CS4102 Algorithms

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

4/1/19

CS4102 Algorithms

Warm up
Decode the line below into English

(hint: use Google or Wolfram Alpha)

“NPOTVOZEZrA——IOTMMOO®>

Today’s Keywords

Greedy Algorithms
Exchange Argument
Choice Function
Prefix-free code
Compression
Huffman Code

CLRS Readings

* Chapter 16

4/1/19

Homeworks

* HW6 Due Wednesday Apr 3 @11pm
— Written (use latex)
— DP and Greedy

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!

* Idea:

1. Identify a greedy choice property

How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

Shows correctness of a greedy algorithm

* Idea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse

— How to show my sandwich is at least as good as yours:

« Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Sam Morse

* Engineer
and artist

Message Encoding

* Problem: need to electronically send a message
to two people at a distance.

* Channel for message is binary (either on or off)

4/1/19

4/1/19

Character
. Frequ Encodin
How can we do it? 255" [oooo
wiggle, wiggle, wiggle like a gypsy queen d:2 0001
wiggle, wiggle, wiggle all dressed in green e:13 ggi(l)
P g: 14
* Take the message, send it over s 0100
character-by-character with an k: 1 0101
encoding 1:9 0110
n:3 0111
p:1 1000
q:1 1001
r2 1010
s:3 1011
u:l 1100
w: 6 1101
y:2 1110
Characte: Encoding
HP H H Frequency Table
How efficient is this? | ;
wiggle wiggle wiggle like a gypsy queen Z ; 88(13;
wiggle wiggle wiggle all dressed in green e-l s 0011
Each character requires 4 bits g 12| o100
. =4 i:8 0101
k:1 0110
Cost of encoding: I:9 0111
n:3 1000
BULUD=). tfi=68-4=272 o1 | 1001
character ¢ q:1 1010
r:2 1011
s:3 1100
Better Solution: Allow for different url 1101
characters to have different-size encodings w: 6 1110
(high frequency - short code) y:2 1111

More efficient coding

B(T,{f.) =

Character Frequency

When this is big

e,

character ¢

Make this small

etaocinshrdlicumwfgypbvkixaz

oo

International Morse Code

Morse Code

Character Frequency

etaocinshrdicumwigypbvkjxaqz

oo

4/1/19

Problem with Morse Code

International Morse Code

A A
Decode: o mmm o mmm
ET ET
R T
EN T

Ambiguous Decoding

“4WPOTVOZZrA——IOTMOO®>

Prefix-Free Code

* A prefix-free code is codeword table T such
that for any two characters ¢y, ¢,, if ¢; # ¢,
then code(cy) is not a prefix of code(c;)

g O 1111011100011010
e 10 w i ggl e
| 110

i 1110

w 11110

Binary Trees = Prefix-free Codes

* | can represent any prefix-free code as a binary tree

* | can create a prefix-free code from any binary tree

g 0 !

e 10 . ©

I

i ﬂ(l)o 1" ® SR ‘ 8(1)

w 11110 1& o I 10
Q? [) i 110

W)& w 111
00000

4/1/19

Goal: Shortest Prefix-Free Encoding

* Input: A set of character frequencies {f.}
¢ QOutput: A prefix-free code T which minimizes

BULUD =) tf

character ¢

Huffman Coding!!

Greedy Algorithms

Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!
Idea:
1. Identify a greedy choice property
* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

IG:ll lE:lSl L9 [I:8 lW:Sl N:3 l s:3 [A:l l D:2 l R:2 l Y:2 l K1 l Pl

4/1/19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[5:14 IE:uI L9 Il:s Iw:sl N:3 I 53 I A2 I D:2 I R:2 I Y:2

Subproblem of size n — 1!

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

IG:14 lE:lSl L9 [I:B lW:Sl N:3 l s:3 [A:Z l D:2 l R:2 l Yv:2

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

4/1/19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

4/1/19

Huffman Algorithm
* Choose the least frequent pair,
combine into a subtree °

Exchange argument

* Shows correctness of a greedy algorithm

* Idea:
— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

« Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Showing Huffman is Optimal

* Overview:
— Show that there is an optimal tree in which the
least frequent characters are siblings
. Exchange argument
— Show that making them siblings and solving the
new smaller sub-problem results in an optimal
solution
* Proof by contradiction

4/1/19

Showing Huffman is Optimal

* First Step: Show any optimal tree is “full”
(each node has either 0 or 2 children)

any longer codes

T'is a “better” tree than T, ,because all codes in
red subtree are shorter in T, without creating

