
Warm up
Can you cover an 8×8 grid with 1

square missing using “trominoes?”
Can you cover this?

With these?

CS4102 Algorithms
Spring 2019

Office Hours

• Wednesdays, 10:30am-12pm (primarily 4102)
• Thursdays, 10-11am (regrades)
• Thursdays, 2:00-3:30pm (primarily 2110)

Today’s Keywords

• Recursion
• Recurrences
• Asymptotic notation
• Divide and Conquer
• Trominoes
• Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

• Hw0 due 11pm Monday, Jan 21
– Submit 2 attachments (zip and pdf)

• Hw1 released Monday, Jan 21
– Due 11pm Wednesday, Jan 30
– Written (use Latex!)
– Asymptotic notation
– Recurrences
– Divide and conquer

Attendance

• How many people are here today?
• Naïve algorithm

1. Everyone stand
2. Professor walks around counting people
3. When counted, sit down

• Run time?
– Class of n students
– O(n)

• Other suggestions?

Good Attendance

1 2

nn-1

! students

!r
ow

s

"(!)

Better Attendance

1. Everyone Stand

2. Initialize your “count” to 1

3. Greet a neighbor who is standing: share your name,
full date of birth(pause if odd one out)

4. If you are older: give “count” to younger and sit.
Else if you are younger: add your “count” with older’s

5. If you are standing and have a standing neighbor, go
to 3

What was the
run time of this
algorithm?
What are we
going to count?

Attendance Algorithm Analysis
1.

Stand
2.

count=1
3.

Greet
4.

Add/sit
5.

Repeat

Constant Initialization
1 1 "($% 2)"(%) =

" % = 1 + 1 + "($% 2) How can we “solve” this?

Base case?" 1 = 3

Do not need to be exact, asymptotic bound is fine.
Why?

Let’s solve the recurrence!

! " = 2 + !('" 2)
! 1 = 3 Special case: " = 2+

2 + !('" 4)
2 + !('" 8)…

3

.

! " = 3 + /
012

34567
2 = 2 log; " + 3

What if ! ≠ 2$?

• More people in the room → more time

– ∀ 0 < ! < (, * ! < * (

– * ! ≤ * (= * 2 -./0 1 = 2 log5 ! + 3

These are unimportant.
Why?

= 8(log !)

Asymptotic Notation*
• !(# $)

– At most within constant of # for large $
– {functions '|∃ constants *, $, > 0 s.t. ∀$ > $,, ' $ ≤ * ⋅ #($)}

• Ω(# $)
– At least within constant of # for large $
– {functions '|∃ constants *, $, > 0s.t. ∀$ > $,, ' $ ≥ * ⋅ #($)}

• Θ # $
– “Tightly” within constant of # for large $
– Ω # $ ∩ !(# $)

*CLRS Chapter 3

!(#) = &(' #)

!(#) = Θ(' #)

!(#) = Ω(' #)

Asymptotic Notation Example

• Show: ! log ! ∈ & !'

Asymptotic Notation Example

• To Show: ! log ! ∈ & !'
– Find (, !* > 0 s.t. ∀! > !*, ! log ! ≤ (⋅ !'
– Let (= 1, !* = 1
– 1 log(1) = 0, 1 ⋅ 1' = 1
– ∀! ≥ 1, log ! < ! ⇒ ! log ! ≤ !'

Asymptotic Notation

• !(# $)
– Below any constant of # for large $
– {functions '|∀ constants *, ∃$- s.t. ∀$ > $-, ' $ < * ⋅ #($)}

• 2(# $)
– Above any constant of # for large $
– {functions '|∀ constants *, ∃$- s.t. ∀$ > $-, ' $ > * ⋅ #($)}

• 3 # $?
– !(# $) ∩ 2(# $) = ∅

Asymptotic Notation Example
• ! " # = {functions &|∀ constants), ∃#, s.t. ∀# > #,, & # <) ⋅ "(#)}
• Show: # log # ∈ ! #7

Asymptotic Notation Example
• ! " # = {functions &|∀ constants), ∃#, s.t. ∀# > #,, & # <) ⋅ "(#)}
• To Show: # log # ∈ ! #7
– given any) find a #, > 0 s.t. ∀# > #,, # log # <) ⋅ #7
– Find a value of # in terms of): # log # <)
– # log # <) ⋅ #7
– log # <) ⋅ #
– For a given), select any value of # such that 9:; << <)

Trominoes Puzzle Solution

What about larger boards?

2"

2"

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Trominoes Puzzle Solution

Divide and Conquer*

• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

When is this a
good strategy?

Analyzing Divide and Conquer
1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

• Divide: !(#) time,
• Conquer: recurse on small problems, size %
• Combine: C(#) time
• Recurrence:
– ' # = ! # + ∑'(%) + +(#)

Recurrence Solving Techniques
Tree

Guess/Check

“Cookbook”

Substitution

?

Merge Sort

• Divide:
– Break !-element list into two lists of ⁄# $ elements

• Conquer:
– If ! > 1:
• Sort each sublist recursively

– If ! = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Merge
• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (!", !#)
– 1 output list (!$%&)

While (!" and !# not empty):
If !" 0 ≤ !#[0]:

!$%&.append(!".pop())
Else:

!$%&.append(!#.pop())
!$%&.append(!")
!$%&.append(!#)

Analyzing Merge Sort
1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

• Divide: 0 comparisons
• Conquer: recurse on 2 small problems, size !"
• Combine: # comparisons
• Recurrence:
– $ # = 2$(!") + #

