CS4102 Algorithms Spring 2019

Warm up

Given access to unlimited quantities of pennies, nickels dimes, and quarters, (worth value 1, 5, 10, 25 respectively), provide an algorithm which gives change for a given value x using the fewest number of coins.

Change Making

43 cents

Change Making Algorithm

- Given: target value x, list of coins $C = [c_1, ..., c_n]$ (in this case C = [1,5,10,25])
- Repeatedly select the largest coin less than the remaining target value:

```
while(x > 0)
let c = \max(c_i \in \{c_1, ..., c_n\} \mid c_i \le x)
print c
x = x - c
```

Why does this always work?

- If x < 5, then pennies only
 - 5 pennies can be exchanged for a nickel Only case Greedy uses pennies!
- If $5 \le x < 10$ we must have a nickel
 - 2 nickels can be exchanged for a dime
 Only case Greedy uses nickels!
- If $10 \le x < 25$ we must have at least 1 dime
 - 3 dimes can be exchanged for a quarter and a nickel
 Only case Greedy uses dimes!
- If $x \ge 25$ we must have at least 1 quarter

Today's Keywords

- Dynamic Programming
- Gerrymandering
- Greedy Algorithms
- Choice Function
- Change Making

CLRS Readings

- Chapter 15
- Chapter 16

Homeworks

- Homework 5 due Wednesday March 27 at 11pm
 - Seam Carving!
 - Dynamic Programming (implementation)
 - Java or Python
- Homework 6 out tonight, due Wednesday April 3 at 11pm
 - Dynamic Programming and Greedy Algorithms
 - Written (using Latex!)

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Generic Top-Down Dynamic Programming Soln

```
mem = \{\}
def myDPalgo(problem):
      if mem[problem] not blank:
             return mem[problem]
      if baseCase(problem):
             solution = solve(problem)
             mem[problem] = solution
             return solution
      for subproblem of problem:
             subsolutions.append(myDPalgo(subproblem))
      solution = OptimalSubstructure(subsolutions)
      mem[problem] = solution
      return solution
```

DP Algorithms so far

- $2 \times n$ domino tiling (Fibonacci)
- Log cutting
- Matrix Chaining
- Longest Common Subsequence
- Seam Carving

Domino Tiling

```
Tile(n):
     Initialize Memory M
     M[0] = 0
     M[1] = 0
     for i = 0 to n:
          M[i] = M[i-1] + M[i-2]
     return M[n]
```


Log Cutting

Solve Smallest subproblem first

Matrix Chaining

Longest Common Subsequence
$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that extreme partisan gerrymandering might violate the Constitution. I Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's map-drawing successes.

Gerrymandering

- Manipulating electoral district boundaries to favor one political party over others
- Coined in an 1812 Political cartoon
- Governor Gerry signed a bill that redistricted Massachusetts to benefit his Democratic-Republican Party

According to the Supreme Court

- Gerrymandering cannot be used to:
 - Disadvantage racial/ethnic/religious groups
- It can be used to:
 - Disadvantage political parties

VA 5th District

Gerrymandering Today

• Computers make it really effective

Gerrymandering Today

• Computers make it really effective

Gerrymandering Today

Computers make it really effective

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

SOURCE: Shapefiles maintained by Jeffrey B. Lewis, Brandon DeVine, Lincoln Pritcher and Kenneth C. Martis, UCLA. Drawn to scale.

GRAPHIC: The Washington Post, Published May 20, 2014

THE EVOLUTION OF PENNSYLVANIA'S SEVENTH DISTRICT

SOURCE: Shapefiles maintained by Jeffrey B. Lewis, Brandon DeVine, Lincoln Pritcher and Kenneth C. Martis, UCLA. Drawn to scale.

