Warm up:
Show that no cycle crosses a cut exactly once
no cycle crosses a cut exactly once

• Consider some edge \((u, v)\) in the cycle which crosses the cut

• If we remove \((u, v)\) then there is still a path from \(u\) to \(v\) which must somewhere cross the cut
Today’s Keywords

- Graphs
- Minimum Spanning Tree
- Prim’s Algorithm
- Shortest path
- Dijkstra’s Algorithm
- Breadth-first search
CLRS Readings

• Chapter 22
• Chapter 23
Homeworks

- HW7 Due **Tuesday April 16 @11pm**
 - Written (use latex)
 - Graphs
Graphs

Definition: $G = (V, E)$

$w(e) =$ weight of edge e

$V = \{A, B, C, D, E, F, G, H, I\}$

$E = \{(A, B), (A, C), (B, C), \ldots\}$
Definition: Path

A sequence of nodes \((v_1, v_2, \ldots, v_k)\)

s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path of \(> 2\) nodes in which \(v_1 = v_k\)
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

How many edges does T have? $V - 1$
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$
Cut Property

Consider any cut \((S, V - S)\) in a graph \(G = (V, E)\), the minimum weight edge crossing that cut is in some MST of \(G\).
Warm up 2gether: Cycle Theorem

Consider any cycle in a graph $G = (V, E)$, the maximum weight edge on that cycle is not in some MST of G

What is our strategy?
Assume we have a MST Already:
2 cases:
1. tree has max weight edge
2. does not have max weight edge
Cycle Theorem: Case 1

Consider any cycle $v_1, v_2, \ldots, v_k, v_1$ in a graph $G = (V, E)$, the maximum weight edge e on that cycle is not in some MST of G.

Consider some MST T.
Case 1: (the easy case)
If $e \notin T$ Then claim holds.
Cycle Theorem: Case 2
Consider any cycle $c = (v_1, v_2, \ldots v_k, v_1)$ in a graph $G = (V, E)$, the maximum weight edge e on that cycle is not in some MST of G.

Consider some MST T,
Case 2:
Consider if $e = (v_1, v_2) \in T$
Let $(S, V - S)$ be a cut which e crosses
There is some other edge e' not in T which crosses $(S, V - S)$
Build tree T' by exchanging e' for e
Cycle Theorem: Case 2
Consider any cycle \(c = (v_1, v_2, \ldots v_k, v_1) \) in a graph \(G = (V, E) \), the maximum weight edge \(e \) on that cycle is not in some MST of \(G \)

Consider some MST \(T \),
Case 2:
if \(e = (v_1, v_2) \in T \)
\(T' = T \) with edge \(e' \) instead of \(e \)
We assumed \(w(e) \geq w(e') \)
\(w(T') = w(T) - w(e) + w(e') \)
\(w(T') \leq w(T) \)
So \(T' \) is also a MST!
Thus the claim holds
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap $O(E \log V)$
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:
\[
 v = PQ.extract\text{\texttt{min}}()
\]
for each $u \in V$ s.t. $(v, u) \in E$:
\[
 PQ.decrease\text{\texttt{Key}}(u, \min(d_u, w(v, u)))
\]
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:

$v = PQ$.$extractmin()$

for each $u \in V$ s.t. $(v, u) \in E$:

PQ.$decreaseKey(u, \min(d_u, w(v, u)))$
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty:

$v = PQ\.extractmin()$

for each $u \in V$ s.t. $(v, u) \in E$:

$PQ\.decreaseKey(u, \min(d_u, w(v, u)))$
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:
 V loops
 $\forall \in PQ.\text{extractmin()}\times O(\log V)$
 for each $u \in V$ s.t. $(\forall, u) \in E$: E times total
 $PQ.\text{decreaseKey}(u, \min(d_u, w(\forall, u)))\times O(\log V)$

$O(E \log V + V \log V)$
Find the quickest way to get from UVA to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

Given some start node \(s \)
Start with an empty tree \(A \)
Repeat \(V - 1 \) times:
 Add the “nearest” node not yet in \(A \)
Dijkstra’s Algorithm

Given some start node s
Start with an empty tree A
Repeat $V - 1$ times:
 Add the “nearest” node not yet in A
Dijkstra’s Algorithm

