
Warm up

Why is an algorithm’s space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a “bad” one?

CS4102 Algorithms
Spring 2019
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Why lots of memory is “bad”
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Today’s Keywords

• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms
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CLRS Readings

• Chapter 16
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Homeworks

• HW6 Due Friday April 5 @11pm
– Written (use latex)
– DP and Greedy
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Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {"#}
• Output: A prefix-free code % which minimizes

& %, "# = )
#*+,+#-., #

ℓ#"#
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Huffman Coding!!



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2

0 1

Subproblem of size ! − 1!



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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0 1

240 1

410 1

680 1



REVIEW: Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

– Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Proof by contradiction
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Greedy Choice Property

Optimal Substructure works



Huffman Exchange Argument
• Claim: if !", !$ are the least-frequent characters, 

then there is an optimal prefix-free code s.t. !", !$
are siblings
– i.e. codes for !", !$ are the same length and differ only 

by their last bit

13!"

%&'(

!$

Case 1: Consider some optimal tree %&'(. If !", !$ are siblings in this 
tree, then claim holds



Huffman Exchange Argument
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!"

#

!$

%&'(

)

• Claim: if !$, !" are the least-frequent characters, 
then there is an optimal prefix-free code s.t. !$, !"
are siblings
– i.e. codes for !$, !" are the same length and differ only 

by their last bit
Case 2: Consider some optimal tree %&'(, in which !$, !" are not siblings

Let #, ) be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping !$ with # does 
not increase cost of the tree. 
Similar for !" and )
Assume: +,$ ≤ +. and +," ≤ +/



Optimal Substructure

• Claim: An optimal solution for ! involves 
finding an optimal solution for !′, then adding 
#$, #& as children to '
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Optimal Substructure
• Claim: An optimal solution for ! involves 

finding an optimal solution for !′, then adding 
#$, #& as children to '
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(

#$

'

#&

(′
'

If this is optimal Then this is optimal

)* = ),$ + ),&

. (/ = . ( − ),$ − ),&

ℓ,$ = ℓ* + 1
ℓ,& = ℓ* + 1



Optimal Substructure
• Claim: An optimal solution for ! involves 

finding an optimal solution for !′, then adding 
#$, #& as children to '
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(

#$

'

#&

Suppose ( is not optimal
Let ) be a lower-cost tree

* ) < *(()

#$

)

#&

Toward contradiction



Optimal Substructure
• Claim: An optimal solution for ! involves 

finding an optimal solution for !′, then adding 
#$, #& as children to '
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(′

'

) ( < )(,)

#$

(

#&

) (′ = ) ( − 01$ − 01&
< ) , − 01$ − 01&
= ) ,′

Contradicts optimality of ,′, so , is 
optimal!



Caching Problem

• Why is using too much memory a bad thing?
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Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics 
– Physics
– Economics 
– Computer Science

20



Von Neumann Bottleneck
• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, 

more memory is a lot more time
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CPU, 
registers

Cache Disk

If not look hereHopefully your 
data in here

Hope it’s not here

Access time: 
1 cycle Access time: 

10 cycles

Access time: 
1,000,000+ cycles

RAM

Access time:  100+ cycles

If not look here



Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate 

something already there
• We want the best cache “schedule” to minimize the number of 

misses
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Caching Problem Definition

• Input: 
– ! = size of the cache
–# = $%,$',…$) = memory access pattern

• Output: 
– “schedule” for the cache (list of items in the cache at each time) 

which minimizes cache fetches
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Example
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Example
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Example
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Example
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Example
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Example
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Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)
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Leaving A in longer does 
not save fetches



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Caching Greedy Algorithm

Initialize !"!ℎ$= first k accesses
For each %& ∈ (:

if %& ∈ !"!ℎ$:
print !"!ℎ$

else:
% = furthest-in-future from cache
evict %, load %&
print !"!ℎ$
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. times
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Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”
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Belady Exchange Lemma
Let !"" be the schedule chosen by our greedy algorithm
Let !# be a schedule which agrees with !"" for the first $
memory accesses.
We will show: there is a schedule !#%& which agrees 
with !"" for the first $ + 1 memory accesses, and has 
no more misses than !#
(i.e. )$**+* !#%& ≤ )$**+*(!#))
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!∗
Agrees with 
!"" on first 0 
accesses

!& !0
Agrees with 
!"" on first  
access

Agrees with 
!"" on first 2  
accesses

… !""
Agrees with 
!"" on all 1
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy 



Belady Exchange Proof Idea
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!"

