Warm up:
Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph $G = (V, E)$,
$\sum_{v \in V} \deg(v)$ is even

$\sum_{v \in V} \deg(v)$ is always even

• $\deg(v)$ counts the number of edges incident v
• Consider any edge $e \in E$
• This edge is incident 2 vertices (on each end)
• This means $2 \cdot |E| = \sum_{v \in V} \deg(v)$
• Therefore $\sum_{v \in V} \deg(v)$ is even

Today’s Keywords
• Greedy Algorithms
• Choice Function
• Graphs
• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
• Cut Theorem
CLRS Readings

• Chapter 22
• Chapter 23

Homeworks

• HW7 Due Tuesday April 16 @11pm
 – Written (use latex)
 – Graphs
 – Released tonight

ARPANET
We need to connect all these places into a network.
We have feasible wires to run, plus the cost of each wire.
Find the cheapest set of wires to run to connect all places.

Problem:
Find a Minimum Spanning Tree.

Graphs:
Definition: $G = (V, E)$
$w(e)$ = weight of edge e
$V = \{A, B, C, D, E, F, G, H, I\}$
$E = \{(A, B), (A, C), (B, C), \ldots\}$

Adjacency List Representation:
Tradeoffs:
Space: $|V| + |E|
Time to list neighbors: $\text{Degree}(A)$
Time to check edge (A, B): $\text{Degree}(A)$
Adjacency Matrix Representation

Tradeoffs:
- Space: \(V^2 \)
- Time to list neighbors: \(V \)
- Time to check edge \((A, B)\): \(O(1) \)

Definition: Path
A sequence of nodes \((v_1, v_2, ..., v_k)\)
\(s.t. \ \forall 1 \leq i \leq k-1, \ (v_i, v_{i+1}) \in E \)

Simple Path:
A path in which each node appears at most once

Cycle:
A path of \(> 2 \) nodes in which \(v_1 = v_k \)

Definition: Connected Graph
A Graph \(G = (V, E) \) s.t. for any pair of nodes \(v_1, v_2 \in V \) there is a path from \(v_1 \) to \(v_2 \)
Definition: Tree
A connected graph with no cycles

Definition: Spanning Tree
A Tree $T = (V', E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$

Definition: Minimum Spanning Tree
A Tree $T = (V', E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost.

$\text{Cost}(T) = \sum_{e \in E_T} w(e)$
Greedy Algorithms

- Require **Optimal Substructure**
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 2. Repeatedly apply the choice property until no subproblems remain

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle
Kruskal’s Algorithm

Start with an empty tree A.
Add to A the lowest-weight edge that does not create a cycle.
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V - S)$ be any cut which A respects. Let e be the least-weight edge which crosses $(S, V - S)$. $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: “I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich”
Proof of Cut Theorem
Claim: If \(A \) is a subset of a MST \(T \), and \(e \) is the least-weight edge which crosses cut \((S, V - S) \) (which \(A \) respects) then \(A \cup \{e\} \) is also a subset of a MST.

Consider some MST \(T \),

Case 1: (the easy case)
If \(e \in T \) Then claim holds

Case 2:
Consider if \(e = (v_1, v_2) \notin T \)
Since \(T \) is a MST, there is some path from \(v_1 \) to \(v_2 \).
Let \(e' \) be the first edge on this path which crosses the cut
Build tree \(T' \) by exchanging \(e' \) for \(e \)

Proof of Cut Theorem
Claim: If \(A \) is a subset of a MST \(T \), and \(e \) is the least-weight edge which crosses cut \((S, V - S) \) (which \(A \) respects) then \(A \cup \{e\} \) is also a subset of a MST.

Consider some MST \(T \),

Case 2:
If \(e = (v_1, v_2) \notin T \)
\(T' = T \) with edge \(e \) instead of \(e' \)
We assumed \(w(e) \leq w(e') \)
\(w(T') = w(T) - w(e') + w(e) \)
\(w(T') \leq w(T) \)
So \(T' \) is also a MST!
Thus the claim holds
Kruskal’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
 Add the min-weight edge that doesn’t cause a cycle
 Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
 Pick a cut $(S, V - S)$ which A respects
 Add the min-weight edge which crosses $(S, V - S)$

Prim’s Algorithm
Start with an empty tree A
Repeat $V - 1$ times:
 Pick a cut $(S, V - S)$ which A respects
 Add the min-weight edge which crosses $(S, V - S)$
 S is all endpoint of edges in A
 e is the min-weight edge that grows the tree
Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat $V − 1$ times:
Add the min-weight edge which connects to node
in A with a node not in A
Prim's Algorithm
Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node
 in A with a node not in A

Summary of MST results
- Fredman-Tarjan '84: $\Theta(E + V \log V)$
- Gabow et al '86: $\Theta(E \log \log^* V)$
- Chazelle '00: $\Theta(E \alpha(V))$
- Pettie-Ramachandran '02: $\Theta(E)$ (optimal)
- Karger-Klein-Tarjan '95: $\Theta(E)$ (randomized)
- [read and summarize any/all for EC]