CS4102 Algorithms

Warm up
Given access to unlimited quantities of pennies, nickels
dimes, and quarters, (worth value 1, 5, 10, 25
respectively), provide an algorithm which gives change
for a given value x using the fewest number of coins.

3/25/19

Change Making

43 cents

Wess

Change Making Algorithm

* Given: target value x, list of coins C = [cy, ..., ¢
(in this case € = [1,5,10,25])
* Repeatedly select the largest coin less than the remaining
target value:

while(x > 0)
let c = max(c; € {c1,...,cn}| i < x)
print ¢
xX=x—c

Why does this always work?

If x < 5, then pennies only

— 5 pennies can be exchanged for a nickel
Only case Greedy uses pennies!

If 5 < x < 10 we must have a nickel
— 2 nickels can be exchanged for a dime
Only case Greedy uses nickels!
If 10 < x < 25 we must have at least 1 dime

— 3 dimes can be exchanged for a quarter and a
nickel Only case Greedy uses dimes!

If x = 25 we must have at least 1 quarter

Only case Greedy uses quarters!

3/25/19

Today’s Keywords

Dynamic Programming
Gerrymandering
Greedy Algorithms
Choice Function
Change Making

CLRS Readings

Chapter 15
Chapter 16

Homeworks

Homework 5 due Wednesday March 27 at 11pm

— Seam Carving!

— Dynamic Programming (implementation)

— Java or Python

Homework 6 out tonight, due Wednesday April 3 at 11pm

— Dynamic Programming and Greedy Algorithms
— Written (using Latex!)

3/25/19

Dynamic Programming

Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* Idea:
1. Identify recursive structure of the problem
* What is the “last thing” done?
2. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
« “Bottom Up”: Iteratively solve smallest to largest
3. Save solution to each subproblem in memory

Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):
if mem[problem] not blank:
return mem[problem]
if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem/[problem] = solution
return solution

DP Algorithms so far

2xn domino tiling (Fibonacci)
Log cutting

Matrix Chaining

Longest Common Subsequence
Seam Carving

3/25/19

Domino Tiling
Tile(n):
Initialize Memory M
M[0] =0
M[1]=0
fori=0ton:
M[i] = M[i-1] + M[i-2]
return M[n]

Log Cutting

Solve Smallest subproblem first
Cut(3) + P[1]
Cut(2) + P[2]
Cut(1) + P[3]
Cut(0) + P[4]

Cut(4) = max

Length o 1 2 3 4 5 6 7 8 9 10

Matrix Chaining

35 10

15
3
30 My X35Hx ISXS

j-1

Best(i,j) = an_ilg(Best(i, k) + Best(k +1,)) + 1iTc416)

B . 0’ j=_1 2 34 5 6 N
est(i,i) = I o |us7so | 7875 | 9375 | 11875 15125 1

0

0 | 2625 | 4375 | 7125 J 10500} 2

o | 750 | 2500 | 5375 | 3

Best(1,1) + Best(2,6) + ryr0
Best(1,2) + Best(3,6) +rysce
Best(1,6) = mined pest(1,3) + Best(4,6) + rirce 0 |s000]s
Best(1,4) + Best(5, 6) + 1y7scq

0 | 1000 | 3500 | 4

3/25/19

est(1,5) + Best(6,6) + 1y7gcq [° J°
Longest Common Subsequence
0 ifi=00rj=0
LCSG) =< Lesii—1,j—1)+1 if X[i] = Y[j]
max(LCS(i,j —1),LCS(i—1,j)) otherwise
X = A T c T G A T
+ 0 1 2 3 4 5 6 7
N 0 o 0 o o o o 0 0
T 1 o o 1 1 1 1 1 1
G 2 0 o 1 1 1 2 2 2
c 3 0 o 1 2 2 2 2 2
A 4 0 1 1 2 2 2 3 3
T 5 0 1 2 2 3 3 3 a4
A 6 0 1 2 2 3 3 a4 a4

Tofillin cell (i,j) we need cells (i —1,j — 1), (i — 1,j), (i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference)

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that
extreme partisan gerrymandering might violate the Constitution. | Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering
Anthony Kennedy is seen as the swing vote that could blunt GOP's
map-drawing successes.