!##

!"$%

First & accesses

Must agree with !##

Need to fill in the rest 
of !"$% to have no 

more misses than !"



!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the 
state of the cache at access # + 1 will be the same
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!,, Cache after #=
Consider access &"$% = 0
Case 1: if 0 is in the cache, then neither !" nor !,,
evict from the cache, use the same cache for !"$%

1( 1(

!"$% Cache after # 1(



!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the 
state of the cache at access # + 1 will be the same
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!,, Cache after #=
Consider access &"$% = 0

1( 1(

Case 2: if 0 isn’t in the cache, and both !" and 
!,, evict 1 from the cache, evict 1 for 0 in !"$%

!"$% Cache after # 2(



!" Cache after #

Proof of Lemma
Goal: find !"$% s.t. &#''(' !"$% ≤ &#''('(!")
Since !" agrees with !,, for the first # accesses, the 
state of the cache at access # + 1 will be the same
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!,, Cache after #=
Consider access &"$% = 0

1( 1(

Case 3: if 0 isn’t in the cache, !" evicts ( and !,,
evicts 1 from the cache

!" Cache after # + 1 !,, Cache after # + 1≠13 3(



Case 3
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!"

!##

!"$%

First & accesses

Must agree with !##

Need to fill in the rest 
of !"$% to have no 

more misses than !"



Case 3
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!"

!##

!"$% &'

First ( accesses

First place !" involves ) or * (at time +)

Copy !"

&' = the first access after ( + 1 in which !" deals with ) or *
/0 = 1 or /0 = 2 or /0 = 3 ≠ 1, 2



Case 3, !" = $
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%&

%''

%&() $

First * accesses

First place %& uses $ or +

Copy %&

!" = the first access after * + 1 in which %& deals with $ or +



Case 3, !" = $
Goal: find %&'( s.t. !)**$* %&'( ≤ !)**$*(%&)
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%& Cache after . − 1 %&'( Cache after . − 1≠23 3$

%& must load $ into 
the cache, assume it 
evicts 4

%&'( will load 2 into 
the cache, evicting 4

%&'( behaved exactly the same as %& between )
and ., and has the same cache after ., 
therefore !)**$* %&'( = !)**$*(%&)

The caches now match!

4 4
$ 2



Case 3, !" = $
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%&

%''

%&() $

First * accesses

First place %& uses + or $

Copy %&

!" = the first access after * + 1 in which %& deals with + or $
./ = 0 or ./ = 1 or ./ = 2 ≠ 0, 1



Case 3, !" = $
Cannot Happen!

%&

%''

%&() $

First place %& uses * or $

“Evict $"

“Evict $"

Means $ not farthest future access!
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Case 3, !" = $ ≠ &, (
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)*

)++

)*,- $

First . accesses

First place )* uses & or (

Copy )*

!" = the first access after . + 1 in which )* deals with & or (
!" = & or !" = ( or !" = $ ≠ &, (



Case 3, !" = $ ≠ &, (
Goal: find )*+, s.t. !-..&. )*+, ≤ !-..&.()*)
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)* Cache after 2 − 1 )*+, Cache after 2 − 1≠(5 5&

)* loads $ into the 
cache, it must be 
evicting (

)*+, will load $ into 
the cache, evicting &

)*+, behaved exactly the same as )* between -
and 2, and has the same cache after 2, 
therefore !-..&. )*+, = !-..&.()*)

$ $

The caches now match!



Use Lemma to show Optimality

53

!∗
Agrees with 
!## on first 0 
accesses

!$ !%
Agrees with 
!## on first  
access

Agrees with 
!## on first 2  
accesses

… !##
Agrees with 
!## on all &
accesses

Lemma Lemma Lemma Lemma


