
CS4102 Algorithms
Spring 2019

1

Warm up:
Show that no cycle crosses a cut

exactly once

no cycle crosses a cut exactly once

• Consider some edge (", $) in the cycle which
crosses the cut

• If we remove (", $) then there is still a path from
" to $ which must somewhere cross the cut

2

$

"

$&
$'

(

Today’s Keywords

• Graphs
• Minimum Spanning Tree
• Prim’s Algorithm
• Shortest path
• Dijkstra’s Algorithm
• Breadth-first search

3

CLRS Readings

• Chapter 22
• Chapter 23

4

Homeworks

• HW7 Due Tuesday April 16 @11pm
– Written (use latex)
– Graphs

5

Graphs

6

10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: ! = ($, &)
Vertices/Nodes

Edges() = weight of edge)
$ = {+, ,, -, ., &, /, !, 0, 1}
& = { +, , , +, - , ,, - , … }

Definition: Path

7

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes ("#, "%, … , "')
s.t. ∀1 ≤ , ≤ - − 1, "/, "/0# ∈ 2

Simple Path:
A path in which each node
appears at most once

Cycle:
A path of > 2 nodes in
which "# = "'

Definition: Minimum Spanning Tree

8

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree ! = ($%, '%) which connects (“spans”)
all the nodes in a graph) = ($, '), that has
minimal cost

*+,- ! = .
/∈12

3(4)

How many edges does ! have?
$ − 1

Definition: Cut

9

A Cut of graph ! = ($, &) is a partition of the

nodes into two sets, (and $ − (
10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

(

Edge *+, *, ∈ & crosses a

cut if *+ ∈ (and *, ∈ $ − (
(or opposite), e.g. (., /)

A set of edges 0 Respects a cut

if no edges cross the cut

e.g. 0 = { ., 2 , &, ! , 3, ! }

Cut Property

Consider any cut (", $ − ") in a graph ' = $,) , the minimum
weight edge crossing that cut is in some MST of '

10

"

$ − "

*

Warm up 2gether: Cycle Theorem

Consider any cycle in a graph ! = #, % , the maximum weight
edge on that cycle is not in some MST of !

11

&'

&(

&)
&*

+

− +

-

What is our strategy?
Assume we have a MST Already:
2 cases:
1. tree has max weight edge
2. does not have max weight

edge

Cycle Theorem: Case 1

Consider any cycle !", !$, … !&, !" in a graph ' =), * , the
maximum weight edge + on that cycle is not in some MST of '

12

!$

!"

!,
!-

+

Consider some MST .,
Case 1: (the easy case)

If + ∉ . Then claim holds

Cycle Theorem: Case 2
Consider any cycle c = ($%, $', … $), $%) in a graph + = ,, - , the
maximum weight edge . on that cycle is not in some MST of +

13

$'

$%

$/
$0

1

, − 1

.

.′

Consider some MST 4,
Case 2:

Consider if . = $%, $' ∈ 4
Let (1, , − 1) be a cut which
. crosses

There is some other edge e’
not in 4 which crosses
(1, , − 1)

Build tree 46 by exchanging
.6 for .

Cycle Theorem: Case 2
Consider any cycle c = ($%, $', … $), $%) in a graph + = ,, - , the
maximum weight edge . on that cycle is not in some MST of +

14

Consider some MST /,
Case 2:

if . = $%, $' ∈ /
/1 = / with edge .1 instead of .

We assumed 2 . ≥ 2(.1)
2 /1 = 2 / − 2 . + 2(.′)
2 /1 ≤ 2 /
So /1 is also a MST!
Thus the claim holds

$'

$%

$8
$9

:

, − :

.

.′

Prim’s Algorithm

15

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

16

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

17

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

18

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Prim’s Algorithm

19

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree !
Pick a start node
Repeat " − 1 times:

Add the min-weight edge which connects to node
in ! with a node not in !

Keep edges in a Heap
% & log "

Prim’s Algorithm

20

10

2

7

11

9
5

6

3

7

3

1

8

12

9
A

B

C

D

E

F

G

I

H

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key

Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, B %, 7)

0

∞

∞

∞

∞

∞ ∞

∞

∞

Prim’s Algorithm

21

10

2

7

11

9
5

6

3

7

3

1

8

12

9
A

B

C

D

E

F

G

I

H

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key

Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, B %, 7)

0

10

12

∞

∞

∞ ∞

∞

∞

Prim’s Algorithm

22

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key
Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, B %, 7)

0

10

9

∞

8

∞ ∞

∞

∞

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

23

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key
Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, B %, 7)

0

10

9

7

8

∞ 5

6

∞

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

9 loops

I(log9)

I(log 9)

; times total

I(; log 9 + 9 log 9)

