Spring 2019	ITIS
	Warm Up

1

Today's Keywords

- Graphs
- MaxFlow/MinCut
- Ford-Fulkerson
- Edmunds-Karp

3

CLRS Readings

- Chapter 25
- Chapter 26

Homeworks

- HW8 due Tuesday 4/23 at 11pm
 - Python or Java– Tiling Dino

Max Flow / Min Cut

	Flow Network
Graph $G = (V, E)$ Source node $s \in V$ Sink node $t \in V$	
Edge Capacities $c(e) \in$	Positive Real numbers

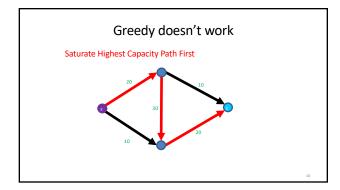
Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

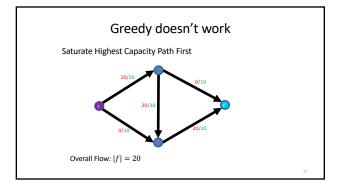
Flow Assignment of values to edges -f(e) = n- Amount of water going through that pipe Capacity constraint $-\frac{f(e)}{s} \le c(e)$ - Flow cannot exceed capacity
• Flow constraint $-\forall v \in V - \{s,t\}, inflow(v) = outflow(v)$ $- \text{ of } e \cap e_{X,Y}, \text{ in low}(v) = \text{ out flow}(v)$ $- \text{ in flow}(v) = \sum_{x \in Y} f(v, x)$ $- \text{ out flow}(v) = \sum_{x \in Y} f(v, x)$ - Water going in must match water coming out $\bullet \text{ Flow of } G: |f| = \text{ out flow}(s) - \text{ in flow}(s)$ - Net outflow of s

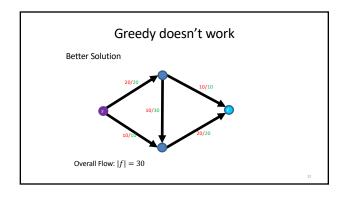
Max Flow

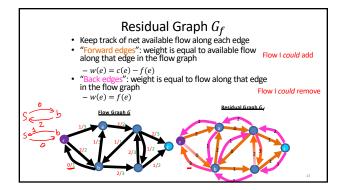
• Of all valid flows through the graph, find the one which maximizes:

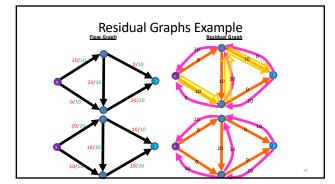
 $-\ |f| = outflow(s) - inflow(s)$







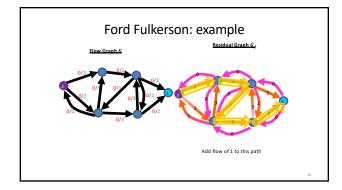


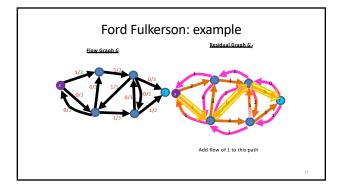


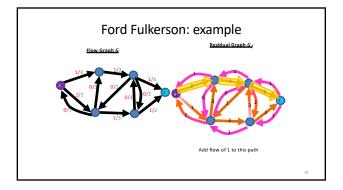
Ford-Fulkerson

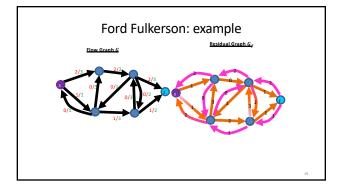
- Augmenting Path: a path of positive-weight edges from s to t in the residual graph
- Algorithm: Repeatedly add the flow of any augmenting path

 $\begin{aligned} \forall (u,v) \in E \text{ Initialize } f(u,v) &= 0 \\ \text{While there is an augmenting path } p \text{ in } G_f \\ \text{let } f &= \min_{u,v \in p} c_f(u,v) \\ \text{add } f \text{ to the flow of each edge in } p \end{aligned}$









Ford-Fulkerson: Run Time

- Augmenting Path: a path of positive-weight edges from s to t in the residual graph
- Algorithm: Repeatedly add the flow of any augmenting path

 $\begin{array}{l} \forall (u,v) \in E \text{ Initialize } f(u,v) = 0 \\ \text{While there is an augmenting path } p \text{ in } G_f \\ \text{let } f = \min_{u,v \in \mathcal{V}} f(u,v) \\ \text{add } f \text{ to the flow of each edge in } p \end{array}$

