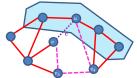
CS4102 Algorithms Spring 2019

Warm up:
Show that no cycle crosses a cut exactly once

no cycle crosses a cut exactly once

- Consider some edge (u,v) in the cycle which crosses the cut
- If we remove (u,v) then there is still a path from \boldsymbol{u} to \boldsymbol{v} which must somewhere cross the cut



Today's Keywords

- Graphs
- Minimum Spanning Tree
- Prim's Algorithm
- Shortest path
- Dijkstra's Algorithm
- Breadth-first search

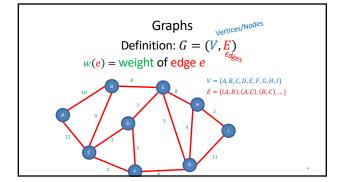
CLRS Readings

- Chapter 22
- Chapter 23

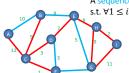
Homeworks

- HW7 Due Tuesday April 16 @11pm
 - Written (use latex)
 - Graphs

5



Definition: Path A sequence of nodes $(v_1, v_2, ..., v_k)$ s.t. $\forall 1 \le i \le k - 1, (v_i, v_{i+1}) \in E$



Simple Path: A path in which each node appears at most once
$$\label{eq:cycle:decomposition} \begin{split} & \underline{\text{Cycle:}} \\ & \text{A path of} > 2 \text{ nodes in} \\ & \text{which } v_1 = v_k \end{split}$$

Definition: Minimum Spanning Tree

A Tree $T=(V_T,E_T)$ which connects ("spans") all the nodes in a graph G=(V,E), that has minimal cost $Cost(T)=\sum_{e\in E_T}w(e)$

How many edges does T have? V-1

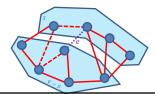
Definition: CutA Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Cut Property

Consider any cut (S,V-S) in a graph G=(V,E), the minimum weight edge crossing that cut is in some MST of G



Warm up 2gether: Cycle Theorem

Consider any cycle in a graph G = (V, E), the maximum weight edge on that cycle is *not* in *some* MST of *G*

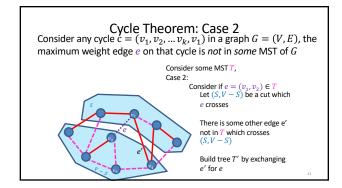
What is our strategy?
Assume we have a MST Already: 2 cases:

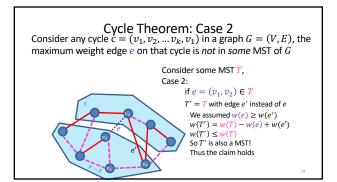
- 1. tree has max weight edge
- 2. does not have max weight edge

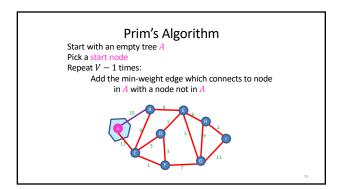
Cycle Theorem: Case 1

Consider any cycle $v_1, v_2, \dots v_k, v_1$ in a graph G = (V, E), the maximum weight edge e on that cycle is *not* in *some* MST of G

Consider some MST T, Case 1: (the easy case) If $e \notin T$ Then claim holds

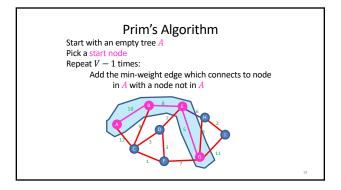






Prim's Algorithm Start with an empty tree A Pick a start node Repeat V — 1 times: Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm Start with an empty tree A Pick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A

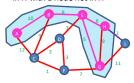


Prim's Algorithm

Start with an empty tree A Pick a start node Repeat V-1 times:

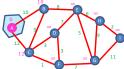
Keep edges in a Heap $O(E \log V)$

Add the min-weight edge which connects to node in A with a node not in A



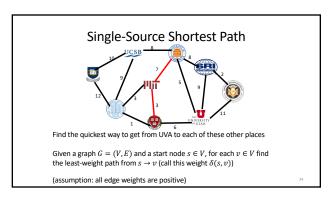
 $\begin{array}{ll} \textbf{Prim's Algorithm} \\ \textbf{Initialize} \ d_v = \infty \ \text{for each node} \ v \\ \textbf{Keep a priority queue} \ PQ \ \text{of nodes, using} \ d_v \ \text{as key} \end{array}$ Pick a start node s, set $d_s = 0$ While PQ is not empty: v = PQ.extractmin()for each $u \in V$ s.t. $(v, u) \in E$: $PQ. decreaseKey(u, min(d_u, w(v, u)))$

Prim's Algorithm Initialize $d_v=\infty$ for each node v Keep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s=0$ While PQ is not empty: v = PQ. extractmin()for each $u \in V$ s.t. $(v, u) \in E$: $PQ. decreaseKey(u, min(d_u, w(v, u)))$



Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: v = PQ. extractmin()for each $u \in V$ s.t. $(v, u) \in E$: $PQ. decreaseKey(u, \min(d_u, w(v, u)))$

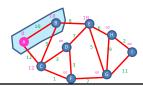
Prim's Algorithm Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: $v \log s$ $v = PQ. extractmin() o(\log v)$ for each $u \in V$ s.t. $(v, u) \in E$: E times total $PQ. decrease Key(u, \min(d_u, w(v, u))) o(\log v)$ $0(E \log V + V \log V)$



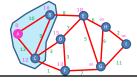
 $\begin{array}{c} \text{Dijkstra's Algorithm} \\ \text{Given some start node } s \\ \text{Start with an empty tree } A \\ \text{Repeat } V-1 \text{ times:} \\ \text{Add the "nearest" node not yet in } A \end{array}$



Dijkstra's Algorithm
Given some start node s
Start with an empty tree A
Repeat V - 1 times: Add the "nearest" node not yet in A



 $\begin{array}{c} {\rm Dijkstra's\ Algorithm} \\ {\rm Given\ some\ start\ node\ }s \\ {\rm Start\ with\ an\ empty\ tree\ }A \\ {\rm Repeat\ }V-1\ {\rm times:} \\ {\rm Add\ the\ "nearest"\ node\ not\ yet\ in\ }A \end{array}$



Dijkstra's Algorithm Given some start node sStart with an empty tree ARepeat V-1 times: Add the "nearest" node not yet in A

Prim's Algorithm Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: v = PQ. extractmin() for each $u \in V$ s.t. $(v, u) \in E$: PQ. $decreaseKey(u, \min(d_u, w(v, u)))$

Dijkstra's Algorithm Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: v = PQ. v =

Dijkstra's Algorithm Proof Strategy

- · Proof by induction
- Idea: show that when node u is removed from the priority queue, $d_u = \delta(s,u)$
 - Claim 1: when u is removed from the queue, $d_u \ge \delta(s,u)$
 - ullet i.e. d_u is at least the length of the shortest path
 - Claim 2: if we consider any path (s, ..., u), $w(s, ..., u) \ge d_u$
 - i.e. d_u is no longer than any other path from s to u, including the shortest one

Proof of Dijkstra's

- Assume that nodes $v_1=s,\dots,v_i$ have been removed from PQ already, and for each of them $d_{v_i}=\delta(s,v_i)$
- Let node u be the $(i+1)^{th}$ node extracted
- Base case:

 $-i = 0, u = v_1 = s$

32

Proof of Dijkstra's: Claim 1

- Let node \underline{u} be the $(i+1)^{th}$ node extracted
- Claim 1: $d_u \ge \delta(s, u)$
 - Proof: node \underline{u} has a path of weight $\underline{d}_{\underline{u}}$ from \underline{s}
 - Since d_u is the weight of SOME path, its weight is at least that of the SHORTEST path

33

Proof of Dijkstra's: Claim 2 • Let node u be the $(i+1)^{th}$ node extracted • for any path (s,...,u), $w(s,...,u) \ge d_u$ • Extracted nodes define a cut of the graph • Let edge (x,y) be the last edge in this path which crosses the cut $w(s,...,u) \ge \delta(s,x) + w(x,y) + w(y,...,u)$ $\ge d_y + w(y,..$

Proof of Dijkstra's: Finale

- Claim 1: $d_u \ge \delta(s, u)$
- Claim 2: $d_u \leq w(s,\dots,u)$ for any path from s to u (including the shortest one)
- 1&2 Together: $w(s, ..., u) \ge d_u \ge \delta(s, u)$
 - therefore $\delta(s,u) \ge d_u \ge \delta(s,u)$
 - $-\,d_u=\delta(s,u)$

35

Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
- · Output: lots of choices!
 - Is the graph connected?
 - Is there a path from s to u?
 - Shortest number of "hops" from s to u

Sounds like Dijkstra's!

36

Dijkstra's Algorithm Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: Replace with a (plain-old) Queue v = PQ. extractmin() for each $u \in V$ s.t. $(v, u) \in E$: PQ. decrease K ey K is K and K is K is K and K is K is K and K is K is K is K and K is K is

BFS Keep a queue Q of nodes Pick a start node s Q. enqueue(s) While Q is not empty: v = Q. dequeue(s) for each "unvisited" $u \in V$ s.t. $(v, u) \in E$: Q. enqueue(u)

BFS: Shortest "Hops" Path Keep a queue Q of nodes Pick a start node s Q. enqueue (s) hops = 0While Q is not empty: v = Q. dequeue() hops += 1for each "unvisited" $u \in V$ s.t. $(v, u) \in E$: u. hops = hops Q. enqueue(u)