4/3/19

CS4102 Algorithms

Warm up

Why is an algorithm’s space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a “bad” one?

Why lots of memory is “bad”

~limted \9-[size < memo

- difkent :«cuij Jieey oF poeme

_.yv\uuar] » Slow /C\N W Gut [were merer > sl ey
~ Cache wilses

- Pugr W‘Uor\j ‘$<§

- ey < e

Today’s Keywords

* Greedy Algorithms
* Choice Function

* Cache Replacement
* Hardware & Algorithms

CLRS Readings

* Chapter 16

4/3/19

Homeworks

* HW6 Due Friday April 5 @11pm
— Written (use latex)
— DP and Greedy

Goal: Shortest Prefix-Free Encoding

* Input: A set of character frequencies {f.}
* Output: A prefix-free code T which minimizes

BULD=)

character ¢

Huffman Coding!!

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

IG:14 l E:13l L9 lI:E lW:G l N:3 l s:3 l A2 l D:2 l R:2 l Y:2 l K:1 l Pl

4/3/19

Huffman Algorithm

¢ Choose the least frequent pair,
combine into a subtree

IG:14 l E:lSl L9 l 1:8 W:6 N:3 l s:3 l A2 l D2 R2 Y2

Subproblem of sizen — 1!

Huffman Algorithm
* Choose the least frequent pair,
combine into a subtree °

REVIEW: Showing Huffman is Optimal

* Overview:

— Show that there is an optimal tree in which the least
frequent characters are siblings
* Exchange argument
— Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
* Proof by contradiction

Greedy Choice Property

Optimal Substructure works

4/3/19

Huffman Exchange Argument

* Claim: if ¢q, ¢, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢y, ¢,
are siblings

— i.e. codes for ¢, ¢, are the same length and differ only
by their last bit

Case 1: Consider some optimal tree Tg,;. If ¢1, ¢, are siblings in this
tree, then claim holds

Huffman Exchange Argument

* Claim:if ¢q, c, are the least-frequent characters,
then there is an optimal prefix-free code s.t. ¢y, ¢,
are siblings

— i.e. codes for ¢y, ¢, are the same length and differ only
by their last bit

Case 2: Consider some optimal tree Ty, in which ¢, c; are not siblings
Let a, b be the two characters of lowest

depth that are siblings
(Why must they exist?)

Idea: show that swapping c; with a does
not increase cost of the tree.

Similar for ¢, and b

Assume: fo; < fyand f, < f,

Optimal Substructure

* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
cq, C3 as children to o

v\

4/3/19

gl

:C—\q's g

Optimal Substructure
* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding
cy,C3 as childrento o

If this is optimal Then this is optimal
N B)=C+
; 2,00, 4)
+, (0
bea=4s+1
) =041

B(T") = B(T) — for — fez

Optimal Substructure
* Claim: An optimal solution for F involves
finding an optimal solution for F’, then adding

€1,z as childrento o Toward contradiction

Suppose T is not optimal
Let U be a lower-cost tree
B(U) < B(T)

Optimal Substructure
* Claim: An optimal solution for F involves

finding an optimal solution for F’, then adding

c4,Cp as children to o
B(U) < B(T)
BW) =— for = fer
<BM)for = fe
=B(T")
Bw)< B

optimal!

4/3/19

Contradicts optimality of ', so T is

Caching Problem

* Why is using too much memory a bad thing?

Von Neumann Bottleneck

* Named for John von Neumann

* Inventor of modern computer architecture
» Other notable influences include:

— Mathematics

— Physics

— Economics

— Computer Science

Von Neumann Bottleneck
* Reading from memory is VERY slow
* Big memory = slow memory
* Solution: hierarchical memory

* Takeaway for Algorithms: Memory is time,
more memory is a lot more time

Hope it’s not here

If not look here

Hopefully your If not look here
data in here
&t Cache
registers
Access time: Access time:
1 cycle Access time: 1,000,000+ cycles
10 cycles Access time: 100+ cycles —

4/3/19

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate

something already there

* We want the best cache “schedule” to minimize the number of

misses

Caching Problem Definition

Input:

— k = size of the cache

—M = [my, m,, ...m,] = memory access pattern
Output:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

4/3/19

Example

éBCDADEADBAECEA

Example

ABCDADEADBAECEA
v v

Example

ABCDADEADBAECEA
s

Example

We must evict

something to make

room for D

ADEADBAECEA

4/3/19

Example

If we evict A

’A‘DEADBAECEA

Example

If we evict C

ADEADBAECEA
v

Our Problem vs Reality
Assuming we know the entire access pattern

Cache is Fully Associative
Counting # of fetches (not necessarily misses)

“Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

BEEE Unreduced
ADEADBAECEA

Leaving A in longer does
ﬁ ﬁﬁ E Reduced not save fetches
ABCD

ADEADBAECEA

4/3/19

Greedy Algorithms

Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!
* Idea:
1. Identify a greedy choice property
* How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

Greedy choice property

* Belady evict rule:
— Evict the item accessed farthest in the future

" Evict C

ADEADBAECEA

10

Greedy choice property

* Belady evict rule:
— Evict the item accessed farthest in the future

| E| et

EADBAECEA
x

4/3/19

Greedy choice property

* Belady evict rule:
— Evict the item accessed farthest in the future

AECEA

Evict D

Greedy choice property

* Belady evict rule:
— Evict the item accessed farthest in the future

>
L
s
xO
=
o
®m
S
o
R o
L >

Evict B

11

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

4 Cache Misses

4/3/19

Greedy Algorithms

Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!
* Idea:
1. Identify a greedy choice property
* How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

Initialize cache= first k accesses

0(k)
For eachm; € M: n times
if m; € cache: o(k)
print cache 0(k)
else:
m = furthest-in-future from cache 0(kn)
evict m, load m; o)
print cache 0
0(kn?)

