CS4102 Algorithms Spring 2019

Warm up

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

Can you cover this?

With these?

Office Hours

- Wednesdays, 10:30am-12pm (primarily 4102)
- Thursdays, 10-11am (regrades)
- Thursdays, 2:00-3:30pm (primarily 2110)

Today's Keywords

- Recursion
- Recurrences
- Asymptotic notation
- Divide and Conquer
- Trominoes
- Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

- Hw0 due 11pm Monday, Jan 21
 Submit 2 attachments (zip and pdf)
- Hw1 released Monday, Jan 21
 - Due 11pm Wednesday, Jan 30
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Attendance

- How many people are here today?
- Naïve algorithm
 - 1. Everyone stand
 - 2. Professor walks around counting people
 - 3. When counted, sit down
- Run time?
 - Class of n students
 - O(n)
- Other suggestions?

n)

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1

What was the run time of this algorithm?

What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- If you are standing and have a standing neighbor, go to 3

Attendance Algorithm Analysis

$$T(n) = 1 + 1 + T(\frac{n}{2})$$
 How can we "solve" this?
$$T(1) = 3$$
 Base case?

Do not need to be exact, asymptotic bound is fine. Why?

What if $n \neq 2^k$?

• More people in the room \rightarrow more time

$$- \forall 0 < n < m, T(n) < T(m)$$

$$-T(n) \le T(m) = T(2^{\lceil \log_2 n \rceil}) = 2 \lceil \log_2 n \rceil + 3 = O(\log n)$$

These are unimportant. Why?

Asymptotic Notation*

- *O*(*g*(*n*))
 - At most within constant of g for large n
 - {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \le c \cdot g(n)$ }
- Ω(g(n))
 - At least within constant of g for large n
 - {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \ge c \cdot g(n)$ }
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\ \Omega\bigl(g(n)\bigr) \cap O(g(n))$

Asymptotic Notation Example

Asymptotic Notation Example

- To Show: $n \log n \in O(n^2)$
 - Find $c, n_0 > 0$ s.t. $\forall n > n_0, n \log n \le c \cdot n^2$
 - $\text{Let } c = 1, n_0 = 1$

$$-(1)\log(1) = 0, 1 \cdot 1^2 = 1$$

 $- \forall n \geq 1, \log(n) < n \Rightarrow n \log n \leq n^2$

Asymptotic Notation

• *o*(*g*(*n*))

– Below any constant of g for large n

- {functions $f | \forall$ constants $c, \exists n_0$ s.t. $\forall n > n_0, f(n) < c \cdot g(n)$ }
- ω(g(n))
 - Above any constant of g for large n
 - {functions $f | \forall$ constants $c, \exists n_0$ s.t. $\forall n > n_0, f(n) > c \cdot g(n)$ }
- $\theta(g(n))$? - $o(g(n)) \cap \omega(g(n)) = \emptyset$

Asymptotic Notation Example

- $o(g(n)) = \{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- Show: $n \log n \in o(n^2)$ $\forall c \exists n_a : \forall n \ge n_a$ $\land \log n < c \cdot n^2$ $\frac{\log n}{\log n} < c$

Asymptotic Notation Example

- $o(g(n)) = \{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- To Show: $n \log n \in o(n^2)$
 - given any c find a $n_0 > 0$ s.t. $\forall n > n_0, n \log n < c \cdot n^2$
 - Find a value of n in terms of $c: n \log n < c$
 - $-n\log n < c \cdot n^2$
 - $-\log n < c \cdot n$
 - For a given c, select any value of n such that $\frac{\log n}{n} < c$

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Each quadrant is now a smaller subproblem

Solve **Recursively**

Divide and Conquer

Our first algorithmic technique!

Divide and Conquer*

• Divide:

When is this a good strategy?

- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
 - If the suproblems are "large":
 - Solve each subproblem recursively
 - If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- **Divide:** D(n) time,
- Conquer: recurse on small problems, size s
- **Combine:** C(n) time
- Recurrence:

 $-T(n) = D(n) + \sum T(s) + C(n)$

Recurrence Solving Techniques

"Cookbook"

Substitution

Merge Sort

• Divide:

– Break *n*-element list into two lists of n/2 elements

- Conquer:
 - If n > 1:
 - Sort each sublist recursively
 - If n = 1:
 - List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Merge

- **Combine:** Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - -1 output list (L_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \leq L_2[0]:

L_{out}.append(L_1.pop())

Else:

L_{out}.append(L_2.pop())

L_{out}.append(L_1)

L_{out}.append(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- **Divide:** 0 comparisons
- **Conquer:** recurse on 2 small problems, size $\frac{n}{2}$
- **Combine:** *n* comparisons
- Recurrence:

$$-T(n) = 2T(\frac{n}{2}) + n$$