Gerrymandering

* Manipulating electoral district
boundaries to favor one
political party over others

* Coined in an 1812 Political
cartoon

* Governor Gerry signed a bill
that redistricted
Massachusetts to benefit his
Democratic-Republican Party

3/25/19

According to the Supreme Court

Gerrymandering cannot be used to:

— Disadvantage racial/ethnic/religious groups
It can be used to:

— Disadvantage political parties

VA 5th District

SBaltimore oDover

WEST
VIRGINIA

© Annapolis
DELAW

Natonai
Fomat

SRS R
o I TT TR

3/25/19

Gerrymandering Today
* Computers make it really effective
Gerrymandering Today

* Computers make it really effective

Gerrymandering Today
* Computers make it really effective

HE EVOLUTION OF MARYLAND'S THIRD DISTRICT

s3rd Congress. st o3 osth

& o> a

TR dr

How does it work?

« States are broken into precincts
« All precincts have the same size
* We know voting preferences of each precinct

* Group precincts into districts to maximize the
number of districts won by my party

Overall: R:217 D:183 R:125 R:92 R:112 R:105

3/25/19

Gerrymandering Problem Statement

n
* Given:

— Alist of precincts: py, ps, oo, D — fremds ,n o Hem
— Each containing m voters
* Output: A o — not the wleg, b hew wan
— Districts Dy, D, © {py, P, -, Pn}
— Where |D,| = |D,|
— R(D,),R(D,) >l4" % m
* R(D;) gives number of “Regular Party” voters in D;
* R(Dy) > %1 means D; is majority “Regular Party”
— “failure” if no such solution is possible

Dynamic Programming

Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* Idea:
1. Identify recursive structure of the problem
¢ What is the “last thing” done?
2. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest
3. Save solution to each subproblem in memory

Consider the last precinct

Valid gerrymandering if:
k+1=9,

After assigning the .
x+R(pp),y >=¢

first n — 1 precincts

If we assign
pnto D,

Valid gerrymandering if:
nszi
%y +R(p) >22

3/25/19

Define Recursive Structure

S(,k,x,y) = True if from among the first j precincts:

k are assigned to D,
nxnxmnxmn exactly x vote for Rin D;
exactly y vote for Rin D,

4D Dynamic Programming!!!

Two ways to satisfy S(j, k, x, y):

SG, k,x,y) =Trueif:

k are assigned to Dy

Then assign
pjto D,

G %) =S(= Lk = 1,x=R(p).7) VS (j - Lkx,y = R(p))

from among the first j precincts

g exactly x vote for Rin Dy
Then assig exactly y vote for Rin Dy

Final Algorithm

3/25/19

SGkx,y) =S~ 1,k —1,x— re(,l,),v)vx(/ —1kxy — R(p,))
Initialize $(0,0,0,0) = True SU, ko x,y) = True if:
forj = 1' RN from among the first j precincts
fork =1, ..., min(j=) k are assigned to D;
forx=0,. ”]m. exactly x vote for Rin Dy
for y= 0, ...,]m: exactly y vote for Rin D

SG. k,x,y) =
(/—1 k—lx—R(p

\% S‘(] —-Lkxy— R(p/)
Search for True entry at S(n,— =") 9 I@’

Run Time
SGkx,y) = S0~ 1,0k 1, (—H(/r’,),y)\/b‘(/— 1,k x,y — R(,;,))
Initialize S(OOOO) True
n forj=1,.
L fork—l < min(j3): 0(n*m?)

nmforx = 0 ey jm
nmfory =0, ..., jm:
SG,k,x,y) =
S(=1k=1x=R(p;)y)
vS(j—1kxy—R(p))

Search for True entry at S(n,—'zl, >—";n, >l;")
0(n*m?)

* Runtime depends on the value of m, not size of m
* Run time is exponential in size of input
* Note: Gerrymandering is NP-Complete

10

