CS4102 Algorithms Spring 2019

Just Kidding!

Come taste-test a cookie!

I baked cookies for you all this weekend.

Start with 2 cookies, come to office hours for more.

Reminder: Residual Graph G_f

- Keep track of net available flow along each edge
- "Forward edges": weight is equal to available flow along that edge in the flow graph

 Flow I could add

$$-w(e) = c(e) - f(e)$$

- "Back edges": weight is equal to flow along that edge in the flow graph
 Flow I could remove
 - -w(e) = f(e)

Flow Graph G 2/2 1/3 1/3 1/2

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set

CLRS Readings

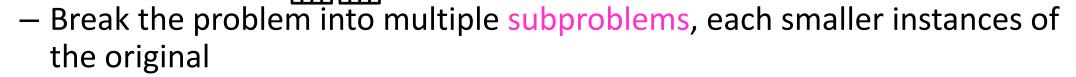
• Chapter 34

Homeworks

- HW8 due Tomorrow, 4/23, at 11pm
 - Python or Java
 - Tiling Dino
- HW9 out today, due Monday 4/29 at 11pm
 - Graphs, Reductions
 - Written (LaTeX)

Divide and Conquer*

• Divide:

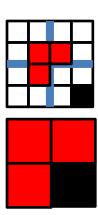


Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

Merge together solutions to subproblems



Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

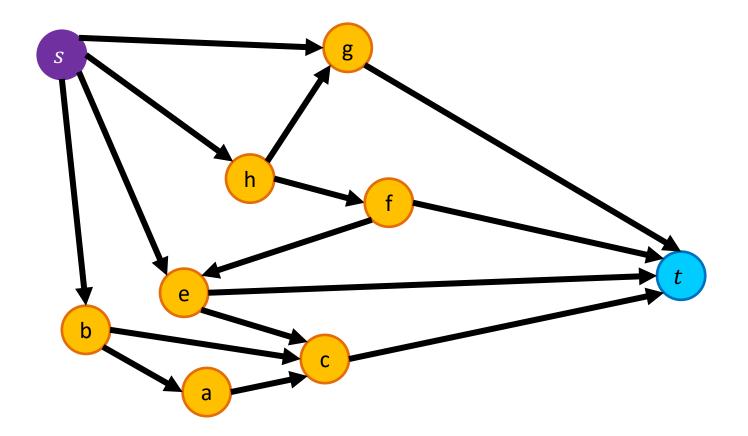
- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
 - Take an instance of Problem A, relate it to an instance of Problem B

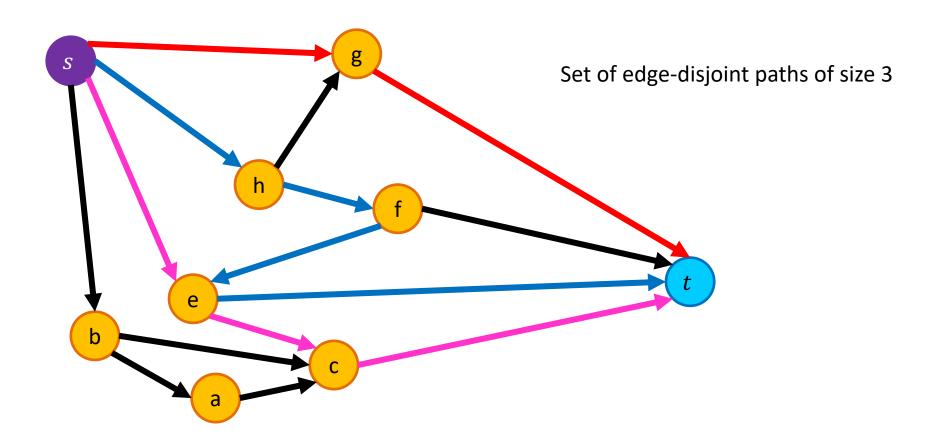
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



