(n,k)

Repeated Seam Removal

49

!

"

Only need to update pixels dependent on the removed seam
2! pixels change Θ(2!) time to update pixels

Θ(! +") time to find min+backtrack