12

Exchange argument

Shows correctness of a greedy algorithm
Idea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

=

4/3/19

Belady Exchange Lemma
Let S¢ ¢ be the schedule chosen by our greedy algorithm

Let S; be a schedule which agrees with Sg¢ for the first i
memory accesses.

We will show: there is a schedule S;, ; which agrees
with Sg¢ for the first i + 1 memory accesses, and has
no more misses than S;

(i.e. misses(S;;1) < misses(S;))

Optimal Greedy
Lemma Lemma Lemma Lemma
*

V| =) Y| = 25
Agrees with Agrees with Agrees with Agrees with
Sgz on first 0 Sgs on first Sgy on first 2 Spponalln
accesse access accesses accesses

Belady Exchange Proof Idea

First i accesses

——
s HINDDEEE

Need to fill in the rest

Sint lll,l.ll o1 5, o have no

more misses than S;
Must agree with Sy

s HNNENERN

13

Proof of Lemma

Goal: find S;,; s.t. misses(S; ;1) < misses(S;)
Since S; agrees with S for the first i accesses, the
state of the cache at access i + 1 will be the same

5, Cache after i e |l Bl s, coche ofeer i
Consider access m;1 = d

Case 1: if d is in the cache, then neither S; nor S ¢
evict from the cache, use the same cache for S, ;

Siex Cache after i e || f

4/3/19

Proof of Lemma

Goal: find S;, s.t. misses(S;; 1) < misses(S;)
Since S; agrees with S ¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

5; Cache after i e |ls Bl s/ cache after ¢ e | f
Consider accessm;41 = d

Case 2: if d isn’t in the cache, and both S; and
Sy evict f from the cache, evict f for d in ;1

Sis1 Cache after i e||ld

Proof of Lemma

Goal: find S;,4 s.t. misses(S;,,) < misses(S;)
Since S; agrees with Sy for the first i accesses, the
state of the cache at access i + 1 will be the same

=
Consider access m;1 = d

Case 3: if d isn’t in the cache, S; evicts e and Sff
evicts f from the cache

5 Cache after i + 1 al\f * Syp Cacheafteri+1 ¢ @

14

Case 3

—t—
s HEINDDEEE

Need to fill in the rest

- EEEQEEEE

more misses than S;
Must agree with S; -

s, INEEEEEE

4/3/19

Case 3

l_l_l
s HNNEEEEE

Copy 5,

;. onEEEEnm

First place S; involves e or f (at time t)

s HNNEEERNE

m, = the first access after i + 1 in which S; deals with e or f
m,=eorm,=formy=x+*e,f

——
s HINDDEEE

Copy §

&Hlllliial

First place S; uses e or f

s HNNENERN

m, = the first access after i + 1 in which S; deals with e or f

15

Case3, my =e
Goal: find ;41 s.t. misses(S;41) < misses(S;)

SiCacheaftert—1 % & || f FLooooooo k|
f

Si+1 will load f into

the cache, evicting x

e
S; must load e into
the cache, assume it
evicts x

The caches now match!

S;i+1 behaved exactly the same as 5; between i
and t, and has the same cache after t,

therefore misses(S;,,) = misses(S;)

4/3/19

Case3,my=f

First i accesses

l_l_l
s HNNEEEEE

Copy 5,

;. onEEEEnm

First place S; uses e or f

s HNNEEERNE

m, = the first access after i + 1 in which S; deals with e or f
m,=eorm,=formy=x+*e,f

Case3,my=f
Cannot Happen!

: IEEDDEED

“Evict

s HNNEEEEE

First place S; uses e or f
Means f not farthest future access!

&;lll*l.ll

“Evict f"

16

Case3,my=x*e,f

First { accesses

—t—
s HEINDDEEE

Copy 5

lllli'igl

First place S; uses e or f

s, INEEEEEE

m, = the first access after i + 1 in which S; deals with e or f
my=eormg=formy=x+*e,f

4/3/19

Case3,mi=x#e,f

Goal: find ;41 s.t. misses(S;41) < misses(S;)

5 Cache after ¢ — 1 o Gl 5. cocheoierc-1 | ¢ @
x x

S; loads x into the Si+1 will load x into

cache, it must be the cache, evicting e

evicting f

The caches now match!

S;+1 behaved exactly the same as S; between i
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

Use Lemma to show Optimality

Lemma Lemma Lemma Lemma
*
W =) || = e N
Agrees with Agrees with Agrees with Agrees with
Syy on first 0 Sgz on first Syr on first 2 Spponalln

17

