CS4102 Algorithms

Warm up

Why is an algorithm’s space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a “bad” one?

Why lots of memory is “bad”

~limiled \9-{ Size VV\QJMOA‘t

- &\S«CQ—CAL feeccé,l /J\'/(_@ ot Mrﬂﬂ,

—Y\'\LN°f‘1 1y Slow /Cp\) N Qﬁd\' fuore ver-on S slower Mer o
— Cache wmitses

- P merery =
~ a0y \< +inve

ﬂ

Today’s Keywords

Greedy Algorithms
Choice Function

Cache Replacement
Hardware & Algorithms

CLRS Readings

* Chapter 16

Homeworks

* HW6 Due Friday April 5 @11pm
— Written (use latex)
— DP and Greedy

Goal: Shortest Prefix-Free Encoding

* Input: A set of character frequencies {f,}
e Qutput: A prefix-free code T which minimizes

BULUN =) 4l

character c

Huffman Coding!!

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

oo e o 1m w53 a2 02 n2 v [[

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

W

Subproblem of sizen — 1!

10

Huffman Algorithm
* Choose the least frequent pair,
combine into a subtree 0

|1 OA '1
OA OA OA .A

11

REVIEW: Showing Huffman is Optimal

e Overview:

— Show that there is an optimal tree in which the least

frequent characters are siblings Greedy Choice Property
e Exchange argument

— Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution

* Proof by contradiction Optimal Substructure works

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢q, ¢y
are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only
by their last bit

Case 1: Consider some optimal tree Ty, If ¢1, €3 are siblings in this

tree, then claim holds

13

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢q, ¢y
are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only
by their last bit

Case 2: Consider some optimal tree Ty, in which ¢y, ¢c; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.

Similar for ¢, and b
Assume: f.q < foand f» < fp

14

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

C1,Cz aschildrentoo

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
C1,Co as children to o

If this is optimal Then this is optimal
gl x ger)= C+
- C’_‘, Q: ‘Dc\(Qb' ’H>
5 (A A
fo = Je1 + fe2
=4, +1
=4, +1

B(T,) :B(T)_fcl_fcz 16

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

C1,C2 a5 childrento o Toward contradiction

Suppose T is not optimal

Let U be a lower-cost tree
B(U) < B(T)

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
C1,Co as children to o

B(U) < B(T).
B(U’) ‘B(U)] fer = fe2
| (T) R fcl fcz

= B(T")
B)< B

Contradicts optimality of T', so T is
optimal! 18

0}

Caching Problem

 Why is using too much memory a bad thing?

Von Neumann Bottleneck

* Named for John von Neumann
* |[nventor of modern computer architecture

e Other notable influences include:
— Mathematics
— Physics
— Economics
— Computer Science

20

Von Neumann Bottleneck
 Reading from memory is VERY slow

* Big memory = slow memory
e Solution: hierarchical memory

* Takeaway for Algorithms: Memory is time,
more memory is a lot more time

Hope it’s not here

If not look here
Hopefully your If not look here
data in here

CPU,
registers

Access time:
1 cycle Access time:

10 cycles Access time: 100+ cycles

Access time:
1,000,000+ cycles

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate
something already there

e We want the best cache “schedule” to minimize the number of
misses

Caching Problem Definition

* |nput:

— k = size of the cache

— M = |mq,,m,, ...m,] = memory access pattern
* Qutput:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

23

Example

éBCDADEADBAECEA

Example

A BCDADEADUBAECEA
v v

Example

A BCDADEADUBAECEA
v v

Example

We must evict

something to make
room for D

A B

CDADEADIBAECEA
v vV VR

Example

\ If we evict A

A B

CDADEADBAECEA
VEANAVE IR

Example

If we evict C

A DEADIZBAECEA
v

Our Problem vs Reality
* Assuming we know the entire access pattern

* Cache is Fully Associative
* Counting # of fetches (not necessarily misses)
 “Reduced” Schedule: Address only loaded on the cycle it’s required

— Reduced == Unreduced (by number of fetches)

N
Unreduced
A BCDAUDTEADIGBATETCTEA
N Leaving A in longer does
Reduced not save fetches

A BCDADTEADUBAETCTEA

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

31

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict C

A DEADZBAECEA

A B CD
v vV VR

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

CDADEADZBAETCEA
VAVEANE SVEAVES

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict D

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

E A

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

37

Caching Greedy Algorithm

Initialize cache=first k accesses 0 (k)
For eachm; € M: n times
if m; € cache: 0 (k)
print cache 0 (k)
else:
m = furthest-in-future from cache 0 (kn)
evict m, load m; 0(1)
print cache 0 (k)

0 (kn?)