Given some start node \(s \)
Start with an empty tree \(A \)
Repeat \(V - 1 \) times:
 Add the “nearest” node not yet in \(A \)
Dijkstra’s Algorithm
Given some start node s
Start with an empty tree A
Repeat $V - 1$ times:
 Add the “nearest” node not yet in A

VERY similar to Prim’s!
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty:

$v = PQ\cdot extract\text{min}()$

for each $u \in V$ s.t. $(v, u) \in E$:

$PQ\cdot decrease\text{Key}(u, \min(d_u, w(v, u)))$
Dijkstra’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:
 $v = PQ.extractmin()$ \(O(\log V)\)
 for each $u \in V$ s.t. $(v, u) \in E$:
 \[PQ.decreaseKey(u, \min(d_u, d_v + w(v, u))) \]

$O(E \log V + V \log V)$
Dijkstra’s Algorithm Proof Strategy

• Proof by induction

• Idea: show that when node u is removed from the priority queue, $d_u = \delta(s, u)$

 – Claim 1: when u is removed from the queue, $d_u \geq \delta(s, u)$
 • i.e. d_u is at least the length of the shortest path

 – Claim 2: if we consider any path (s, \ldots, u), $w(s, \ldots, u) \geq d_u$
 • i.e. d_u is no longer than any other path from s to u, including the shortest one
Proof of Dijkstra’s

• Assume that nodes $v_1 = s$, ..., v_i have been removed from PQ already, and for each of them $d_{v_i} = \delta(s, v_i)$

• Let node u be the $(i + 1)^{th}$ node extracted

• Base case:
 $-i = 0, u = v_1 = s$
Proof of Dijkstra’s: Claim 1

• Let node \(u \) be the \((i + 1)^{th}\) node extracted

• Claim 1: \(d_u \geq \delta(s, u) \)
 • Proof: node \(u \) has a path of weight \(d_u \) from \(s \)
 • Since \(d_u \) is the weight of SOME path, its weight is at least that of the SHORTEST path
Proof of Dijkstra’s: Claim 2

• Let node u be the $(i + 1)^{th}$ node extracted
• for any path $(s, ..., u), w(s, ..., u) \geq d_u$
• Extracted nodes define a cut of the graph
• Let edge (x, y) be the last edge in this path which crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$
$$\geq d_y + w(y, ..., u)$$
$$\geq d_u + w(y, ..., u)$$
$$\geq d_u$$

By definition

Because otherwise, u would not be next extracted.

No negative edge weights

Still in PQ

Extracted Nodes
Proof of Dijkstra’s: Finale

• Claim 1: \(d_u \geq \delta(s, u) \)

• Claim 2: \(d_u \leq w(s, \ldots, u) \) for any path from \(s \) to \(u \) (including the shortest one)

• 1&2 Together: \(w(s, \ldots, u) \geq d_u \geq \delta(s, u) \)
 – therefore \(\delta(s, u) \geq d_u \geq \delta(s, u) \)
 – \(d_u = \delta(s, u) \)
Breadth-First Search

• Input: a node s
• Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
• Output: lots of choices!
 – Is the graph connected?
 – Is there a path from s to u?
 – Shortest number of “hops” from s to u

Sounds like Dijkstra’s!
Dijkstra’s Algorithm

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty: Replace with a (plain-old) Queue

$v = PQ\cdot\text{extractmin}()$

for each $u \in V$ s.t. $(v, u) \in E$:

$PQ\cdot\text{decreaseKey}(u, \min(d_u, d_v + w(v, u)))$
BFS

Keep a queue Q of nodes
Pick a start node s

$Q\text{.enqueue}(s)$

While Q is not empty:

$v = Q\text{.dequeue}()$

for each “unvisited” $u \in V$ s.t. $(v,u) \in E$:

$Q\text{.enqueue}(u)$
BFS: Shortest “Hops” Path

Keep a queue Q of nodes
Pick a start node s
$Q.enqueue(s)$
$hops = 0$

While Q is not empty:

$v = Q.dequeue()$
$hops += 1$

for each “unvisited” $u \in V$ s.t. $(v, u) \in E$:

$u.hops = hops$
$Q.enqueue(u)$