
Warm up

Why is an algorithm’s space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a “bad” one?

CS4102 Algorithms
Spring 2019

3

Why lots of memory is “bad”

4

Today’s Keywords

• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms

5

CLRS Readings

• Chapter 16

6

Homeworks

• HW6 Due Friday April 5 @11pm
– Written (use latex)
– DP and Greedy

7

Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {"#}
• Output: A prefix-free code % which minimizes

& %, "# =)
#*+,+#-., #

ℓ#"#

8

Huffman Coding!!

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

9

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

10

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2

0 1

Subproblem of size ! − 1!

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

11

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

REVIEW: Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

– Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Proof by contradiction

12

Greedy Choice Property

Optimal Substructure works

Huffman Exchange Argument
• Claim: if !", !$ are the least-frequent characters,

then there is an optimal prefix-free code s.t. !", !$
are siblings
– i.e. codes for !", !$ are the same length and differ only

by their last bit

13!"

%&'(

!$

Case 1: Consider some optimal tree %&'(. If !", !$ are siblings in this
tree, then claim holds

Huffman Exchange Argument

14

!"

#

!$

%&'(

)

• Claim: if !$, !" are the least-frequent characters,
then there is an optimal prefix-free code s.t. !$, !"
are siblings
– i.e. codes for !$, !" are the same length and differ only

by their last bit
Case 2: Consider some optimal tree %&'(, in which !$, !" are not siblings

Let #,) be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping !$ with # does
not increase cost of the tree.
Similar for !" and)
Assume: +,$ ≤ +. and +," ≤ +/

Optimal Substructure

• Claim: An optimal solution for ! involves
finding an optimal solution for !′, then adding
#$, #& as children to '

15

#$ #&

#$ #&

'
!′

!

(′

'

)′
'

)
#$
'
#&

#$

(

#&

Optimal Substructure
• Claim: An optimal solution for ! involves

finding an optimal solution for !′, then adding
#$, #& as children to '

16

(

#$

'

#&

(′
'

If this is optimal Then this is optimal

)* =),$ +),&

. (/ = . (−),$ −),&

ℓ,$ = ℓ* + 1
ℓ,& = ℓ* + 1

Optimal Substructure
• Claim: An optimal solution for ! involves

finding an optimal solution for !′, then adding
#$, #& as children to '

17

(

#$

'

#&

Suppose (is not optimal
Let) be a lower-cost tree

*) < *(()

#$

)

#&

Toward contradiction

Optimal Substructure
• Claim: An optimal solution for ! involves

finding an optimal solution for !′, then adding
#$, #& as children to '

18

(′

'

) (<)(,)

#$

(

#&

) (′ =) (− 01$ − 01&
<) , − 01$ − 01&
=) ,′

Contradicts optimality of ,′, so , is
optimal!

Caching Problem

• Why is using too much memory a bad thing?

19

Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics
– Physics
– Economics
– Computer Science

20

Von Neumann Bottleneck
• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time,

more memory is a lot more time

21

CPU,
registers

Cache Disk

If not look hereHopefully your
data in here

Hope it’s not here

Access time:
1 cycle Access time:

10 cycles

Access time:
1,000,000+ cycles

RAM

Access time: 100+ cycles

If not look here

Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate

something already there
• We want the best cache “schedule” to minimize the number of

misses

22

Caching Problem Definition

• Input:
– ! = size of the cache
–# = $%,$',…$) = memory access pattern

• Output:
– “schedule” for the cache (list of items in the cache at each time)

which minimizes cache fetches

23

Example

24

A B C D A D E A D B A E C E A

A

B

C

Example

25

A B C D A D E A D B A E C E A

A

B

C

A

B

C

Example

26

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

Example

27

A B C D A D E A D B A E C E A

A

B

C

We must evict
something to make
room for D

A

B

C

A

B

C

A

B

C

Example

28

A B C D A D E A D B A E C E A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C

Example

29

A B C D A D E A D B A E C E A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C

Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)

30

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced
Leaving A in longer does
not save fetches

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

31

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

32

A B C D A D E A D B A E C E A

A

B

C Evict C

A

B

C

A

B

C

A

B

C

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

33

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

B

D Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

34

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

D Evict D

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

35

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

B Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

36

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C

A

E

C

A

E

C

4 Cache Misses

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

37

Caching Greedy Algorithm

Initialize !"!ℎ$= first k accesses
For each %& ∈ (:

if %& ∈ !"!ℎ$:
print !"!ℎ$

else:
% = furthest-in-future from cache
evict %, load %&
print !"!ℎ$

38

*(,)
. times

*(,)
*(,)

