CS4102 Algorithms

Warm up

Given access to unlimited quantities of pennies, nickels
dimes, and quarters, (worth value 1, 5, 10, 25
respectively), provide an algorithm which gives change
for a given value x using the fewest number of coins.

Change Making

Change Making Algorithm

* Given: target value x, list of coins C = ¢4, ..., ¢y]
(in this case € = [1,5,10,25])
* Repeatedly select the largest coin less than the remaining
target value:

while(x > 0)
let c = max(c; € {c{,...,c} | ¢; < x)
print ¢
X=Xx—¢C

Why does this always work?

If x < 5, then pennies only
— 5 pennies can be exchanged for a nickel
Only case Greedy uses pennies!
If 5 < x < 10 we must have a nickel
— 2 nickels can be exchanged for a dime

Only case Greedy uses nickels!

If 10 < x < 25 we must have at least 1 dime

— 3 dimes can be exchanged for a quarter and a
nickel Only case Greedy uses dimes!

If x = 25 we must have at least 1 quarter
Only case Greedy uses quarters!

Today’s Keywords

Dynamic Programming
Gerrymandering
Greedy Algorithms
Choice Function
Change Making

CLRS Readings

* Chapter 15
* Chapter 16

Homeworks

* Homework 5 due Wednesday March 27 at 11pm
— Seam Carving!
— Dynamic Programming (implementation)
— Java or Python

* Homework 6 out tonight, due Wednesday April 3 at 11pm
— Dynamic Programming and Greedy Algorithms

— Written (using Latex!)

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

* |dea:
1. Identify recursive structure of the problem
* Whatis the “last thing” done?

2. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
if mem|[problem] not blank:
return mem|[problem]
if baseCase(problem):
solution = solve(problem)
mem|[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem|[problem] = solution
return solution

DP Algorithms so far

2Xn domino tiling (Fibonacci)
Log cutting

Matrix Chaining

Longest Common Subsequence
Seam Carving

Domino Tiling

Tile(n):
Initialize Memory M
M[O] =0
M[1] =0
fori=0to n:
M[i] = M[i-1] + M[i-2]
return M[n]

Log Cutting

Solve Smallest subpro

Cut(4) = max —

]

Cut(3)+ P
Cut(2) + P
Cut(l)+ P

_ Cut(0)+P

blem first
=

2
3
4]

Cut(i): 0

Length: 0 1 2 3

10

12

Matrix Chaining

35 15 10 20 25
M
M . Ms
30 M, X 35 M, |* 15 X 5 X 10 X 20| Mg
J1 . .
Best(i,j) = rlglzl?(Best(l, k) + Best(k+ 1,j) + rirk+1cj)
j=1 2 3 4 5 6)
'] » — /
Best(i,i) = 0 0 | 15750 | 7875 | 9375 | 11875 [15125] 1
0 2625 | 4375 | 7125 | 10500 | 2
- o | 750 | 2500 | 5375 | 3
Best(1,1) + Best(2,6) + ryrycg
0 1000 | 3500 | 4
Best(1,2) + Best(3,6) + rir3cg
Best(1,6) = min— pBest(1,3) + Best(4,6) + T114C6 0]5000 |5
Best(1,4) + Best(5,6) + ryrsce o |6

_Best(1,5) + Best(6,6) + rq1gCe

13

Longest Common Subsequence

0 ifi=0o0rj=0
LCS(j) =~ LeS(i—1,j—1) + 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i —1,j)) otherwise

X = A T C T G A T

ro 0 1 2 3 4 5 6 7
A 0| o 0 0 0 0 0 0 0
T 1| © 0 1 1 1 1 1 1

G 2| o 0 1 1 1 2 2 2

C 3| o 0 1 2 2 2 2 2

A 4| o 1 1 2 2 2 3 3

T 5| o0 1 2 2 3 3 3 4

A 6| o0 1 2 2 3 3 4 4

Tofillincell (i,j)weneedcells (i —1,j —1),(i —1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference)

14

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that
extreme partisan gerrymandering might violate the Constitution. | Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's
map-drawing successes.

16

Gerrymandering

* Manipulating electoral district
boundaries to favor one
political party over others

e Coinedinan 1812 Political
cartoon

* Governor Gerry signed a bill
that redistricted
Massachusetts to benefit his
Democratic-Republican Party

< &NNHELD

v LUl Yo\
o 1l et

The Gerrymander

17

According to the Supreme Court

 Gerrymandering cannot be used to:

— Disadvantage racial/ethnic/religious groups

e |t can be used to:

— Disadvantage political parties

" ¥ Fomst

".t_/‘_‘_—_f ; Sy ' -
- Charleston | n ot oad 4

VA 5t District

o PR R K] N
T ol ?f\

T / 'WEST: JELS
U Nayre, (\ VIRGINJA

\\ g 1 MNEW |
o

e Ealtimore % Dover
|
') OAnnapoIis
'1 DELAW

/ “—"'. ”

‘¢ . -National f

, . . ! ey t L r
‘ [A e

! > T
"”_“-\/‘-’ \

s)
¢ ';-.""a L5

= —¢_ Fa, \) iy)
~ il o T > Ao T -
o -:‘..;; . "‘h';,‘-' yJ \\‘ .;"
4 pu%-:‘qli . Vs)
- o 5'?,' - f‘!

