
4/17/19

1

1

CS4102 Algorithms
Spring 2019

Warm Up

2

CS4102 Algorithms
Spring 2019

Today’s Keywords
• Graphs
• MaxFlow/MinCut
• Ford-Fulkerson
• Edmunds-Karp

3

4/17/19

2

CLRS Readings

• Chapter 25
• Chapter 26

4

Homeworks
• HW8 due Tuesday 4/23 at 11pm
– Python or Java
– Tiling Dino

5

Max Flow / Min Cut

6
Railway map of Western USSR, 1955

4/17/19

3

Flow Network

Graph ! = ($, &)
Source node (∈ $
Sink node * ∈ $
Edge Capacities + , ∈ Positive Real numbers

Max flow intuition: If (is a faucet, * is a drain, and (connects to *
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

7

3

3

3

2

(
*

1

2

1 3 2

2

3

Flow
• Assignment of values to edges

– ! " = $
– Amount of water going through that pipe

• Capacity constraint
– ! " ≤ &(")
– Flow cannot exceed capacity

• Flow constraint
– ∀* ∈ , − {/, 1}, 3$!456 * = 571!456(*)
– 3$!456 * = ∑9∈: !(;, *)
– 571!456 * = ∑9∈: !(*, ;)
– Water going in must match water coming out

• Flow of <: |!| = 571!456 / − 3$!456(/)
– Net outflow of /

8

1/3

1/3

2/3

0/1

/
12/2

2/2

1/1

2/3 1/2

1/2

2/3

Flow/Capacity

3 in example above

Max Flow
• Of all valid flows through the graph, find the one which

maximizes:
– ! = #$%!&#' (− *+!&#'(()

9

4/17/19

4

Greedy doesn’t work

10

30

20

! "

10

20

10

Saturate Highest Capacity Path First

Greedy doesn’t work

11

20/30

20/20

! "

0/10 20/20

0/10

Saturate Highest Capacity Path First

Overall Flow: # = 20

Greedy doesn’t work

12

10/30

20/20

! "

10/10 20/20

10/10

Better Solution

Overall Flow: # = 30

4/17/19

5

Residual Graph !"
• Keep track of net available flow along each edge
• “Forward edges”: weight is equal to available flow

along that edge in the flow graph
– # $ = & $ − (($)

• “Back edges”: weight is equal to flow along that edge
in the flow graph
– # $ = (($)

13

1/3

1/3

2/3
0/1

+

a

b

,2/2

2/2

1/1

2/3 1/2

1/2

2/3
+

a

b

,2

2

1
3

0

0

0 2 3

1

1

Flow Graph -
1 2

2

1

2

1

Residual Graph -.

1

Flow I could add

Flow I could remove

Residual Graphs Example

14

20/30

20/20

! "

0/10 20/20

0/10

Flow Graph

! "

Residual Graph

10

0

0

10

10

20
0

200

20

10/30

20/20

! "

10/10 20/20

10/10

! "

0

0

0

0

20
10

2010

1020

Ford-Fulkerson

• Augmenting Path: a path of positive-weight
edges from ! to " in the residual graph

• Algorithm: Repeatedly add the flow of any
augmenting path

15

∀ $, & ∈ (Initialize) $, & = 0
While there is an augmenting path , in -.

let) = min2,3∈4 5.($, &)
add) to the flow of each edge in ,

4/17/19

6

Ford Fulkerson: example

16

0/3

0/3

0/3
0/1

!
"0/2

0/2

0/1

0/3 0/2

0/2

0/3

Flow Graph #
Residual Graph #$

!
"3

3

3
1

2

2

1 3 2

2

3

0

0

0

0

0
0

0

Add flow of 1 to this path

Ford Fulkerson: example

17

0/3

1/3

1/3
0/1

!
"0/2

1/2

1/1

0/3 0/2

1/2

0/3

Flow Graph #
Residual Graph #$

!
"3

2

2
1

2

1

0 3 2

1

3

1

0

1

1

1
0

1

Add flow of 1 to this path

Ford Fulkerson: example

18

0/3

1/3

1/3
0/1

!
"1/2

1/2

0/1

0/3 0/2

1/2

1/3

Flow Graph #
Residual Graph #$

!
"3

2

2
2

1

1

1 3 2

1

2

1

1

1

1

0
0

1

Add flow of 1 to this path

4/17/19

7

Ford Fulkerson: example

19

0/3

2/3

1/3
0/1

!
"1/2

2/2

0/1

0/3 0/2

1/2

2/3

Flow Graph #
Residual Graph #$

!
"3

1

2
2

1

0

1 3 2

1

1

2

2

1

1

0
0

2

Ford-Fulkerson: Run Time

• Augmenting Path: a path of positive-weight
edges from ! to " in the residual graph

• Algorithm: Repeatedly add the flow of any
augmenting path

20

∀ $, & ∈ (Initialize) $, & = 0
While there is an augmenting path , in -.

let) = min2,3∈4 5.($, &)
add) to the flow of each edge in ,

Time to find an augmenting path: BFS: Θ(= + ()
Number of iterations of While loop: |)| Θ((⋅))

Why might we loop |"| times?

