CS4102 Algorithms

Warm up:
Show that no cycle crosses a cut

exactly once

4/10/19

no cycle crosses a cut exactly once

* Consider some edge (u, v) in the cycle which
crosses the cut

* If we remove (u, v) then there is still a path from
u to v which must somewhere cross the cut

Today’s Keywords

Graphs

Minimum Spanning Tree
Prim’s Algorithm
Shortest path

Dijkstra’s Algorithm
Breadth-first search

4/10/19

CLRS Readings

* Chapter 22
* Chapter 23

Homeworks

* HW?7 Due Tuesday April 16 @11pm
— Written (use latex)
— Graphs

Graphs
Definition: G = (V, g)
w(e) = weight of edge e~ °

INodes

V ={A,B,C,D,E,F,G,H,I}
E ={(AB),(40),(B,0),..}

Definition: Path

A sequence of nodes (vq, Uy, ..., Vy)
st.Vli<i<k-—1,(v,vi41) EE

%4>

1 F

6

Simple Path: Cycle:
A path in which each node A path of > 2 nodes in
appears at most once whichv; = v,

4/10/19

Definition: Minimum Spanning Tree

ATree T = (Vr, Er) which connects (“spans”)
all the nodes in a graph G = (V, E), that has
minimal cost

Cost(T) = z w(e)

e€ET

How many edges does 7" have?
V-1

Definition: Cut

A Cut of graph G = (V, E) is a partition of the
nodes into two sets, SandV — S

6
Edge (vy, v,) € E crosses a A set of edges R Respects a cut
cutifv, €Sandv, €V —S if no edges cross the cut
(or opposite), e.g. (4, C) e.g. R ={(4 B),(E G),(F,G)}

Cut Property

Consider any cut (S,V — S) inagraph G = (V, E), the minimum
weight edge crossing that cut is in some MST of G

4/10/19

Warm up 2gether: Cycle Theorem

Consider any cycle in a graph G = (V, E), the maximum weight
edge on that cycle is not in some MST of G

What is our strategy?

Assume we have a VIST Already:

2 cases:

1. tree has max weight edge

2. does not have max weight
edge

Cycle Theorem: Case 1

Consider any cycle vy, vy, ... Vg, V4 in a graph G = (V, E), the
maximum weight edge e on that cycle is not in some MST of G

Consider some MST 7',
Case 1: (the easy case)
If e & T Then claim holds

Cycle Theorem: Case 2
Consider any cycle ¢ = (vq, V3, ... Vg, V1) in a graph G = (V, E), the
maximum weight edge e on that cycle is not in some MST of G

Consider some MST 7',
Case 2:
Considerife = (v, v,) €T
Let (S,V — S) be a cut which
e crosses

There is some other edge e’

not in 7 which crosses
S,V-5)

Build tree T’ by exchanging
e fore

4/10/19

Cycle Theorem: Case 2
Consider any cycle ¢ = (v, vy, ... Uk, V1) ina graph G = (V, E), the

maximum weight edge e on that cycle is not in some MST of G

Consider some MST 7,

Case 2:

ife=(v,v,) €T

T' = T with edge e’ instead of e
We assumed w(e) = w(e")
w(T") =w(T) —w(e) +w(e")
w(T") <w(T)

SoT"isalso a MST!

Thus the claim holds

Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node not in A

Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node not in A

4/10/19

Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat VV — 1 times:
Add the min-weight edge which connects to node
in A with a node not in A

Prim’s Algorithm
Start with an empty tree A
Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node not in A

Prim’s Algorithm
Start with an empty tree A Keep edges in a Heap
Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node not in A

4/10/19

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d;, = 0
While PQ is not empty:

v = PQ.extractmin()

foreachu € Vsit. (v,u) € E:

PQ.decreaseKey(u, min(d,, w(v,u)))
8

3

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d, = 0
While PQ is not empty:

v = PQ. extractmin()

foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(d,“ w(v, u)))
0 ’,

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d; =0
While PQ is not empty:
v = PQ. extractmin()
foreachu € Vs.t. (v,u) €E:
PQ.decregseKey(u, min(d,z, w(v, u)))

8

4/10/19

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d;, = 0
While PQ is not empty: v ioops
v = PQ.extractmin() 0Uoev)
foreachu € Vs.t. (v,u) € E: £ times total
u, min(du,w(v, u)))o(mgm

Single-Source Shortest Path

UNIVERSITY
orUTAH

1

b 6
Find the quickest way to get from UVA to each of these other places

Given a graph G = (V,E) and a start node s € V, for each v € V find
the least-weight path from s — v (call this weight §(s, v))