GRAPHIC: The Washington Post, Published May 20, 2014

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183		
R:65	R:45	
D:35	D:55	
R:60	R:47	
D:40	D:53	

R:125	R:92
R:65	R:45
D:35	D:55
R:60	R:47
D:40	D:53

R:112	R:105
R:65	R:45
D:35	D:55
R:60	R:47
D:40	D:53

Gerrymandering Problem Statement

- Given:
 - A list of precincts: $p_1, p_2, ..., p_n$ precincts, n of them
 - Each containing m voters
- Output:

- m not the voters, but how many
- Districts $D_1, D_2 \subset \{p_1, p_2, \dots, p_n\}$
- Where $|D_1| = |D_2|$
- $-R(D_1), R(D_2) > \frac{mn}{4}$ $\frac{n}{2}$, m $\frac{1}{2}$
 - $R(D_i)$ gives number of "Regular Party" voters in D_i
 - $R(D_i) > \frac{\text{mn}}{4}$ means D_i is majority "Regular Party"
- "failure" if no such solution is possible

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Consider the last precinct

 $egin{array}{l} D_1 \ k \ {\sf precincts} \ x \ {\sf voters} \ {\sf for} \ {\sf R} \end{array}$

If we assign p_n to D_1

 D_1 k+1 precincts $x+R(p_n)$ voters for R

After assigning the first n-1 precincts

 p_n

Valid gerrymandering if:

$$k + 1 = \frac{n}{2},$$

$$x + R(p_n), y > \frac{mn}{4}$$

 D_2 n-k-1 precincts y voters for R

If we assign p_n to D_2

 D_2 n-k precincts $y+R(p_n)$ voters for R

Valid gerrymandering if:

$$n - k = \frac{n}{2},$$

$$x, y + R(p_n) > \frac{mn}{4}$$

Define Recursive Structure

```
S(j,k,x,y) = \text{True} if from among the first j precincts: k are assigned to D_1 exactly x vote for R in D_1 exactly y vote for R in D_2
```

4D Dynamic Programming!!!

Two ways to satisfy S(j, k, x, y):

 D_1 k-1 precincts $x-R(p_j)$ voters for R

 D_2 j-k precincts y voters for R

 D_2 j-1-k precincts $y-R(p_j)$ voters for R

$$S(j, k, x, y) = S(j - 1, k - 1, x - R(p_j), y) \vee S(j - 1, k, x, y - R(p_j))$$

Final Algorithm

$$S(j, k, x, y) = S(j - 1, k - 1, x - R(p_j), y) \vee S(j - 1, k, x, y - R(p_j))$$

```
Initialize S(0,0,0,0) = \text{True}
                                                     S(j, k, x, y) = True if:
for j = 1, ..., n:
                                                     from among the first j precincts
  for k = 1, ..., \min(j, \frac{n}{2}):
                                                     k are assigned to D_1
                                                     exactly x vote for R in D_1
     for x = 0, ..., jm:
                                                     exactly y vote for R in D_2
        for y = 0, ..., jm:
           S(j,k,x,y) =
                  S(j-1, k-1, x-R(p_j), y)
                   \vee S(j-1,k,x,y-R(p_j))
Search for True entry at S(n, \frac{n}{2}, > \frac{mn}{4}, > \frac{mn}{4})
```

Run Time

$$S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S(j-1,k,x,y-R(p_j))$$

Initialize $S(0,0,0,0) = \text{True}$
 $n \text{ for } j = 1, ..., n$:

 $\frac{n}{2} \text{ for } k = 1, ..., \min(j,\frac{n}{2})$:

 $nm \text{ for } x = 0, ..., jm$:

 $nm \text{ for } y = 0, ..., jm$:

 $S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y)$
 $VS(j-1,k,x,y-R(p_j))$

Search for True entry at $S(n,\frac{n}{2},>\frac{mn}{4},>\frac{mn}{4})$

$\Theta(n^4m^2)$

- Runtime depends on the *value* of m, not *size* of m
- Run time is exponential in size of input
- Note: Gerrymandering is NP-Complete