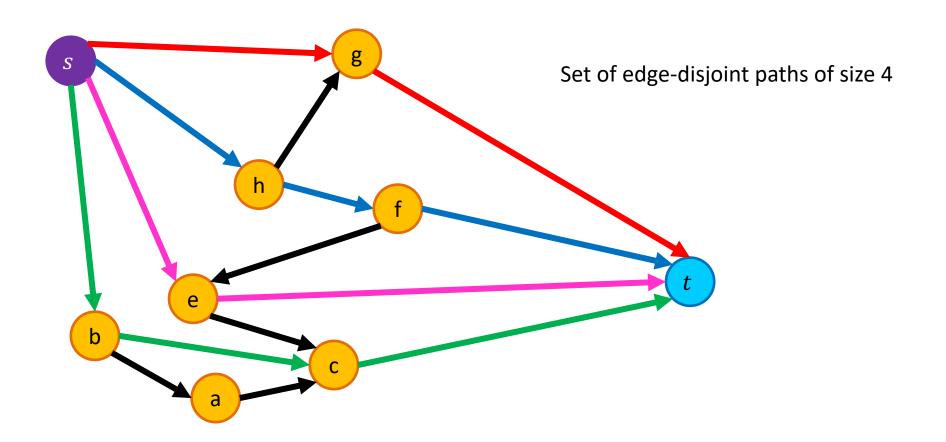
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



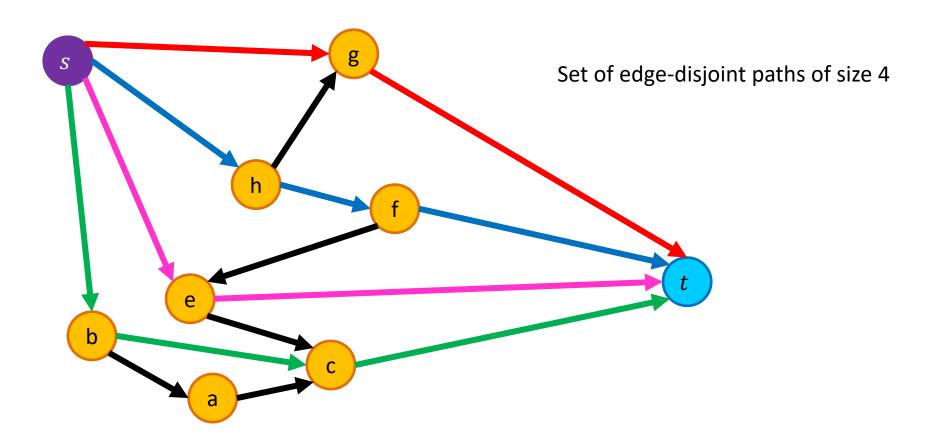
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



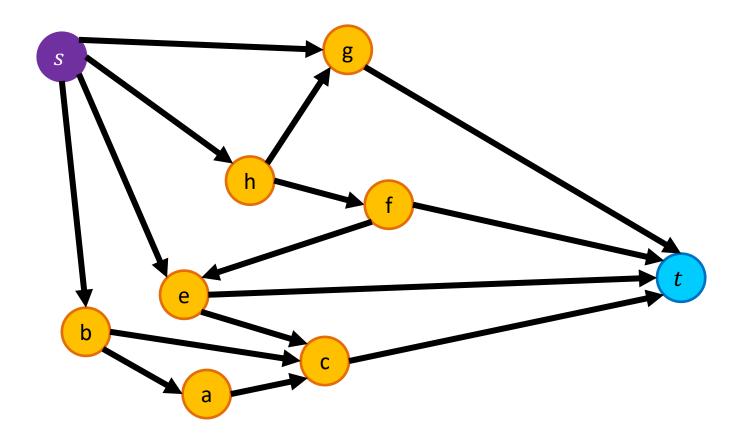
Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.



