Warm up:
Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph $G = (V, E)$, $\sum_{v \in V} \deg(v)$ is even
\[\sum_{\nu \in V} \deg(\nu) \text{ is always even} \]

- \(\deg(\nu) \) counts the number of edges incident \(\nu \)
- Consider any edge \(e \in E \)
- This edge is incident 2 vertices (on each end)
- This means \(2 \cdot |E| = \sum_{\nu \in V} \deg(\nu) \)
- Therefore \(\sum_{\nu \in V} \deg(\nu) \text{ is even} \)
Today’s Keywords

• Greedy Algorithms
• Choice Function
• Graphs
• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
• Cut Theorem
CLRS Readings

• Chapter 22
• Chapter 23
Homeworks

• HW7 Due **Tuesday** April 16 @11pm
 – Written (use latex)
 – Graphs
 – Released tonight
ARPANET
We need to connect together all these places into a network.

We have feasible wires to run, plus the cost of each wire.

Find the cheapest set of wires to run to connect all places.

Find a Minimum Spanning Tree.
Graphs

Definition: $G = (V, E)$

$w(e) = \text{weight of edge } e$

$V = \{A, B, C, D, E, F, G, H, I\}$

$E = \{(A, B), (A, C), (B, C), \ldots\}$
Tradeoffs
Space: $V + E$
Time to list neighbors: $\text{Degree}(A)$
Time to check edge $(A, B) : \text{Degree}(A)$
Tradeoffs
Space: V^2
Time to list neighbors: V
Time to check edge $(A, B): O(1)$
Definition: Path

A sequence of nodes \((v_1, v_2, ..., v_k)\)

s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path of > 2 nodes in which \(v_1 = v_k\)
Definition: Connected Graph

A Graph $G = (V, E)$ s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2
Definition: Tree

A connected graph with no cycles
Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects (“spans”) all the nodes in a graph $G = (V, E)$

How many edges does T have? $V - 1$
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects (“spans”) all the nodes in a graph $G = (V, E)$, that has minimal cost

$\text{Cost}(T) = \sum_{e \in E_T} w(e)$

How many edges does T have?

$V - 1$
Greedy Algorithms

• Require **Optimal Substructure**
 – Solution to larger problem contains the solution to a smaller one
 – Only one subproblem to consider!

• Idea:
 1. Identify a greedy choice property
 • How to make a choice guaranteed to be included in some optimal solution
 2. Repeatedly apply the choice property until no subproblems remain
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A

Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C).

A set of edges R respects a cut if no edges cross the cut, e.g. $R = \{(A, B), (E, G), (F, G)\}$.
Exchange argument

• Shows correctness of a greedy algorithm

• Idea:
 – Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 – How to show my sandwich is at least as good as yours:
 • Show: “I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich”
Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.
Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut $(S, V - S)$ (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T, Case 1: (the easy case)
If $e \in T$ Then claim holds
Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut $(S, V - S)$ (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T,

Case 2:

Consider if $e = (v_1, v_2) \notin T$

Since T is a MST, there is some path from v_1 to v_2.

Let e' be the first edge on this path which crosses the cut

Build tree T' by exchanging e' for e
Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut $(S, V - S)$ (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T,

Case 2:

if $e = (v_1, v_2) \notin T$

$T' = T$ with edge e instead of e'

We assumed $w(e) \leq w(e')$

$w(T') = w(T) - w(e') + w(e)$

$w(T') \leq w(T)$

So T' is also a MST!

Thus the claim holds
Kruskal’s Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
Add the min-weight edge that doesn’t cause a cycle

Keep edges in a Disjoint-set data structure (very fancy)
$O(E \log V)$
General MST Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
 Pick a cut $(S, V - S)$ which A respects
 Add the min-weight edge which crosses $(S, V - S)$
Prim’s Algorithm

Start with an empty tree A
Repeat $V - 1$ times:
 Pick a cut $(S, V - S)$ which A respects
 Add the min-weight edge which crosses $(S, V - S)$

S is all endpoint of edges in A
e is the min-weight edge that grows the tree
Prim’s Algorithm

Start with an empty tree A

Pick a **start node**

Repeat $|V| - 1$ times:

Add the min-weight edge which connects to node A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A.

Pick a start node.

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A.

Keep edges in a Heap $O(E \log V)$.
Summary of MST results

• Fredman-Tarjan ‘84: \(\Theta(E + V \log V) \)
• Gabow et al ‘86: \(\Theta(E \log \log^* V) \)
• Chazelle ‘00: \(\Theta(E\alpha(V)) \)
• Pettie-Ramachandran ‘02: \(\Theta(?) \) (optimal)
• Karger-Klein-Tarjan ‘95: \(\Theta(E) \) (randomized)

[read and summarize any/all for EC]