
CS4102 Algorithms
Spring 2019

Warm up:
Show that ! = #!

Just Kidding!

Come taste-test a cookie!
I baked cookies for you all this weekend. 

Start with 2 cookies, come to office 
hours for more.



Reminder: Residual Graph !"
• Keep track of net available flow along each edge
• “Forward edges”: weight is equal to available flow along that 

edge in the flow graph 
– # $ = & $ − (($)

• “Back edges”: weight is equal to flow along that edge in the 
flow graph
– # $ = (($)
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Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
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CLRS Readings

• Chapter 34
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Homeworks

• HW8 due Tomorrow, 4/23, at 11pm
– Python or Java
– Tiling Dino

• HW9 out today, due Monday 4/29 at 11pm
– Graphs, Reductions
– Written (LaTeX)
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Divide and Conquer*
• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of 

Problem A
• Next:
– Take an instance of Problem A, relate it to an instance of Problem B

9



Edge-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no edges
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Edge-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no edges
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Set of edge-disjoint paths of size 3



Edge-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no edges
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Edge-Disjoint Paths Algorithm
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Make ! and " the source and sink, give each edge 
capacity 1, find the max flow.
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Vertex-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no vertices
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Vertex-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no vertices
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Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an 
instance of edge-disjoint paths
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Make two copies of each node, one connected to incoming 
edges, the other to outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint paths on new graph



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching

Given a graph ! = ($, &, ')
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges ) ⊆ ' such that each node + ∈ $
or - ∈ & is incident to at most one edge.
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Make ! = ($, &, ') a flow network !) = (*), ')) by:
• Adding in a source and sink to the set of nodes: 

– *) = $ ∪ & ∪ {-, .}
• Adding an edge from source to $ and from & to 

sink:
– ') = ' ∪ 0 ∈ $ -, 0 } ∪ 2 ∈ 3 2, . }

• Make each edge capacity 1:
– ∀6 ∈ '), 7 6 = 1

Maximum Bipartite Matching Using Max Flow
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Run Time
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1. Make ! into !′
2. Compute Max Flow on !′
3. Return # as all “middle” edges with flow 1
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Shows how two different problems relate to each other

MOVIE TIME!

Reductions



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for !

" #

Keg cannon 
battering ram

Solution for $

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $
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In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to 
Instances of !

Using any Algorithm 
for !

Map Solutions of problem ! to 
Solutions of $

%&



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite 
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

$

%&

'
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

!

"!

"

To Show: " is slow