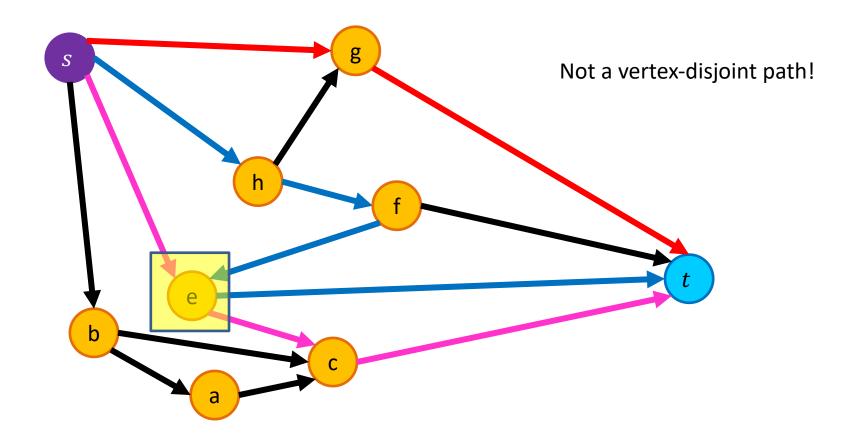
Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices



Vertex-Disjoint Paths

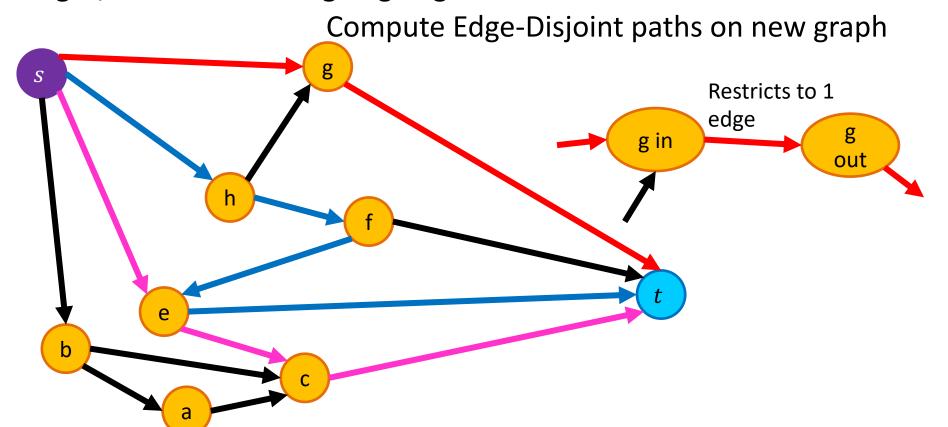
Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