= 5
.. il EE } 3 " -.- ""..3 \/

N

-y \ i
TN S Y Virginia
] .,,V> W each
- o~ /"
7 %‘J.f

B
L DA

19

Gerrymandering Today

* Computers make it really effective

Rl
V %Eﬁ ¢ <5

1

T G et

, “| HB 251 (2012)
w5 | Congressional District 3

uuuuuu

%]
;

:
V!

PR

> s % LR
Caurbouse e 7 . BN
Midey,,

Now Matket

77

RV AZA L
05 ;g% a

LN

G
!

mmmmmmmm

Southampton

aaaaa

mmmmmm

S JessS) port Né
- IS S
95 % eSS
~ LK i
- Dendron
N Dendron >
\ N Mt efielal (3 g
/ Junicipal [
/ irhort 2] 3 =
v 4 P AR Snaiagield
y, wakenli 7 B 2 = 7o)
2 S o R Carroltan
% & < % Z onr Nika Park
-7 i % = lIsle of Wight
S Vot SN = 4
> { § X A
\ e 2
wore. o)
mmmmmm 1 X S 2
A 3 -)
Gra) \ 1 n)25
Ce 377 7 A
= < uffoll cusanec |
" \ 2 o
s e . \ US N:
S
J Transmitt
In 2 7
3 Kngs ok

g

Gerrymandering Today
. Computers make it really effective

llllllll

21

Gerrymandering Today
 Computers make it really effective

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

83rd Congress B88th 98th

'q a J THE EVOLUTION OF PENNSYLVANIA'S SEVENTH DISTRICT
83rd Congress 93rd 98th

FERNE “é .5

22

103rd 108th 113th

How does it work?

e States are broken into precincts
* All precincts have the same size
 We know voting preferences of each precinct

* Group precincts into districts to maximize the
number of districts won by my party

Overall: R:217 D:183 R:125 R:92 R:112 R:105

Gerrymandering Problem Statement
n

* Given: "\
— Alist of precincts: p1, Py, oo, Py, — Prca,\dcg N o Mem
— Each containing m voters |
* Qutput: K M — he¥ Me vJ&cs, b lhow W\“‘j
— Districts Dy, D, < {py, 02, ..., Pn}
— Where |D;| = |D,| '
— R(D1),R(D;) >an ‘ni"“-z_
* R(D;) gives number of “Regular Party” voters in D;
* R(D;) > % means D; is majority “Regular Party”

— “failure” if no such solution is possible

24

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

* |dea:
1. Identify recursive structure of the problem
* Whatis the “last thing” done?

2. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

3. Save solution to each subproblem in memory

Consider the last precinct

pnto D

Valid gerrymandering if:

n
k+1—5,

After assigning the
first n — 1 precincts

If we assign
pnto D,

Valid gerrymandering if:

n
n—k=r
2

x,y + R(pp) > %

26

Define Recursive Structure

S(j,k,x,y) = True if from among the first j precincts:

k are assigned to D,
nXnxXxmnXxmn exactly x vote for Rin D4
exactly y vote for Rin D,

4D Dynamic Programming!!!

27

Two ways to satisfy S(j, k, x, y):

S(,k,x,y) = True if:
from among the first j precincts

k are assigned to D
exactly x vote for R in D4
exactly y vote for R in D,

Then assign
pjto D,

SG,k,x,y) = S(j - 1,k—1,x —R(pj),y) VS(j — 1,k,x,y—R(pj))

28

Final Algorithm

SGkox,y) =S(j— 1,k —1,x—R(p;),v) VS(j —1,kx,y— R(pj))

Initialize $(0,0,0,0) = True
forj=1,..,n:
fork =1, ...,min(j,g):
forx =0,..,jm:
fory=0,...,jm:

S, k,x,y) =

S(,k,x,y) = True if:

from among the first j precincts
k are assigned to D

exactly x vote for R in D

exactly y vote for R in D,

S(j —1,k—1,x— R(pj),y)

vS(j — 1Lk xy —R(Pj))

Search for True entry at S(n,g, > mT:I, > %) 4] i//%/-r

X 29

Run Time
S, k,x,y) = S(j — 1,k — 1,x—R(pj),y)VS(j— 1,k,x,y—R(pj))

Initialize $(0,0,0,0) = True
n forj=1,..,n:
g fork =1, ...,min(j,g): @(Tl4m2)
nmforx =0, ..., jm:
nm fory =0, ..., jm:

S, k,x,y) =
SG-1Lk—1,x—R(p)y)
VSO—LkLy—R@ﬂ)

Search for True entry at S(n,g, > mT:l, > %)

30

O(n*m*)

* Runtime depends on the value of m, not size of m
* Run time is exponential in size of input
* Note: Gerrymandering is NP-Complete

