
Warm up
How many arithmetic operations are required to multiply a !×#

Matrix with a #×$ Matrix? 
(don’t overthink this)

CS4102 Algorithms
Spring 2019
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How many arithmetic operations are required to multiply a !×#
Matrix with a #×$ Matrix?

• # multiplications and additions per element
• ! ⋅ $ elements to compute
• Total cost: # ⋅ ! ⋅ $
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Today’s Keywords

• Dynamic Programming
• Matrix Chaining
• Seam Carving
• Longest Common Subsequence
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CLRS Readings

• Chapter 15
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Administrativa

• HW5 out by tomorrow morning

– Due March 27 at 11pm

– Seam Carving!

– Dynamic Programming (implementation)

– Java or Python

• Midterm

– Grading underway!  Should be returned tomorrow

• HW4 grading in-progress
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory
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Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Matrix Chaining
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• Given a sequence of Matrices (!",… ,!,), 
what is the most efficient way to multiply 
them?
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Order Matters!

• !"×!$ ×!%
– uses &" ⋅ (" ⋅ &$ + c$ ⋅ (" ⋅ &% operations
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Order Matters!

• !"×(!%×!&)
– uses c" ⋅ r" ⋅ +& + (c% ⋅ -% ⋅ +&) operations
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Order Matters!

• !"×!$ ×!%
– uses &" ⋅ (" ⋅ &$ + c$ ⋅ (" ⋅ &% operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• !"×(!$×!%)
– uses &" ⋅ (" ⋅ &% + (c$ ⋅ ($ ⋅ &%) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160
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&" = ($
&$ = (%

&" = 10
&$ = 20
&% = 8
(" = 7
($ = 10
(% = 20

!" = 7×10
!$ = 10×20
!% = 20×8



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem

• In general:
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!"#$ %, ' = cheapest way to multiply together )* through )+

!"#$ 1, - = min

!"#$ 2, - + 343567
!"#$ 1,2 + !"#$ 3, - + 343967
!"#$ 1,3 + !"#$ 4, - + 343;67
!"#$ 1,4 + !"#$ 5, - + 343=67
…
!"#$ 1, - − 1 + 343767

!"#$ %, ' = min
+@4
AB* !"#$ %, C + !"#$ C + 1, ' + 3*3AD46+

!"#$ %, % = 0



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory
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1. Identify the Recursive Structure of the Problem

• In general:
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!"#$ %, ' = cheapest way to multiply together )* through )+

!"#$ 1, - = min

!"#$ 2, - + 343567
!"#$ 1,2 + !"#$ 3, - + 343967
!"#$ 1,3 + !"#$ 4, - + 343;67
!"#$ 1,4 + !"#$ 5, - + 343=67
…
!"#$ 1, - − 1 + 343767

!"#$ %, ' = min
+@4
AB* !"#$ %, C + !"#$ C + 1, ' + 3*3AD46+

!"#$ %, % = 0
Save to M[n]

Read from M[n] 
if present



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory
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2. Select a good order for solving 
subproblems
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./01 1,3 = min ./01 1,1 + ./01 2, 3 + @&@(B)
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2. Select a good order for solving 
subproblems

To find ./01(2, 4): Need all preceding 
terms of row 2 and column 4

Conclusion: solve in order of diagonal
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Longest Common Subsequence
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Run Time

1. Initialize !"#$[&, &] to be all 0s
2. Starting at the main diagonal, working to the upper-right, 

fill in each cell using:
1. !"#$ &, & = 0

2. !"#$ &, . = min
234
567 !"#$ &, 8 + !"#$ 8 + 1, . + :7:5;4<2
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Θ(?@) cells in the Array

Θ(?) options for each cell

Θ(?B) overall run time



Backtrack to find the best order
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“remember” which choice of ! was the minimum at each cell
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()*+ 1,6 = min

()*+ 1,1 + ()*+ 2, 6 + 232456
()*+ 1,2 + ()*+ 3, 6 + 232756
()*+ 1,3 + ()*+ 4, 6 + 232856
()*+ 1,4 + ()*+ 5, 6 + 232956
()*+ 1,5 + ()*+ 6, 6 + 232656

15125

()*+ :, ; = min
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>?@ ()*+ :, ! + ()*+ ! + 1, ; + 2@2>A35<

()*+ :, : = 0
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory
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In Season 9 Episode 7 “The Slicer” of the hit 90s TV show 
Seinfeld,  George discovers that, years prior, he had a heated 

argument with his new boss, Mr. Kruger. This argument  
ended in George throwing Mr. Kruger’s boombox into the 

ocean. How did George make this discovery?
30https://www.youtube.com/watch?v=pSB3HdmLcY4

https://www.youtube.com/watch?v=pSB3HdmLcY4




Seam Carving
• Method for image resizing that doesn’t 

scale/crop the image
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Seam Carving
• Method for image resizing that doesn’t 

scale/crop the image
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Seam Carving
• Method for image resizing that doesn’t 

scale/crop the image

34

Cropped Scaled Carved



Cropping
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• Removes a “block” of pixels

Cropped



Scaling
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Scaled

• Removes “stripes” of pixels



Seam Carving
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Carved

• Removes “least energy seam” of pixels
• http://rsizr.com/

http://rsizr.com/


Seattle Skyline
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Energy of a Seam

• Sum of the energies of each pixel
– ! " = energy of pixel "

• Many choices
– E.g.: change of gradient (how much the color of this pixel differs from 

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”
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Identify Recursive Structure
Let ! ", $ = least energy seam from the bottom of the image up 
to pixel &',(
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Finding the Least Energy Seam
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!",$

Want the least energy seam going from bottom to top, so delete:
min
(
$)* +(-, .)

-

0



Computing !(#, %)
Assume we know the least energy seams for all of 
row # − 1
(i.e. we know !(# − 1, ℓ) for all ℓ)
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Computing !(#, %)
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Assume we know the least energy seams for all 
of row # − 1 (i.e. we know !(# − 1, ℓ) for all ℓ)

S(n-1,k-1)

*+,,

S(n-1,k) S(n-1,k+1)

S(n,k)



Repeated Seam Removal
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!

"

Only need to update pixels dependent on the removed seam
2! pixels change Θ(2!) time to update pixels

Θ(! +") time to find min+backtrack


