

Change Making Algorithm

```
• Given: target value x, list of coins C = [c_1, ..., c_n]
(in this case C = [1,5,10,25])
```

• Repeatedly select the largest coin less than the remaining target value:

 $\begin{array}{l} \mathsf{while}(x > 0) \\ \mathsf{let} \ c = \max(c_i \in \{c_1, ..., c_n\} \mid c_i \leq x) \\ \mathsf{print} \ c \\ x = x - c \end{array}$

- If x < 5, then pennies only

 5 pennies can be exchanged for a nickel Only case Greedy uses pennies!
- If 5 ≤ x < 10 we must have a nickel − 2 nickels can be exchanged for a dime Only case Greedy uses nickels!
- If $10 \le x < 25$ we must have at least 1 dime - 3 dimes can be exchanged for a quarter and a nickel Only case Greedy uses dimes!
- If $x \ge 25$ we must have at least 1 quarter
 - Only case Greedy uses quarters!

Today's Keywords

- Greedy Algorithms
- Choice Function
- Change Making
- Interval Scheduling
- Exchange Argument

CLRS Readings

Chapter 16

Homeworks

• Homework 5 due tonight at 11pm

– Seam Carving!

- Dynamic Programming (implementation)
- Java or Python
- Homework 6 out tonight, due Wednesday April 3 at 11pm
 Dynamic Programming and Greedy Algorithms
 - Written (using Latex!)

Greedy vs DP

- Dynamic Programming:
 - Require Optimal Substructure
 - Several choices for which small subproblem
- Greedy:
 - Require Optimal Substructure
 - Must only consider one choice for small subproblem

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 Repeatedly apply the choice property until no subproblems remain

Change Making Choice Property

· Largest coin less than or equal to target value must be part of some optimal solution (for standard U.S. coins)

Interval Scheduling

- Input: List of events with their start and end times (sorted by end time)
- Output: largest set of non-conflicting events (start time of each event is after the end time of all preceding events)

country country	
[1, 2.25]	Alumni
[3, 4]	CHS Pro
[3.5, 4.75]	CS4102
[4, 5.25]	Bingo
[4.5, 6]	SCUBA
[5, 7.5]	Roller D
[7.75, 11]	UVA M

2.25]	Alumni Lunch
1	CHS Prom

CS4102

- CS4102 Bingo SCUBA lessons Roller Derby Bout UVA March Madness watch party

Greedy Interval Scheduling

• Step 1: Identify a greedy choice property

- Soonest starting event
- somest ending event
- shortest event

Interval Scheduling Algorithm

Find event ending earliest, add to solution, Remove it and all conflicting events, Repeat until all events removed, return solution

Interval Scheduling Run Time

Find event ending earliest, add to solution, Remove it and all conflicting events,

Repeat until all events removed, return solution

quivalent way StartTime = 0

For each interval (in order of finish time): 0(n) if begin of interval < StartTime or end of interval < StartTime: 0(1)

- do nothing else:
 - add interval to solution 0(1) StartTime = end of interval

Exchange argument

- · Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Exchange Argument for Earliest End Time

- Claim: earliest ending interval is always part of some optimal solution
- Let $OPT_{i,j}$ be an optimal solution for time range [i, j]
- Let *a*^{*} be the first interval in [*i*, *j*] to finish overall
- If $a^* \in OPT_{i,j}$ then claim holds
- Else if $a^* \notin OPT_{i,j}$, let *a* be the first interval to end in

 - $D_{1,i} = By$ definition a^* ends before a, and therefore does not conflict with any other events in $OPT_{i,j}$ Therefore $OPT_{i,j} \{a\} + \{a^*\}$ is also an optimal solution Thus claim holds

