
Warm up
Given access to unlimited quantities of pennies, nickels

dimes, and quarters, (worth value 1, 5, 10, 25
respectively), provide an algorithm which gives change
for a given value ! using the fewest number of coins.

CS4102 Algorithms
Spring 2019

1

Change Making

43 cents

2

Change Making Algorithm

• Given: target value !, list of coins " = [%&, … , %)]
(in this case " = [1,5,10,25])

• Repeatedly select the largest coin less than the remaining
target value:

3

while(! > 0)
let % = max(%4 ∈ {%& , … , %)} | %4 ≤ !)
print %
! = ! − %

Why does this always work?

• If ! < 5, then pennies only
– 5 pennies can be exchanged for a nickel

• If 5 ≤ ! < 10 we must have a nickel
– 2 nickels can be exchanged for a dime

• If 10 ≤ ! < 25 we must have at least 1 dime
– 3 dimes can be exchanged for a quarter and a

nickel
• If ! ≥ 25 we must have at least 1 quarter

4

Only case Greedy uses pennies!

Only case Greedy uses nickels!

Only case Greedy uses dimes!

Only case Greedy uses quarters!

5

Warm up
Given access to unlimited quantities of pennies, nickels
dimes, mays, and quarters, (worth value 1, 5, 10, 11, 25

respectively), give 90 cents change using the fewest
number of coins.

Greedy solution

90 cents

6

Greedy solution

90 cents

7

Today’s Keywords

• Greedy Algorithms
• Choice Function
• Change Making
• Interval Scheduling
• Exchange Argument

8

CLRS Readings

• Chapter 16

9

Homeworks

• Homework 5 due tonight at 11pm
– Seam Carving!

– Dynamic Programming (implementation)

– Java or Python

• Homework 6 out tonight, due Wednesday April 3 at 11pm
– Dynamic Programming and Greedy Algorithms

– Written (using Latex!)

10

Greedy vs DP

• Dynamic Programming:
– Require Optimal Substructure
– Several choices for which small subproblem

• Greedy:
– Require Optimal Substructure
– Must only consider one choice for small subproblem

11

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

12

Change Making Choice Property

• Largest coin less than or equal to target value must be part of
some optimal solution (for standard U.S. coins)

13

Interval Scheduling

• Input: List of events with their start and end
times (sorted by end time)

• Output: largest set of non-conflicting events (start
time of each event is after the end time of all
preceding events)

14

[1, 2.25] Alumni Lunch
[3, 4] CHS Prom
[3.5, 4.75] CS4102
[4, 5.25] Bingo
[4.5, 6] SCUBA lessons
[5, 7.5] Roller Derby Bout
[7.75, 11] UVA March Madness watch party

Interval Scheduling DP

15

!" !# !$ %# %&

'%!((() = max # events that can be scheduled before time (

'%!(e- = max '%!(s- + 1

%&4"!&

'%!(e-4"

Include event 5
Exclude event 5

Greedy Interval Scheduling

• Step 1: Identify a greedy choice property

16

Greedy Interval Scheduling

• Step 1: Identify a greedy choice property
– Options:
• Shortest interval

• Fewest conflicts

• Earliest start

• Earliest end

17

Prove using Exchange Argument

Interval Scheduling Algorithm

18

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm
Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

19

Interval Scheduling Algorithm

20

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm

21

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Run Time

22

Equivalent way

StartTime = 0
For each interval (in order of finish time):

if begin of interval < StartTime or end of interval < StartTime:
do nothing

else:
add interval to solution
StartTime = end of interval

!(#)
!(1)

!(1)

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

23

Exchange Argument for Earliest End Time
• Claim: earliest ending interval is always part of some

optimal solution

• Let !"#$,& be an optimal solution for time range [(,)]
• Let +∗ be the first interval in [(,)] to finish overall
• If +∗ ∈ !"#$,& then claim holds
• Else if +∗ ∉ !"#$,&, let + be the first interval to end in
!"#$,&
– By definition +∗ ends before +, and therefore does not

conflict with any other events in !"#$,&
– Therefore !"#$,& − {+} + {+∗} is also an optimal solution
– Thus claim holds

24

25