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

39

Belady Exchange Lemma

Let 5S¢+ be the schedule chosen by our greedy algorithm

Let 5; be a schedule which agrees with 5S¢+ for the first i
memory accesses.

We will show: there is a schedule S;,; which agrees
with S¢ ¢ for the first i + 1 memory accesses, and has
no more misses than 5;

(i.e. misses(S;.,) < misses(S;))

Optimal Greedy

Lemma Lemma Lemma Lemma
*
=) [\ |) |) - EE) Sff
Agrees with Agrees with Agrees with Agrees with

S¢ron first 0 S¢r on first S¢r on first 2 S¢ronalln
accesses access accesses accesses

40

Belady Exchange Proof Idea

First i accesses

A
| \
s I I [[[

Need to fill in the rest

Si+1 - -- *- -- - of §;4+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

Proof of Lemma

Goal: find S;; s.t. misses(S;.1) < misses(S;)
Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i € f — S¢r Cache after i € f

Consider accessm;,; = d

Case 1:if d is in the cache, then neither 5; nor S¢¢
evict from the cache, use the same cache for ;. ;

S;+1 Cache after i < f

42

Proof of Lemma

Goal: find S;; s.t. misses(S;.1) < misses(S;)
Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i € f — S¢r Cache after i € f

Consider accessm;,; = d

Case 2:if d isn’t in the cache, and both 5; and
S¢r evict f from the cache, evict f ford in §;4

S;+1 Cache after i < d

43

Proof of Lemma

Goal: find S;; s.t. misses(S;.1) < misses(S;)

Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i

Consider accessm;,; = d

Sff Cache afteri

Case 3:if d isn’tin the cache, 5; evicts e and 5S¢ ¢

evicts f from the cache

S; Cache afteri + 1 d f S¢r Cache afteri + 1 € d

44

Case 3

First i accesses

A
| \
s | 1 I 1 [[)

Need to fill in the rest

Si+1 - -- *. -- - of §;4+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

Case 3

First i accesses

A
| \
s I I [[[

Copy S5;

%ﬂllllii@l

First place S; involves e or f (at time t)

s | [I I I

m; = the first access after i + 1 in which S; deals with e or f

m;,=eorm;=form=x+e,f

Case3, m; = e

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂlllliigl

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

Case3, m; = e

Goal: find S;;; s.t. misses(S;,,) < misses(S;)

d

S; Cache aftert — 1 S;.1 Cache aftert —1 % €

f
5; must load e into S;+1 will load f into
the cache, assume it the cache, evicting x
evicts x

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

48

Case3, m; = f

First i accesses

A
| \
s I I [[[

Copy S5;

%ﬂllllii?I

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

m;,=eorm;=form=x+e,f

Case3, m; = f

Cannot Happen!

s [N 1) [) [

“Evict f"

smlllﬁllql

First place S; usese or f
Means f not farthest future access!

%TIII$IIII

“Evict f"

Case3, m; =x #e¢,f

First i accesses

A
| \
s I I [[[

Copy S5;

%ﬂllllii?I

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

m;=eorm;=form;=x*e,f

Case3, m; =x #e¢,f

Goal: find S;;; s.t. misses(S;,,) < misses(S;)

S; Cache aftert — 1 a f :'t S;11 Cache aftert — 1 € d

X X

S; loads x into the S;+1 will load x into
cache, it must be the cache, evicting e
evicting f

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

52

Use Lemma to show Optimality

Lemma Lemma Lemma

Lemma
%
=) [\ |) |) .-) Sff
Agrees with Agrees with Agrees with Agrees with

S¢r on first O S¢r on first S¢r on first 2 Sgronalln
accesses access accesses accesses

53