21

0/1

0/100

$

0/100 0/100

0/100

∀ &, (∈ * Initialize " &, (= 0
While there is an augmenting path - in ./

let " = min
3,4∈5

6/(&, ()
add " to the flow of each edge in -

$
1

100

100

100

100

0
0

00

0

4/17/19

8

Why might we loop |"| times?

22

1/1

1/100

$

0/100 1/100

0/100

∀ &, (∈ * Initialize " &, (= 0
While there is an augmenting path - in ./

let " = min
3,4∈5

6/(&, ()
add " to the flow of each edge in -

$
0

99

99

100

100

1
0

10

1

Why might we loop |"| times?

23

0/1

1/100

$

1/100 1/100

1/100

∀ &, (∈ * Initialize " &, (= 0
While there is an augmenting path - in ./

let " = min
3,4∈5

6/(&, ()
add " to the flow of each edge in -

$
1

99

99

99

99

1
1

11

0

Why might we loop |"| times?

24

1/1

2/100

$

1/100 2/100

1/100

∀ &, (∈ * Initialize " &, (= 0
While there is an augmenting path - in ./

let " = min
3,4∈5

6/(&, ()
add " to the flow of each edge in -

$
1

98

98

99

99

2
1

21

0

Each time we increase flow by 1

Loop runs 200 times

4/17/19

9

Can We Avoid this?

• Edmunds-Karp Algorithm
• Θ(min & ' ,)&*)
• Choose augmenting path with fewest edges

25

∀ -, . ∈ & Initialize ' -, . = 0
While there is an augmenting path in 23

let 4 be the shortest augmenting path
let ' = min5,6∈7 83(-, .)
add ' to the flow of each edge in 4

Showing Correctness of Ford-Fulkerson
• Consider cuts which separate ! and "
– Let ! ∈ $, " ∈ %, s.t. & = $ ∪ %

• Cost of cut $, % = | $, % |
– Sum capacities of edges which go from $ to %
– This example: 5

26

3

3

3

2

!
"

1

2

1 3 2

2

3

$ %

Maxflow≤MinCut
• Max flow upper bounded by any cut separating " and #
• Why? “Conservation of flow”
– All flow exiting " must eventually get to #
– To get from " to #, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve
found the maximum flow
– max

'
(≤ min

+,-
| /, 0 |

27

3

3

3

2

"
#

1

2

1 3 2

2

3

/ 0

4/17/19

10

Maxflow/Mincut Theorem
• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting

paths, there is a cut with cost equal to the flow
• Conclusion: the maximum flow through a

network matches the minimum-cost cut
–max$ % = min),+ | -, . |

• Duality
–When we’ve maximized max flow, we’ve

minimized min cut (and vice-versa), so we can
check when we’ve found one by finding the other

28

Example: Maxflow/Mincut

2929

Residual Graph !"

0/3

2/3

3/3
0/1

#
$2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph !

#
$3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

No Augmenting Paths
|&| = 4
), + = 4

Idea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem
• If |"| is a max flow, then #$ has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define % = nodes reachable from source node ' by
positive-weight edges in the residual graph
– (=) − %
– % separates ' , + (otherwise there’s an augmenting path)

30

Residual Graph ,-

'
+3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

'
+2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph ,

4/17/19

11

Proof: Maxflow/Mincut Theorem
• To show: !, # = |&|

– Weight of the cut matches the flow across the cut
• Consider edge ((,)) with (∈ !,) ∈ #

– & (,) = ,((,)), because otherwise - (,) > 0 in 01, which
would mean) ∈ !

• Consider edge (2, 3) with 2 ∈ #, 3 ∈ !
– & 2, 3 = 0, because otherwise the back edge - 2, 3 > 0 in
01, which would mean 3 ∈ !

31

Residual Graph 45

6
73

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

6
72/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 4

Proof Summary
1. The flow |"| of # is upper-bounded by the sum of

capacities of edges crossing any cut separating source $
and sink %

2. When Ford-Fulkerson Terminates, there are no more
augmenting paths in #&

3. When there are no more augmenting paths in #& then we
can define a cut ' = nodes reachable from source node $
by positive-weight edges in the residual graph

4. The sum of edge capacities crossing this cut must match
the flow of the graph

5. Therefore this flow is maximal
32

Other Maxflow algorithms
• Ford-Fulkerson
– !(# $)

• Edmonds-Karp
–&(#'()

• Push-Relabel (Tarjan)
– Θ(*+,)

• Faster Push-Relabel (also Tarjan)
– Θ(+-)

33

