CS/102 Algorithms	1
CS4102 Algorithms Spring 2019	
Warm up:	
Show that the sum of degrees of all nodes in any undirected graph is even	
Show that for any graph $G=(V,E)$, $\sum_{v\in V}\deg(v)$ is even	
$\Delta_{\nu\in\mathcal{V}}$ deg(ν) is even	
1	
	1
$\sum_{v \in V} \deg(v)$ is always even	
 deg(v) counts the number of edges incident v Consider any edge e ∈ E 	
 This edge is incident 2 vertices (on each end) This means 2 · E = ∑_{v∈V} deg(v) Therefore ∑_{v∈V} deg(v) is even 	
2	

Today's Keywords

- Greedy Algorithms
- Choice Function
- Graphs
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- Cut Theorem

CLRS Readings

- Chapter 22
- Chapter 23

4

Homeworks

- HW7 Due Tuesday April 16 @11pm
 - Written (use latex)
 - Graphs
 - Released tonight

Adjacency Matrix Representation Tradeoffs Space: V^2 Time to check edge (A, B): O(1)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

 - Identify a greedy choice property
 How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Kruskal's Algorithm

Start with an empty tree AAdd to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree ${\cal A}$ Add to ${\cal A}$ the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree ${\cal A}$ Add to ${\cal A}$ the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree ${\cal A}$ Add to ${\cal A}$ the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph G=(V,E) is a partition of the nodes into two sets, S and V-S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

- · Shows correctness of a greedy algorithm
- Idea
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

23

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let (S,V-S) be any cut which A respects. Let e be the least-weight edge which crosses (S,V-S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Repeat $V-1$ times: Add the min-weight edge t	Sorithm Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$ that doesn't
cause a cycle	5 0 2

General MST Algorithm Start with an empty tree ARepeat V-1 times: Pick a cut (S,V-S) which A respects Add the min-weight edge which crosses (S,V-S)

Pick a start node
Repeat V-1 times:

Add the min-weight edge which connects to node in A with a node not in A

 $\begin{array}{c} \textbf{Prim's Algorithm} \\ \textbf{Start with an empty tree } A \\ \textbf{Pick a start node} \\ \textbf{Repeat } V-1 \textbf{ times:} \\ \textbf{Add the min-weight edge which connects to node in } A \textbf{ with a node not in } A \end{array}$

Prim's Algorithm
Start with an empty tree A

Start with an entry, and pick a start node
Pick a start node
Repeat V-1 times:

Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm	
Start with an empty tree A	
Pick a start node	
Repeat $V-1$ times:	
Add the min-weight edge which connects to node	
in A with a node not in A	

Prim's Algorithm Start with an empty tree APick a start node Repeat V-1 times: Add the min-weight edge which connects to node in A with a node not in A

Summary of MST results

• Fredman-Tarjan '84: $\Theta(E+V\log V)$ • Gabow et al '86: $\Theta(E\log\log^*V)$ • Chazelle '00: $\Theta(E\alpha(V))$ • Pettie-Ramachandran '02: $\Theta(?)$ (optimal)
• Karger-Klein-Tarjan '95: $\Theta(E)$ (randomized)

• [read and summarize any/all for EC]