
CS4102 Algorithms
Spring 2019
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Warm up:
Show that the sum of degrees of all 

nodes in any undirected graph is even

Show that for any graph ! = #, % , 
∑'∈) deg(.) is even



∑"∈$ deg()) is always even

• deg()) counts the number of edges incident )
• Consider any edge e ∈ +
• This edge is incident 2 vertices (on each end)
• This means 2 ⋅ + = ∑"∈$ deg())
• Therefore ∑"∈$ deg()) is even
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Today’s Keywords

• Greedy Algorithms
• Choice Function
• Graphs
• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
• Cut Theorem
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CLRS Readings

• Chapter 22
• Chapter 23
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Homeworks

• HW7 Due Tuesday April 16 @11pm
– Written (use latex)
– Graphs
– Released tonight
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ARPANET
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Problem
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We need to connect together  all these places into a network
We have feasible wires to run, plus the cost of each wire
Find the cheapest set of wires to run to connect all places
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Find a 
Minimum 
Spanning Tree



Graphs
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Definition: ! = ($, &)
Vertices/Nodes

Edges( ) = weight of edge )
$ = {+, ,, -, ., &, /, !, 0, 1}
& = { +, , , +, - , ,, - , … }



Adjacency List Representation
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Tradeoffs
Space:
Time to list neighbors:
Time to check edge (", $):
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Adjacency Matrix Representation
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Definition: Path
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A sequence of nodes ("#, "%, … , "')
s.t. ∀1 ≤ , ≤ - − 1, "/, "/0# ∈ 2

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path of > 2 nodes in 
which "# = "'



Definition: Connected Graph
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A Graph ! = ($, &) s.t. for any pair of nodes 
(), (* ∈ $ there is a path from () to (*
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Definition: Tree
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A connected graph with no cycles
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Definition: Spanning Tree
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A Tree ! = ($%, '%) which connects (“spans”) 
all the nodes in a graph ) = ($, ')

How many edges does ! have?
$ − 1



Definition: Minimum Spanning Tree
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A Tree ! = ($%, '%) which connects (“spans”) 
all the nodes in a graph ) = ($, '), that has 
minimal cost

*+,- ! = .
/∈12

3(4)

How many edges does ! have?
$ − 1



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Kruskal’s Algorithm
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Start with an empty tree !
Add to ! the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree !
Add to ! the lowest-weight edge that does not 
create a cycle



Kruskal’s Algorithm
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Start with an empty tree !
Add to ! the lowest-weight edge that does not 
create a cycle



Kruskal’s Algorithm
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Start with an empty tree !
Add to ! the lowest-weight edge that does not 
create a cycle



Kruskal’s Algorithm
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Start with an empty tree !
Add to ! the lowest-weight edge that does not 
create a cycle



Definition: Cut
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A Cut of graph ! = ($, &) is a partition of the 

nodes into two sets,  ( and $ − (
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(

Edge *+, *, ∈ & crosses a 

cut if *+ ∈ ( and *, ∈ $ − (
(or opposite), e.g. (., /)

A set of edges 0 Respects a cut

if no edges cross the cut

e.g. 0 = { ., 2 , &, ! , 3, ! }



Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”

23



Cut Theorem

If a set of edges ! is a subset of a minimum spanning tree ", let 
($, & − $) be any cut which ! respects. Let ) be the least-weight 
edge which crosses ($, & − $). ! ∪ {)} is also a subset of a 
minimum spanning tree.
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Proof of Cut Theorem
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Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

%

' − %

"

! ⊆ "

#

Consider some MST ", 
Case 1: (the easy case)

If # ∈ " Then claim holds 



Proof of Cut Theorem
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Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

-.

-/
%

' − %

"
! ⊆ "

#

Consider some MST ", 
Case 2:

Consider if # = (-/, -.) ∉ "
Since " is a MST, there is 
some path from -/ to -..

Let #′ be the first edge on this 
path which crosses the cut

Build tree "4 by exchanging 
#4 for #

#′



Proof of Cut Theorem
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Claim: If ! is a subset of a MST ", and # is the least-
weight edge which crosses cut (%, ' − %) (which !
respects) then ! ∪ {#} is also a subset of a MST.

-.

-/
%

' − %

"
! ⊆ "

#

Consider some MST ", 
Case 2:

if # = (-/, -.) ∉ "

We assumed 3 # ≤ 3(#5)
3 "5 = 3 " − 3 #5 + 3(#)
3 "5 ≤ 3 "
So "5 is also a MST!
Thus the claim holds

#′

"5 = " with edge # instead of #5



Kruskal’s Algorithm
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Start with an empty tree !
Repeat " − 1 times:

Add the min-weight edge that doesn’t 
cause a cycle

%
&

Keep edges in a Disjoint-set 
data structure (very fancy)

' ( log "



General MST Algorithm
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Start with an empty tree !
Repeat " − 1 times:

Pick a cut (&, " − &) which ! respects
Add the min-weight edge which crosses (&, " − &)



Prim’s Algorithm
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Start with an empty tree !
Repeat " − 1 times:

Pick a cut (&, " − &) which ! respects
Add the min-weight edge which crosses (&, " − &)

& is all endpoint of edges in !
) is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node 
in ! with a node not in !



Prim’s Algorithm
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Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node 
in ! with a node not in !



Prim’s Algorithm
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Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node 
in ! with a node not in !



Prim’s Algorithm
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Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node 
in ! with a node not in !



Prim’s Algorithm
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Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node 
in ! with a node not in !

Keep edges in a Heap
% & log "



Summary of MST results

• Fredman-Tarjan ‘84: Θ(# + % log%)
• Gabow et al ‘86: Θ(# log log∗ %)
• Chazelle ‘00: Θ(#+ % )
• Pettie-Ramachandran ’02:Θ(? )(optimal)
• Karger-Klein-Tarjan ‘95: Θ(#) (randomized)

• [read and summarize any/all for EC]
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