CS4102 Algorithms Spring 2019

Warm up:

Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph G = (V, E), $\sum_{v \in V} \deg(v)$ is even

$\sum_{v \in V} \deg(v)$ is always even

- deg(v) counts the number of edges incident v
- Consider any edge $e \in E$
- This edge is incident 2 vertices (on each end)
- This means $2 \cdot |E| = \sum_{v \in V} \deg(v)$
- Therefore $\sum_{v \in V} \deg(v)$ is even

Today's Keywords

- Greedy Algorithms
- Choice Function
- Graphs
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- Cut Theorem

CLRS Readings

- Chapter 22
- Chapter 23

Homeworks

- HW7 Due **Tuesday** April 16 @11pm
 - Written (use latex)
 - Graphs
 - Released tonight

We need to connect together all these places into a network We have feasible wires to run, plus the cost of each wire Find the cheapest set of wires to run to connect all places

Adjacency List Representation

Tradeoffs

Space: V + E
Time to list neighbors: Degree(A)
Time to check edge (A, B):Degree(A)

А	В	С		
В	А	С	E	
С	А	В	D	F
D	С	E	F	
Е	В	D	G	н
F	С	D	G	
G	Е	F	Н	I
Н	Е	G	I	
I	G	н		•

Adjacency Matrix Representation

	Α	В	С	D	Ε	F	G	Η	1
Α		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Ε		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Η					1		1		1
							1	1	

<u>Tradeoffs</u>

Space: V^2 Time to list neighbors: VTime to check edge (A, B): O(1)

Definition: Path

Simple Path:

A path in which each node appears at most once

<u>Cycle:</u> A path of > 2 nodes in which $v_1 = v_k$

Definition: Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E)

Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

How many edges does T have? V-1

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, *S* and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C) A set of edges *R* Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

26

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

General MST Algorithm

```
Start with an empty tree A
Repeat V - 1 times:
Pick a cut (S, V - S) which A respects
Add the min-weight edge which crosses (S, V - S)
```



```
Start with an empty tree A
```

```
Repeat V - 1 times:
```

Pick a cut (S, V - S) which A respects Add the min-weight edge which crosses (S, V - S)

S is all endpoint of edges in A

e is the min-weight edge that grows the tree

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node in A with a node not in A

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node in A with a node not in A

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node in A with a node not in A

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node

in A with a node not in A

Start with an empty tree *A*

Pick a start node

Keep edges in a Heap $O(E \log V)$

Repeat V - 1 times:

Add the min-weight edge which connects to node

in A with a node not in A

Summary of MST results

- Fredman-Tarjan '84: $\Theta(E + V \log V)$
- Gabow et al '86: $\Theta(E \log \log^* V)$
- Chazelle '00: $\Theta(E\alpha(V))$
- Pettie-Ramachandran '02:0(?)(optimal)
- Karger-Klein-Tarjan '95: $\Theta(E)$ (randomized)
- [read and summarize any/all for EC]