(assumption: all edge weights are positive)

Dijkstra’s Algorithm
Given some start node s
Start with an empty tree A
Repeat V — 1 times:
Add the “nearest” node not yet in A

4/10/19

Dijkstra’s Algorithm
Given some start node s
Start with an empty tree A
Repeat VV — 1 times:
Add the “nearest” node not yet in A

Dijkstra’s Algorithm
Given some start node s
Start with an empty tree A
Repeat V — 1 times:
Add the “nearest” node not yet in A

Dijkstra’s Algorithm
Given some start node s
Start with an empty tree A VERY similar to Prim’s!

Repeat V — 1 times:
Add the “nearest” node not yet in A

4/10/19

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d;, = 0
While PQ is not empty:

v = PQ.extractmin()

foreachu € Vsit. (v,u) € E:

PQ.decreaseKey(u, min(d,, w(v,1)))
8

3

Dijkstra’s Algorithm
Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, set d, = 0
While PQ is not empty: Vloops

v = PQ.extractmin() °0°¢")
foreachu € Vs.t. (v,u) € E: Ftimestotal 0Clog?)
PQ.decreaseKey(u, min(d,“ d, +w(v, 1/,)3)

. Q. ~ O(ElogV +VlogV)

10

Dijkstra’s Algorithm Proof Strategy

* Proof by induction
* |dea: show that when node u is removed from the priority
queue, d,, = §(s,u)
— Claim 1: when u is removed from the queue, d,, = 6(s, u)
« i.e. d, is at least the length of the shortest path
— Claim 2: if we consider any path (s, ...,), w(s, ..., u) = d,,

« i.e. d, is no longer than any other path from s to v, including the shortest one

4/10/19

Proof of Dijkstra’s

Assume that nodes v; = s, ..., v; have been removed from PQ
already, and for each of them d,, = §(s, v;)

Let node 2 be the (i + 1) node extracted

Base case:

—i=0u=v,=s

Proof of Dijkstra’s: Claim 1

* Let node 1 be the (i + 1) node extracted
* Claim1:d, = 6(s,u)
* Proof: node u has a path of weight d,, from s

* Since d,, is the weight of SOME patbh, its weight is at least that of the SHORTEST
path

11

Proof of Dijkstra’s: Claim 2

Let node v be the (i + 1) node extracted
for any path (s, ..., w), w(s, ..., u) = d,,
Extracted nodes define a cut of the graph

Let edge (x,y) be the last edge in this path which
crosses the cut

w(s, .., u) 2 8(s,2) +wlx,y) + w(y, ..., 1)

Extracted Nodes
= dy, +w(, ..., 1) [8y definition
- =d, W, 1) [secause

3
A > d,[re egative otherwise, u
would not
‘ edge weights be next
I Y stilli

extracted

n PQ.

4/10/19

Proof of Dijkstra’s: Finale

Claim 1: d, = 8(s,u)

Claim 2: dy, < w(s, ..., u) for any path from s to u (including
the shortest one)

1&2 Together: w(s, ..., u) = dy, = 8(s,u)

— therefore 6(s,u) = d, = §(s,u)

—dy =8(s,u)

Breadth-First Search

* Input: a node s
* Behavior: Start with node s, visit all neighbors of s, then all
neighbors of neighbors of s, ...
* Output: lots of choices!
— Is the graph connected?
—Is there a path from s to u?
| — Shortest number of “hops” from s to u

Sounds like Dijkstra’s!

12

Dijkstra’s Algorithm
Initialize d,, = oo for each node v
Keep a priority queue P(Q of nodes, using d,, as key
Pick a start node s, set d; =0
While PQ is not empty: Replace with a (plain-old) Queue
v = PQ.extractmin()
foreachu € Vs.t. (v,u) €E:
PQ.decreaseKey(u, min(d“, d, +w(v, u)))

4/10/19

BFS

Keep a queue (of nodes
Pick a start node s
Q. enqueue(s)
While Q is not empty:

v = Q.dequeue()

for each “unvisited” u € V s.t. (v,u) € E:

Q.enqueue(u)

BFS: Shortest “Hops” Path
Keep a queue (of nodes
Pick a start node s
Q. enqueue(s)
hops =0
While Q is not empty:
v = Q.dequeue()

hops += 1
for each “unvisited” u € V s.t. (v,u) € E:
u.hops = hops

Q.enqueue(u)

13

