CS4102 Algorithms

Warm up

Can you cover an 8X8 grid with 1
sguare missing using “trominoes?”

Can you cover this?

With these?

Office Hours

 Wednesdays, 10:30am-12pm (primarily 4102)
 Thursdays, 10-11am (regrades)
* Thursdays, 2:00-3:30pm (primarily 2110)

Today’s Keywords

Recursion
Recurrences
Asymptotic notation
Divide and Conquer
Trominoes

Merge Sort

CLRS Readings

 Chapters3 &4

Homeworks

* HwO due 11pm Monday, Jan 21
— Submit 2 attachments (zip and pdf)

* Hw1 released Monday, Jan 21
— Due 11pm Wednesday, Jan 30
— Written (use Latex!)
— Asymptotic notation
— Recurrences
— Divide and conquer

Attendance

* How many people are here today?
* Naive algorithm
1. Everyone stand
2. Professor walks around counting people

3. When counted, sit down
* Runtime?

— Class of n students

— O(n)
 Other suggestions?

Good Attendance

0(n)

Better Attendance

What was the
Everyone Stand run time of this

algorithm?
Initialize your “count” to 1 What are we

going to count?

Greet a neighbor who is standing: share your name,
full date of birth(pause if odd one out)

If you are older: give “count” to younger and sit.
Else if you are younger: add your “count” with older’s

If you are standing and have a standing neighbor, go
to3

Attendance Algorithm Analysis

e A e

T(n)= 1 1 T(”/z)

Constant Initialization

Tm)=1+1+ T(n/Z) How can we “solve” this?
T(1) =3 Base case?

Do not need to be exact, asymptotic bound is fine.
Why?

Let’s solve the recurrence!
T(1) =3 Special case: n = 2%

log,n

T(n) =3+ z 2=2log,n+3
=0

What if n # 2k?

* More people in the room - more time
-V0<n<m,Tn) <T(m)

—T(n) < T(m) =T(2M"°82"l) = 2 [log,n] +3 = O(logn)

N\ /

These are unimportant.
Why?

Asymptotic Notation™

* 0(g(n)
— At most within constant of g for large n
— {functions f|3 constants ¢c,ny > 0s.t.Vn > n,, f(n) < c-gn)}

+ Qg (n))
— At least within constant of g for large n
— {functions f|3 constants c,ny > 0s.t. Vn > ny, f(n) = c - g(n)}

» 0(g(m)

— “Tightly” within constant of g for large n

- Q(g(m) n0(g(n)

*CLRS Chapter 3

c2g(n)
f(n)

clg(n

Nno

f(n) =0(g(n))

f) =06(gm)

f(n) = Q(g(n)

Asymptotic Notation Example

 Show: nlogn € 0(n*)
36)”0) \</Y\7V\o V\loﬁV\ ﬁCh

=l 2T ampsltf

Asymptotic Notation Example

* To Show: nlogn € 0(n?)
—Find c,ny > 0s.t. Vn > ny,nlogn < ¢ - n?
—Lletc=1,ny,=1
—(Dlog(1)=0,1-14=1
—vn = 1,log(n) < n = nlogn < n*

Asymptotic Notation
*+ 0(g(n))

— Below any constant of g for large n
— {functions f|V constants ¢, Iny s.t. Vn > ny, f(n) < c - g(n)}

* w(g(n))

— Above any constant of g for large n
— {functions f|V constants ¢, Iny s.t. Vn > ny, f(n) > c - g(n)}

. H(g(n))?
—o(g(m) Nw(gn)) =0

Asymptotic Notation Example

» 0(g(n)) = {functions f|V constants ¢, 3n; s.t. Yn > ngy, f(n) < ¢ - g(n)}
e Show: nlogn € o(n?)

Yo 3a i Nn7ne Alega <e”
|o$\f\
n

£ C

Asymptotic Notation Example

» 0(g(n)) = {functions f|V constants ¢, 3n; s.t. Yn > ngy, f(n) < ¢ - g(n)}

* To Show: nlogn € o(n?)
— givenany c findang > 0s.t. Vn > ny,nlogn < ¢ - n*
— Find avalueof nintermsof c:nlogn <c
—nlogn < ¢ - n*
—logn<c-n

— For a given ¢, select any value of n such that T <c

Trominoes Puzzle Solution

27?,

271

What about larger boards?

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
guadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Trominoes Puzzle Solution

Divide and Conquer*

m When is this a
.. b 5
° Dl\"de: 1 gOOd strategy:

— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:

— |f the suproblems are “large”:

* Solve each subproblem recursively

— |f the subproblems are “small”: -

* Solve them directly (base case)

e Combine:

— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

* Divide: D(n) time,
* Conquer: recurse on small problems, size s
* Combine: C(n) time
* Recurrence:
—T(n)=DM) + X T(s)+ C(n)

Recurrence Solving Techniques

‘ff‘ Tree
? /Guess/Check

i))
#se i “Cookbook

L84 Substitution

Merge Sort

* Divide:
— Break n-element list into two lists of */, elements

* Conquer:

—Ifn > 1:
e Sort each sublist recursively

—Ifn = 1:
* List is already sorted (base case)
* Combine:
— Merge together sorted sublists into one sorted list

Merge

* Combine: Merge sorted sublists into one sorted list

e We have:
— 2 sorted lists (L1, L»)
— 1 output list (Lyy¢)

While (L; and L, not empty):
If L{[0] < L,[0]:
Loyt-append(L,.pop())
Else:
Loyt-append(Ly.pop())
Loyt-append(Lq)
Loyt-append(Ly)

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

* Divide: O comparisons

. n
* Conquer: recurse on 2 small problems, size >

* Combine: n comparisons
* Recurrence:

- T(n) =2T() +n