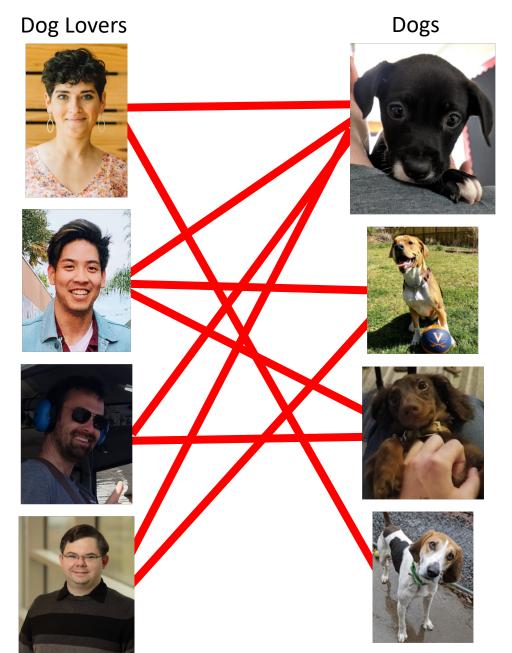


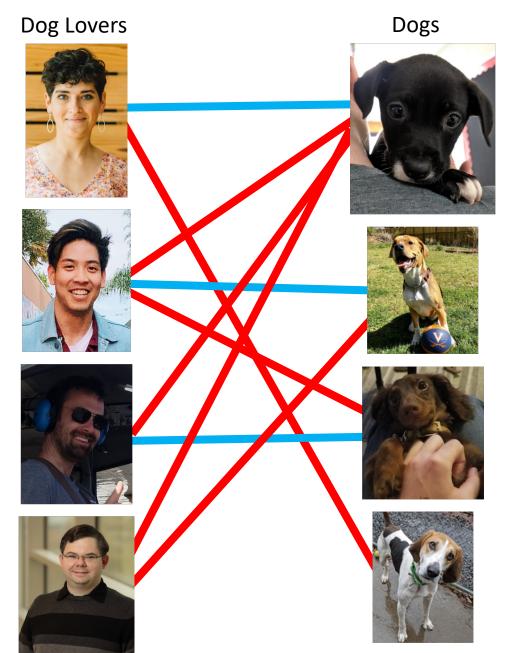
Vertex-Disjoint Paths Algorithm

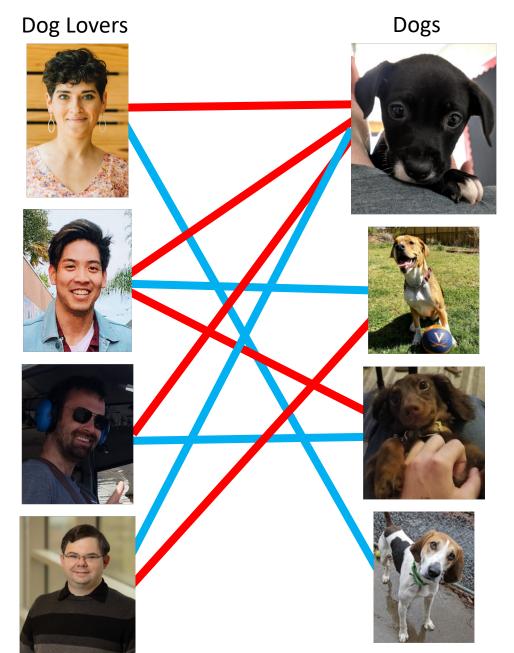
Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges









Given a graph G = (L, R, E)

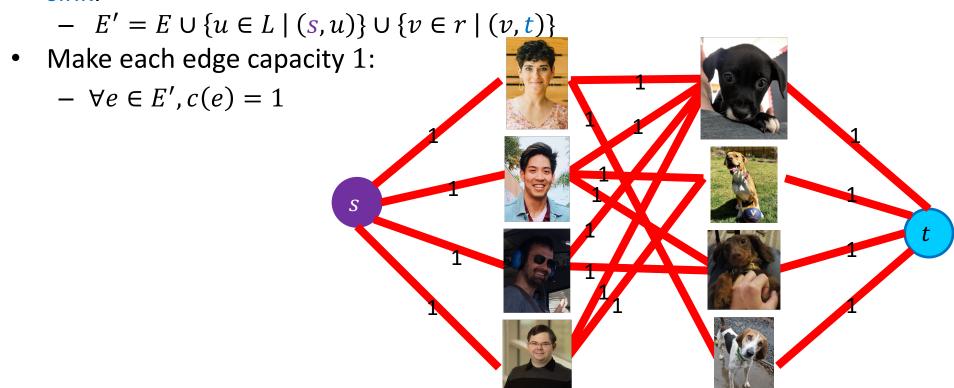
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

- Adding in a source and sink to the set of nodes:
 - $V' = L \cup R \cup \{s, t\}$
- Adding an edge from source to L and from R to sink:



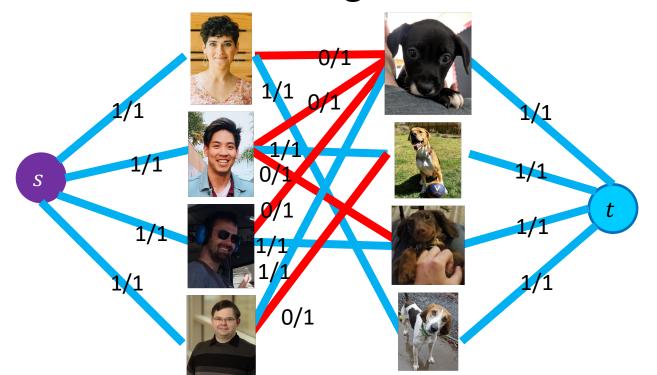
Run Time $\Theta(E \cdot V)$

1. Make G into G'

 $\Theta(L+R)$

2. Compute Max Flow on G'

- $\Theta(E \cdot V) \qquad |f| \le L$
- 3. Return M as all "middle" edges with flow 1 $\Theta(L+R)$

