CS4102 Algorithms Spring 2019

Warm up

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

-limited by size of memory - différent speed / sizes at memory more memory > slower memory - memory is SLOW / CPV is fast - Cache misses - fast memory = \$\$ - memory < time

4

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware & Algorithms

CLRS Readings

• Chapter 16

Homeworks

- HW6 Due Friday April 5 @11pm
 - Written (use latex)
 - DP and Greedy

Goal: Shortest Prefix-Free Encoding

- Input: A set of character frequencies $\{f_c\}$
- Output: A prefix-free code T which minimizes

$$B(T, \{f_c\}) = \sum_{character\ c} \ell_c f_c$$

Huffman Coding!!

Huffman Algorithm

 Choose the least frequent pair, combine into a subtree

Huffman Algorithm

 Choose the least frequent pair, combine into a subtree

Subproblem of size n-1!

Huffman Algorithm

REVIEW: Showing Huffman is Optimal

- Overview:
 - Show that there is an optimal tree in which the least
 frequent characters are siblings
 Greedy Choice Property
 - Exchange argument
 - Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Optimal Substructure works

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1 , c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1 , c_2 are not siblings

Let a, b be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree.

Similar for c_2 and b

Assume: $f_{c1} \le f_a$ and $f_{c2} \le f_b$

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

If this is optimal

Then this is optimal

$$B(T') = B(T) - f_{c1} - f_{c2}$$

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ Toward contradiction

Suppose *T* is not optimal Let *U* be a lower-cost tree B(U) < B(T)17

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Caching Problem

Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

• Input:

- -k =size of the cache
- $-M = [m_1, m_2, ... m_n] = \text{memory access pattern}$

• Output:

"schedule" for the cache (list of items in the cache at each time)
 which minimizes cache fetches

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
Initialize cache= first k accesses
                                               O(k)
For each m_i \in M:
                                  n times
      if m_i \in cache:
                                   O(k)
            print cache
                                     O(k)
      else:
            m = \text{furthest-in-future from cache}
                                                             O(kn)
                                             O(1)
            evict m, load m_i
            print cache
                                      O(k)
                                                O(kn^2)
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses.

We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i

(i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

Case 3

Case 3

First place S_i involves e or f (at time t)

$$S_{ff}$$

 m_t = the first access after i+1 in which S_i deals with e or f

$$m_t = e$$
 or $m_t = f$ or $m_t = x \neq e$, f

Case 3, $m_t = e$

 m_t = the first access after i+1 in which S_i deals with e or f

Case 3, $m_t = e$

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i must load e into the cache, assume it evicts x

 S_{i+1} will load f into the cache, evicting x

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 m_t = the first access after i+1 in which S_i deals with e or f

$$m_t = e$$
 or $m_t = f$ or $m_t = x \neq e$, f

Case 3, $m_t = f$

Cannot Happen!

Case 3, $m_t = x \neq e$, f

 $m_t = \text{the first access after } i+1 \text{ in which } S_i \text{ deals with } e \text{ or } f$ $m_t = e \text{ or } m_t = f \text{ or } m_t = x \neq e, f$

51

Case 3,
$$m_t = x \neq e$$
, f

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i loads x into the cache, it must be evicting f

 S_{i+1} will load x into the cache, evicting e

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Use Lemma to show Optimality