Single-Source Shortest Path

24

Find the quickest way to get from UVA to each of these other places

Given a graph ! = ($, &) and a start node (∈ $, for each * ∈ $ find
the least-weight path from (→ * (call this weight ,((, *))

(assumption: all edge weights are positive)

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Dijkstra’s Algorithm

25

Given some start node !
Start with an empty tree "
Repeat # − 1 times:

Add the “nearest” node not yet in "

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

∞

∞

∞ ∞

∞

∞

Dijkstra’s Algorithm

26

Given some start node !
Start with an empty tree "
Repeat # − 1 times:

Add the “nearest” node not yet in "

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

∞

18

∞ ∞

∞

∞

Dijkstra’s Algorithm

27

Given some start node !
Start with an empty tree "
Repeat # − 1 times:

Add the “nearest” node not yet in "

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

28

Given some start node !
Start with an empty tree "
Repeat # − 1 times:

Add the “nearest” node not yet in "

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

15

18

13 20

∞

∞

VERY similar to Prim’s!

Prim’s Algorithm

29

10

2

7

11

9
5

6

3

7

3

1

8

12

9
A

B

C

D

E

F

G

I

H

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key

Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, B %, 7)

0

∞

∞

∞

∞

∞ ∞

∞

∞

Dijkstra’s Algorithm

30

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key

Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, !" + C %, 7)

0

∞

∞

∞

∞

∞ ∞

∞

∞

9 loops

D(log9)

D(log 9); times total

D(Elog 9 + 9 log 9)

Dijkstra’s Algorithm Proof Strategy

• Proof by induction
• Idea: show that when node ! is removed from the priority

queue, "# = %(', !)
– Claim 1: when ! is removed from the queue, "# ≥ %(', !)
• i.e. "# is at least the length of the shortest path

– Claim 2: if we consider any path ', … , ! , , ',… , ! ≥ "#
• i.e. "# is no longer than any other path from ' to !, including the shortest one

31

Proof of Dijkstra’s

• Assume that nodes !" = $,… , !' have been removed from ()
already, and for each of them *+, = -($, !')

• Let node 0 be the 1 + 1 45 node extracted
• Base case:
– 1 = 0, 0 = !" = $

32

Proof of Dijkstra’s: Claim 1

• Let node ! be the " + 1 %& node extracted
• Claim 1: '(≥ *(,, !)
• Proof: node ! has a path of weight '(from ,
• Since '(is the weight of SOME path, its weight is at least that of the SHORTEST

path

33

Proof of Dijkstra’s: Claim 2
• Let node ! be the " + 1 %& node extracted
• for any path ', … , ! , * ',… , ! ≥ ,-
• Extracted nodes define a cut of the graph
• Let edge (/, 0) be the last edge in this path which

crosses the cut

34

!

/

0

'

Extracted Nodes
* ',… , ! ≥ 2 ', / + * /, 0 + *(0,… , !)

≥ ,3 + *(0,… , !)
≥ ,- + *(0,… , !)
≥ ,-

By definition

Because
otherwise, !
would not
be next
extracted

No negative
edge weights

Still in PQ

Proof of Dijkstra’s: Finale

• Claim 1: !" ≥ $ %, '
• Claim 2: !" ≤)(%,… , ') for any path from % to ' (including

the shortest one)
• 1&2 Together:) %,… , ' ≥ !" ≥ $(%, ')
– therefore $(%, ') ≥ !" ≥ $(%, ')
– !" = $(%, ')

35

Breadth-First Search

• Input: a node !
• Behavior: Start with node !, visit all neighbors of !, then all

neighbors of neighbors of !, …
• Output: lots of choices!
– Is the graph connected?
– Is there a path from ! to "?
– Shortest number of “hops” from ! to "

36

Sounds like Dijkstra’s!

Dijkstra’s Algorithm

37

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize !" = ∞ for each node %
Keep a priority queue &' of nodes, using !" as key

Pick a start node (, set !) = 0
While &' is not empty:

% = &'. ,-./01.234()
for each 7 ∈ 9 s.t. %, 7 ∈ ;:

&'. !,1/,0(,<,=(7,min !A, !" + C %, 7)

0

∞

∞

∞

∞

∞ ∞

∞

∞

Replace with a (plain-old) Queue

BFS

38

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Keep a queue ! of nodes

Pick a start node "
!. $%&'$'$(")
While ! is not empty:

* = !. ,$&'$'$()
for each “unvisited” ' ∈ . s.t. *, ' ∈ 0:

!. $%&'$'$(')

BFS: Shortest “Hops” Path

39

Keep a queue ! of nodes
Pick a start node "
!. $%&'$'$(")
ℎ+," = 0
While ! is not empty:

/ = !. 0$&'$'$()
ℎ+," += 1
for each “unvisited” ' ∈ 4 s.t. /, ' ∈ 6:

'. ℎ+," = ℎ+,"
!. $%&'$'$(')