*(,.)
*(1)

*(,)
*(,.0)

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

39

Belady Exchange Lemma
Let !"" be the schedule chosen by our greedy algorithm
Let !# be a schedule which agrees with !"" for the first $
memory accesses.
We will show: there is a schedule !#%& which agrees
with !"" for the first $ + 1 memory accesses, and has
no more misses than !#
(i.e.)$**+* !#%& ≤)$**+*(!#))

40

!∗
Agrees with
!"" on first 0
accesses

!& !0
Agrees with
!"" on first
access

Agrees with
!"" on first 2
accesses

… !""
Agrees with
!"" on all 1
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

Belady Exchange Proof Idea

41

!"

!##

!"$%

First & accesses

Must agree with !##

Need to fill in the rest
of !"$% to have no

more misses than !"

!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the
state of the cache at access # + 1 will be the same

42

!,, Cache after #=
Consider access &"$% = 0
Case 1: if 0 is in the cache, then neither !" nor !,,
evict from the cache, use the same cache for !"$%

1(1(

!"$% Cache after # 1(

!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the
state of the cache at access # + 1 will be the same

43

!,, Cache after #=
Consider access &"$% = 0

1(1(

Case 2: if 0 isn’t in the cache, and both !" and
!,, evict 1 from the cache, evict 1 for 0 in !"$%

!"$% Cache after # 2(

!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the
state of the cache at access # + 1 will be the same

44

!,, Cache after #=
Consider access &"$% = 0

1(1(

Case 3: if 0 isn’t in the cache, !" evicts (and !,,
evicts 1 from the cache

!" Cache after # + 1 !,, Cache after # + 1≠13 3(

Case 3

45

!"

!##

!"$%

First & accesses

Must agree with !##

Need to fill in the rest
of !"$% to have no

more misses than !"

Case 3

46

!"

!##

!"$% &'

First (accesses

First place !" involves) or * (at time +)

Copy !"

&' = the first access after (+ 1 in which !" deals with) or *
/0 = 1 or /0 = 2 or /0 = 3 ≠ 1, 2

Case 3, !" = $

47

%&

%''

%&() $

First * accesses

First place %& uses $ or +

Copy %&

!" = the first access after * + 1 in which %& deals with $ or +

Case 3, !" = $
Goal: find %&'(s.t. !)**$* %&'(≤ !)**$*(%&)

48

%& Cache after . − 1 %&'(Cache after . − 1≠23 3$

%& must load $ into
the cache, assume it
evicts 4

%&'(will load 2 into
the cache, evicting 4

%&'(behaved exactly the same as %& between)
and ., and has the same cache after .,
therefore !)**$* %&'(= !)**$*(%&)

The caches now match!

4 4
$ 2

Case 3, !" = $

49

%&

%''

%&() $

First * accesses

First place %& uses + or $

Copy %&

!" = the first access after * + 1 in which %& deals with + or $
./ = 0 or ./ = 1 or ./ = 2 ≠ 0, 1

Case 3, !" = $
Cannot Happen!

%&

%''

%&() $

First place %& uses * or $

“Evict $"

“Evict $"

Means $ not farthest future access!

50

Case 3, !" = $ ≠ &, (

51

)*

)++

)*,- $

First . accesses

First place)* uses & or (

Copy)*

!" = the first access after . + 1 in which)* deals with & or (
!" = & or !" = (or !" = $ ≠ &, (

Case 3, !" = $ ≠ &, (
Goal: find)*+, s.t. !-..&.)*+, ≤ !-..&.()*)

52

)* Cache after 2 − 1)*+, Cache after 2 − 1≠(5 5&

)* loads $ into the
cache, it must be
evicting (

)*+, will load $ into
the cache, evicting &

)*+, behaved exactly the same as)* between -
and 2, and has the same cache after 2,
therefore !-..&.)*+, = !-..&.()*)

$ $

The caches now match!

Use Lemma to show Optimality

53

!∗
Agrees with
!## on first 0
accesses

!$!%
Agrees with
!## on first
access

Agrees with
!## on first 2
accesses

… !##
Agrees with
!## on all &
accesses

Lemma Lemma Lemma Lemma