Huffman Exchange Argument

» Claim:if ¢y, c5 are the least-frequent characters,

then there is an optimal prefix-free code s.t. ¢4, ¢,

are siblings

— i.e. codes for ¢y, ¢, are the same length and differ only

by their last bit

Case 1: Consider some optimal tree T,,,,;. If ¢, ¢, are siblings in this

tree, then claim holds

glle

10

Huffman Exchange Argument

* Claim:if ¢y, c; are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢y, ¢
are siblings

— i.e. codes for ¢y, ¢, are the same length and differ only
by their last bit
Case 2: Consider some optimal tree T,,,¢, in which ¢y, ¢; are not siblings
Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping c; with a does
not increase cost of the tree.

Similar for ¢, and b

Assume: fo; < fpand f, < f,

4/1/19

Case 2: ¢y, ¢, are not siblings in T ¢
 Claim: the least-frequent characters (cq, ¢5),
are siblings in some optimal tree
a,b = lowest-depth siblings
Idea: show that swapping ¢, with a does not increase cost of the tree.

Assume: f., < f,

B(Tope) = C + ferter + fta B(T') = C + forta + fater

Case 2: ¢y, ¢, are not siblings in Ty,
* Claim: the least-frequent characters (cy, ¢5),
are siblings in some optimal tree
a,b = lowest-depth siblings
Idea: show that swapping ¢, with a does not increase cost of the tree.
Assume: f., < f,
BTope) = C+ forlis + il BU) = C+ fulo + fila
>0 = T’ optimal
B(Tope) = BUI') = C + ferter + fata = (C + frra + fater)
= farler + fala = farta = foter
= fer(Ber =€) + fa(ba = £c1)
= (fa=fer)(la = te1)

11

Case 2: ¢y, ¢, are not siblings in Ty,
* Claim: the least-frequent characters (cy, ¢3),
are siblings in some optimal tree
a,b = lowest-depth siblings

Idea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f., < f,

B(Tope) = C + ferter + fta B(T") = C + farte + fater

B(Tope) = B(T") = (fa=fe)(ba — £

>0 =0
B(Topc) —B(T") 20
T'is also optimal!

4/1/19

Case 2:Repeat to swap ¢, b!
 Claim: the least-frequent characters (cq, ¢5),
are siblings in some optimal tree
a,b = lowest-depth siblings

Idea: show that swapping ¢, with b does not increase cost of the tree.
Assume: f,, < f,

B(T) = C + forler + fofy B(T") = C+ forly + folea

=0
B(T") — B(T") > 0
T" is also optimal! Claim holds!

Showing Huffman is Optimal

* Overview:
Show-that-there-is-ar-optimal-trae-in-which-th
least-freauent-ch + cacibli

& S
Exchange-aratRent

— Show that making them siblings and solving the
new smaller sub-problem results in an optimal
solution

* Proof by contradiction

12

Finishing the Proof

* Show Optimal Substructure

— Show treating ¢, ¢; as a new “combined”
character gives optimal solution

Why does solving this smaller problem:

(I)

Give an optimal solution to this?:

(

L Jale)

4/1/19

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
cq, €y as children to o

Optimal Substructure
* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

cq, €5 as children to o
If this is optimal Then this is optimal

B(T") = B(T) = fe1 — fez

13

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

€1, ¢z as children to o Toward contradiction

Suppose T is not optimal
Let U be a lower-cost tree
B(U) < B(T)

4/1/19

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
¢4, €y as children to o

B(U) < B(T)
BWU) =BW) ~ fo1 — fe
< B(T) _fcl _fcz

Contradicts optimality of ', so T is
optimal! “

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
cq, €5 as children to o

14

4/1/19

Entire Huffman Derivation Follows

* Not covered in class, just for your review

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

IG:14 lE:iSl L9 l 1:8 lW:Sl N:3 l s:3 l A2 l D:2 l R:2 l Y:2 l K1 l P:1 lQ:l I Uil l

15

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

IG:ll lE:lSl L9 [I:8 lW:Sl N:3 l s:3 [A:l l D:2 l R:2 l
O
(2] s]

4/1/19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[5:14 IE:uI L9 Il:s Iw:sl N:3 I 53 I A2 I D:2 I R:2 I Y:2

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

N:3 l s:3 lA:Z l D:2 l R:2 [Y:2 l

I G:14 lE:lSl L9 [I:B lW:S

16

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

4/1/19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

17

4/1/19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

18

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

4/1/19

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

4/1/19

Huffman Algorithm
* Choose the least frequent pair,

combine into a subtree

20