Time to find an augmenting path: BFS: $\Theta(V+E)$ Number of iterations of While loop: |f|

 $\Theta(E \cdot |f|)$

Why might we loop |f| times? $\forall (u,v) \in E \text{ Initialize } f(u,v) = 0$ While there is an augmenting path p in G_f let $f = \min_{u,v \in p} c_f(u,v)$ add f to the flow of each edge in p

Why might we loop |f| times? $\forall (u,v) \in E \text{ Initialize } f(u,v) = 0$ While there is an augmenting path p in G_f let $f = \min_{u,v \in p} c_f(u,v)$ add f to the flow of each edge in p

Why might we loop |f| times? $\forall (u,v) \in E \text{ Initialize } f(u,v) = 0$ While there is an augmenting path p in G_f let $f = \min_{u,v \in p} c_f(u,v)$ add f to the flow of each edge in p



Can We Avoid this?

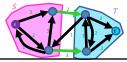
- Edmunds-Karp Algorithm
- $\Theta(\min(E|f|, VE^2))$
- Choose augmenting path with fewest edges

 $\begin{aligned} \forall (u,v) \in E \text{ Initialize } f(u,v) &= 0 \\ \text{While there is an augmenting path in } G_f \\ &\text{let } p \text{ be the shortest augmenting path} \\ &\text{let } f = \min_{u,v \in p} c_f(u,v) \\ &\text{add } f \text{ to the flow of each edge in } p \end{aligned}$

25

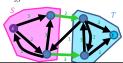
Showing Correctness of Ford-Fulkerson

- Consider cuts which separate s and t
 - $-\operatorname{Let} s \in S, t \in T, \operatorname{s.t.} V = S \cup T$
- Cost of cut (S, T) = ||S, T||
 - Sum capacities of edges which go from ${\it S}$ to ${\it T}$
 - This example: 5



$Maxflow \leq MinCut$

- Max flow upper bounded by any cut separating \boldsymbol{s} and \boldsymbol{t}
- Why? "Conservation of flow"
 - All flow exiting s must eventually get to t
- To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow
 - $-\max_{f}|f| \le \min_{S,T}||S,T||$

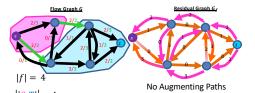


27

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
 - Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut
 - $-\max_{f}|f| = \min_{S,T}||S,T||$
- Duality
 - When we've maximized max flow, we've minimized min cut (and vice-versa), so we can check when we've found one by finding the other

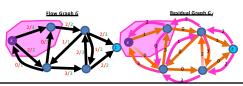
Example: Maxflow/Mincut



||S,T||=4 Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow

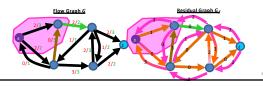
Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path — Otherwise, use that augmenting path to "push" more flow
- Define S= nodes reachable from source node s by positive-weight edges in the residual graph
 - -T = V S
 - S separates s , t (otherwise there's an augmenting path)



Proof: Maxflow/Mincut Theorem • To show: ||S,T|| = |f|- Weight of the cut matches the flow across the cut

- Consider edge (u,v) with $u\in \mathcal{S},v\in T$ $-\frac{f(u,v)}{f(u,v)}=c(u,v), \text{ because otherwise }w(u,v)>0 \text{ in }G_f, \text{ which would mean }v\in \mathcal{S}$
- Consider edge (y,x) with $y \in T$, $x \in S$ f(y,x) = 0, because otherwise the back edge w(y,x) > 0 in G_f , which would mean $x \in S$



- 2. When Ford-Fulkerson Terminates, there are no more augmenting paths in ${\cal G}_f$
- 3. When there are no more augmenting paths in G_f then we can define a cut $\mathcal{S}=$ nodes reachable from source node \mathcal{S} by positive-weight edges in the residual graph
- 4. The sum of edge capacities crossing this cut must match the flow of the graph
- 5. Therefore this flow is maximal

Other Maxflow algorithms

- Ford-Fulkerson
 - $-\Theta(E|f|)$
- Edmonds-Karp
 - $-\operatorname{\Theta}(E^2V)$
- Push-Relabel (Tarjan)
- Faster Push-Relabel (also Tarjan)
 - $-\,\Theta(V^3)$