CS4102 Algorithms

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

CS4102 Algorithms

-.
o
ool

X >N

I
®
®
®
>

Ue o mmm

°
=

ABCDEFGHIJKLMNOPQRST

Warm up
Decode the line below into English
(hint: use Google or Wolfram Alpha)

Today’s Keywords

Greedy Algorithms
Exchange Argument
Choice Function
Prefix-free code
Compression
Huffman Code

CLRS Readings

* Chapter 16

Homeworks

* HW6 Due Wednesday Apr3 @11pm

— Written (use latex)
— DP and Greedy

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Sam Morse

* Engineer
and artist

Message Encoding

* Problem: need to electronically send a message
to two people at a distance.

* Channel for message is binary (either on or off)

12

Character
Frequency Encodin

How canwe do it? [, 0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green

* Take the message, send it over
character-by-character with an
encoding

B~ W

< s €€ v 3TOT S TATO@ o O
Nb'\l—\w'\’l—\l—\wkol—‘ool—\l—\l\)

Character ~ Encoding
Frequency Table

How efficient is this? T

wiggle wiggle wiggle like a gypsy queen 3 ; 88(1)(1)
wiggle wiggle wiggle all dressed in green '

SEIE WIBETE WIEE _ g_ e:13| |0011

Each character requires 4 bits g: 14 0100

. =4 i 8 0101

k: 1 0110

Cost of encoding: 9 0111

n: 3 1000

B(T,(f.)}) = z 0.f. =684 =272 0:1 | |1001

character c q:1 1010

r: 2 1011

s:3 1100

Better Solution: Allow for different u:l 1101

characters to have different-size encodings W: 6 1110

(high frequency - short code) y: 2 1111

Character Frequency

More efficient coding

0.14 When this is big

0.12

BUL D=) L

o1 character c
0.08 Make this small
0.06
0.04
0.02

etaoinshrdlcumwfgypbvk]xaqgz

H

15

Character Frequency

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Morse Code

nshrd

etaoi

International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.
4. The space between letters is three units.

5. The space between words is seven units.

A o mmm Ue o mm
Bumeeooe Veeoomm
Commommoe We mm mm
Dommeoe X mmm o ¢ H
Ee Y smm o mmm mmm
Feoeomme Zmmm mmm e e
G mm o

Heeoeooeo

| @@

| o mmm EmE EEm

K o mmm

Lommeoe

M om ==m

N o e

O mmm mmm

P o nm mm

Q

R

S

T

l cumw fgypbvek]|xqgz

16

Problem with Morse Code

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.

3. The space between parts of the same letter is one unit.

4. The space between letters is three units.
5. The space between words is seven units.

:'Illi
II 00

® ®
o0 IO

®
N<XX=S<C
III...
I..I:i
.Iill
1

PO VOZErA——I0OMMUuNmr>
:ililll |
'.Ill'l .

|

Io

A A

Decode: PR P —

ET ET
R T
EN T

Ambiguous Decoding

Prefix-Free Code

* A prefix-free code is codeword table T such
that for any two characters ¢4, ¢,, if ¢; # ¢,

then code(c,) is not a prefix of code(c,)

g O 1111011100011010
e 10 w | ggl e
| 110

i 1110

w 11110

Binary Trees = Prefix-free Codes

* | can represent any prefix-free code as a binary tree
* | can create a prefix-free code from any binary tree

g

e

| 00

i 01

Yy, 10
110

111

19

Goal: Shortest Prefix-Free Encoding

* Input: A set of character frequencies {f,}
e Qutput: A prefix-free code T which minimizes

BULUN =) 4l

character c

Huffman Coding!!

20

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

21

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

oo e o 1m w53 a2 02 n2 v [[

22

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Subproblem of sizen — 1!

