
CS4102 Algorithms
Spring 2019

1

Warm up:
Show that the sum of degrees of all

nodes in any undirected graph is even

Show that for any graph ! = #, % ,
∑'∈) deg(.) is even

∑"∈$ deg()) is always even

• deg()) counts the number of edges incident)
• Consider any edge e ∈ +
• This edge is incident 2 vertices (on each end)
• This means 2 ⋅ + = ∑"∈$ deg())
• Therefore ∑"∈$ deg()) is even

2

Today’s Keywords

• Greedy Algorithms
• Choice Function
• Graphs
• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
• Cut Theorem

3

CLRS Readings

• Chapter 22
• Chapter 23

4

Homeworks

• HW7 Due Tuesday April 16 @11pm
– Written (use latex)
– Graphs
– Released tonight

5

ARPANET

6

Problem

7

We need to connect together all these places into a network
We have feasible wires to run, plus the cost of each wire
Find the cheapest set of wires to run to connect all places

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Find a
Minimum
Spanning Tree

Graphs

8

10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: ! = ($, &)
Vertices/Nodes

Edges() = weight of edge)
$ = {+, ,, -, ., &, /, !, 0, 1}
& = { +, , , +, - , ,, - , … }

Adjacency List Representation

9

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A

B

C

D

E

F

G

H

I

B C

A C E

A B D F

C E F

B D G H

C D G

E F H I

E G I

G H

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (", $):

& + (
)*+,**(")

)*+,**(")

Adjacency Matrix Representation

10

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H
A
B
C
D
E
F
G
H
I

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (", $):

&'
&

((1)

A B C D E F G H I

1 1
1 1 1
1 1 1

1 1 1
1 1 1 1

1 1 1
1 1 1 1
1 1 1

1 1

1

Definition: Path

11

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes ("#, "%, … , "')
s.t. ∀1 ≤ , ≤ - − 1, "/, "/0# ∈ 2

Simple Path:
A path in which each node
appears at most once

Cycle:
A path of > 2 nodes in
which "# = "'

Definition: Connected Graph

12

A Graph ! = ($, &) s.t. for any pair of nodes
(), (* ∈ $ there is a path from () to (*

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Tree

13

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Definition: Spanning Tree

14

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree ! = ($%, '%) which connects (“spans”)
all the nodes in a graph) = ($, ')

How many edges does ! have?
$ − 1

Definition: Minimum Spanning Tree

15

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree ! = ($%, '%) which connects (“spans”)
all the nodes in a graph) = ($, '), that has
minimal cost

*+,- ! = .
/∈12

3(4)

How many edges does ! have?
$ − 1

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

16

Kruskal’s Algorithm

17

Start with an empty tree !
Add to ! the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

18

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Add to ! the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

19

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Add to ! the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

20

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Add to ! the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

21

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Add to ! the lowest-weight edge that does not
create a cycle

Definition: Cut

22

A Cut of graph ! = ($, &) is a partition of the

nodes into two sets, (and $ − (
10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

(

Edge *+, *, ∈ & crosses a

cut if *+ ∈ (and *, ∈ $ − (
(or opposite), e.g. (., /)

A set of edges 0 Respects a cut

if no edges cross the cut

e.g. 0 = { ., 2 , &, ! , 3, ! }

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

23

Cut Theorem

If a set of edges ! is a subset of a minimum spanning tree ", let
($, & − $) be any cut which ! respects. Let) be the least-weight
edge which crosses ($, & − $). ! ∪ {)} is also a subset of a
minimum spanning tree.

24

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Cut Theorem

25

Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

%

' − %

"

! ⊆ "

#

Consider some MST ",
Case 1: (the easy case)

If # ∈ " Then claim holds

Proof of Cut Theorem

26

Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

-.

-/
%

' − %

"
! ⊆ "

#

Consider some MST ",
Case 2:

Consider if # = (-/, -.) ∉ "
Since " is a MST, there is
some path from -/ to -..

Let #′ be the first edge on this
path which crosses the cut

Build tree "4 by exchanging
#4 for #

#′

Proof of Cut Theorem

27

Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

-.

-/
%

' − %

"
! ⊆ "

#

Consider some MST ",
Case 2:

if # = (-/, -.) ∉ "

We assumed 3 # ≤ 3(#5)
3 "5 = 3 " − 3 #5 + 3(#)
3 "5 ≤ 3 "
So "5 is also a MST!
Thus the claim holds

#′

"5 = " with edge # instead of #5

Kruskal’s Algorithm

28

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Repeat " − 1 times:

Add the min-weight edge that doesn’t
cause a cycle

%
&

Keep edges in a Disjoint-set
data structure (very fancy)

' (log "

General MST Algorithm

29

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Repeat " − 1 times:

Pick a cut (&, " − &) which ! respects
Add the min-weight edge which crosses (&, " − &)

Prim’s Algorithm

30

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Repeat " − 1 times:

Pick a cut (&, " − &) which ! respects
Add the min-weight edge which crosses (&, " − &)

& is all endpoint of edges in !
) is the min-weight edge that grows the tree

Prim’s Algorithm

31

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

32

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

33

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

34

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

35

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Keep edges in a Heap
% & log "

Summary of MST results

• Fredman-Tarjan ‘84: Θ(# + % log%)
• Gabow et al ‘86: Θ(# log log∗ %)
• Chazelle ‘00: Θ(#+ %)
• Pettie-Ramachandran ’02:Θ(?)(optimal)
• Karger-Klein-Tarjan ‘95: Θ(#) (randomized)

• [read and summarize any/all for EC]

36

