CS4102 Algorithms Spring 2019

Warm up

Given access to unlimited quantities of pennies, nickels dimes, and quarters, (worth value 1, 5, 10, 25 respectively), provide an algorithm which gives change for a given value x using the fewest number of coins.

Change Making

43 cents

Change Making Algorithm

- Given: target value x, list of coins $C=[c_1,\dots,c_n]$ (in this case $C=[1,\!5,\!10,\!25]$)
- Repeatedly select the largest coin less than the remaining target value:

$$\begin{aligned} & \text{while}(x>0) \\ & \text{let } c = \max(c_i \in \{c_1, ..., c_n\} \mid c_i \leq x) \\ & \text{print } c \\ & x = x - c \end{aligned}$$

Why does this always work?

- If x < 5, then pennies only
 - 5 pennies can be exchanged for a nickel Only case Greedy uses pennies!
- If $5 \le x < 10$ we must have a nickel -2 nickels can be exchanged for a dime Only case Greedy uses nickels!
- If $10 \le x < 25$ we must have at least 1 dime -3 dimes can be exchanged for a quarter and a nickel Only case Greedy uses dimes!
- nickel Only case Greedy uses dimes! If $x \ge 25$ we must have at least 1 quarter

Only case Greedy uses quarters

Today	"	ν_{\sim}		~ ~	ฝก
100141	/ 5	$K \leftarrow V$	////) 1 (115

- Dynamic Programming
- Gerrymandering
- Greedy Algorithms
- Choice Function
- Change Making

CLRS Readings

- Chapter 15
- Chapter 16

Homeworks

- Homework 5 due Wednesday March 27 at 11pm
 - Seam Carving!
 - Dynamic Programming (implementation)
 - Java or Python
- Homework 6 out tonight, due Wednesday April 3 at 11pm
 - Dynamic Programming and Greedy Algorithms
 - Written (using Latex!)

Dynamic Programming

- Requires Optimal Substructure
- $-\,\mbox{Solution}$ to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems

 - "Top Down": Solve each recursively
 "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
 if mem[problem] not blank:
 return mem[problem return mem[problem] if baseCase(problem): solution = solve(problem)
mem[problem] = solution
return solution for subproblem of problem: subsolutions.append(myDPalgo(subproblem)) solution = OptimalSubstructure(subsolutions) mem[problem] = solution return solution

3

DP Algorithms so far

- $2 \times n$ domino tiling (Fibonacci)
- Log cutting
- Matrix Chaining
- Longest Common Subsequence
- Seam Carving

Domino Tiling Tile(n): Initialize Memory M M[0] = 0 M[1] = 0 for i = 0 to n: M[i] = M[i-1] + M[i-2] return M[n]

Gerrymandering

- Manipulating electoral district boundaries to favor one political party over others
- Coined in an 1812 Political cartoon
- Governor Gerry signed a bill that redistricted Massachusetts to benefit his Democratic-Republican Party

According to the Supreme Court

- Gerrymandering cannot be used to:
 - Disadvantage racial/ethnic/religious groups
- It can be used to:
 - Disadvantage political parties

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Gerrymandering Problem Statement

- Given:
- A list of precincts: p_1, p_2, \dots, p_n precincts, n of them Each containing m voters

 Output: n n the votes, but how many Output: $\begin{array}{c} \text{Output:} \\ -\text{Districts } D_1, D_2 \subset \{p_1, p_2, \dots, p_n\} \\ -\text{Where } |D_1| = |D_2| \\ -R(D_1), R(D_2) > \frac{mn}{4} \quad \frac{1}{2} \cdot \frac{1}{N} \\ \cdot R(D_l) \text{ gives number of "Regular Party" voters in } D_l \\ \cdot R(D_l) > \frac{mn}{4} \text{ means } D_l \text{ is majority "Regular Party"} \\ -\text{"failure" if no such solution is possible} \end{array}$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest
 - 3. Save solution to each subproblem in memory

Define Recursive Structure

S(j,k,x,y)= True if from among the first ${\it j}$ precincts: ${\it k}$ are assigned to ${\it D}_1$ exactly ${\it x}$ vote for R in ${\it D}_1$ exactly ${\it y}$ vote for R in ${\it D}_2$

4D Dynamic Programming!!!

Final Algorithm $S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S\left(j-1,k,x,y-R(p_j)\right)$ Initialize S(0,0,0,0) = True for $j=1,\dots,n$: for $k=1,\dots,jm$: for $k=1,\dots,jm$: for $k=1,\dots,jm$: exactly k vote for k in k

Run Time $S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S(j-1,k,x,y-R(p_j))$ Initialize S(0,0,0,0) = True n for j = 1,...,n: $\frac{n}{2} \text{ for } k = 1,...,\min(j,\frac{n}{2})$: nm for y = 0,...,jm: nm for y = 0,...,jm: $S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y)$ $\vee S(j-1,k-1,x-R(p_j),y)$ $\vee S(j-1,k,x,y-R(p_j))$ Search for True entry at $S(n,\frac{n}{r_2},\frac{mn}{4},\frac{mn}{4})$

$\Theta(n^4m^2)$

- Runtime depends on the *value* of m, not *size* of m
- Run time is exponential in size of input
- Note: Gerrymandering is NP-Complete

31