23

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

24

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

25

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—="

26

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—far

27

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

ﬁ 1

28

Huffman Algorithm
* Choose the least frequent pair,
combine into a subtree 0

|1 OA '1
OA OA OA .A

29

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Showing Huffman is Optimal

* Overview:
— Show that there is an optimal tree in which the
least frequent characters are siblings
* Exchange argument
— Show that making them siblings and solving the

new smaller sub-problem results in an optimal
solution

* Proof by contradiction

Showing Huffman is Optimal

* First Step: Show any optimal tree is “full”
(each node has either O or 2 children)

T'is a “better” tree than T, because all codes in
red subtree are shorter in T, without creating
any longer codes

32

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢q, ¢y
are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only
by their last bit

Case 1: Consider some optimal tree Ty, If ¢1, €3 are siblings in this

tree, then claim holds

33

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢q, ¢y
are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only
by their last bit

Case 2: Consider some optimal tree Ty, in which ¢y, ¢c; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.

Similar for ¢, and b
Assume: f.q < foand f» < fp

34

Case 2: ¢4, ¢, are not siblings in Ty

* Claim: the least-frequent characters (cq, ¢,),

are siblings in some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =C+ fclfcl + fafa B(T’) =0+ fﬂ{“ T fa€61

35

Case 2: ¢4, ¢, are not siblings in Ty

* Claim: the least-frequent characters (¢4, ¢,),

are siblings in some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =CH+ ff:1 T+ fafy B(T") =C+ feafa + fafc
> 0 = T’ optimal
B(Topt) —B(T") =C+ fe1ter + fafa — (C + ferta + fafcr)
= fe1ter + fata — ferfa — fatcr
= fe1(fe1 —4a) + fafa — c1)
= (fa—fe)Ea —¥c1)

Case 2: ¢4, ¢, are not siblings in Ty

* Claim: the least-frequent characters (cq, ¢,),

are siblings in some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =C+ fclfcl + fafa B(T’) =0+ fﬂ{“ T fa€61

B(Topt) —B(T") = (fa—fe1)(a — 1)

B(T,p:) —B(T') =0
T’ is also optimal!

C1

Case 2:Repeat to swap ¢,, b!

* Claim: the least-frequent characters (cq, ¢,),

are siblings in some optimal tree
a, b = lowest-depth siblings

ldea: show that swapping ¢, with b does not increase cost of the tree.
Assume: f.» < fp

B(T,)=C+fcz'€c2 +fb'£b B(T”)=C+f62'£b+fb'ec2

R
B(T") = B(T") = (fp—fe2) (€p — £c2)

B(T')—B(T") =0

T" is also optimal! Claim holds!

Showing Huffman is Optimal

e Overview:

S| | | : sl . hich.tl
| : | T
+_Exchange argument

— Show that making them siblings and solving the
new smaller sub-problem results in an optimal
solution

* Proof by contradiction

Finishing the Proof

* Show Optimal Substructure

— Show treating ¢4, ¢, as a new “combined”
character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

40

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
C1,Cy as children to o

FI

ﬂ

F

41

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

C1,Co as children to o
If this is optimal Then this is optimal

fo = Je1 + fe2

B(T’):B(T)_fcl_fcz 42

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

C1,C2 a5 childrento o Toward contradiction

Suppose T is not optimal

Let U be a lower-cost tree
B(U) < B(T)

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
C1,Co as children to o

B(U) < B(T)

B(U,) — B(U) _fcl _fcz
< B(T) _fcl _fcz
= B(T")

0}

Contradicts optimality of T', so T is
optimal! “

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
C1,Co as children to o

48

Entire Huffman Derivation Follows

* Not covered in class, just for your review

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

50

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

W

51

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

W

52

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

53

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—E

54

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

e

55

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—

1

56

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

1 ;i: ==1 1

1

57

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

58

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

59

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

60

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree
f
OA 0 1
o

" =

61

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree

|1 OA '1
OA OA OA .A

62

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree

|1 OA '1
OA OA OA .A

63

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree |

|1 OA '1
OA OA OA .A

64