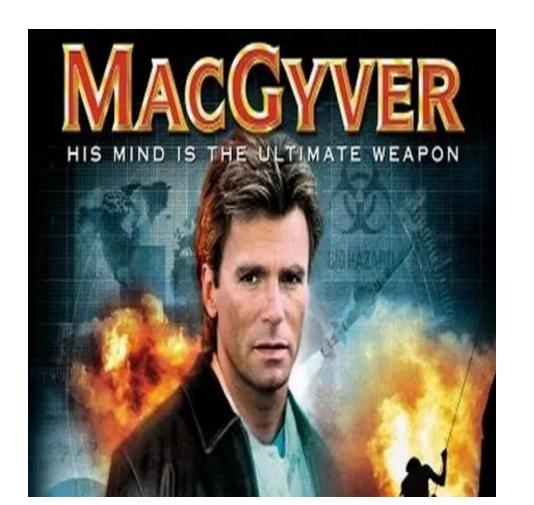


Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

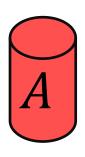
Shows how two different problems relate to each other



MacGyver's Reduction

Problem we don't know how to solve

Problem we do know how to solve



Opening a door

Aim duct at door, insert keg

How?

Solution for **B** Alcohol, wood, matches

Solution for *A* Keg cannon battering ram

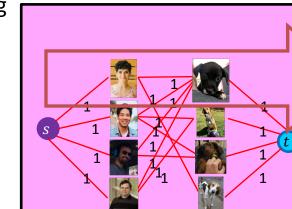
Put fire under the Keg

Reduction

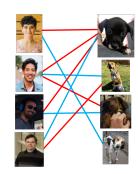
Bipartite Matching Reduction

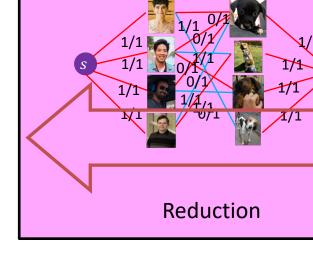
Problem we don't know how to solve



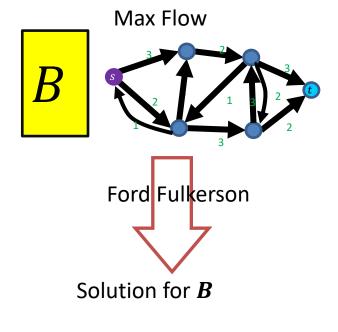


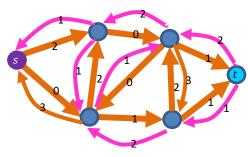
Solution for *A*





Problem we do know how to solve

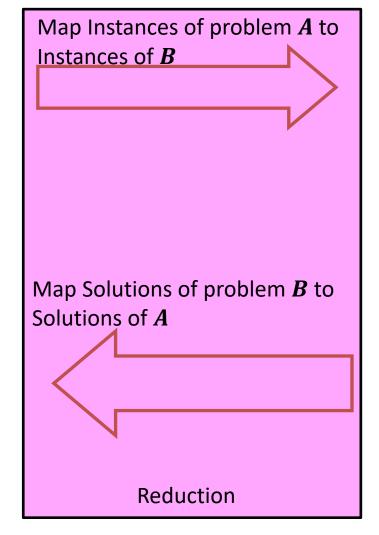


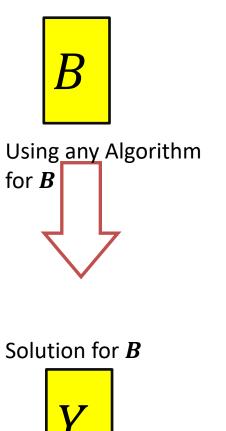


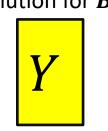
In General: Reduction

Problem we don't know how to solve

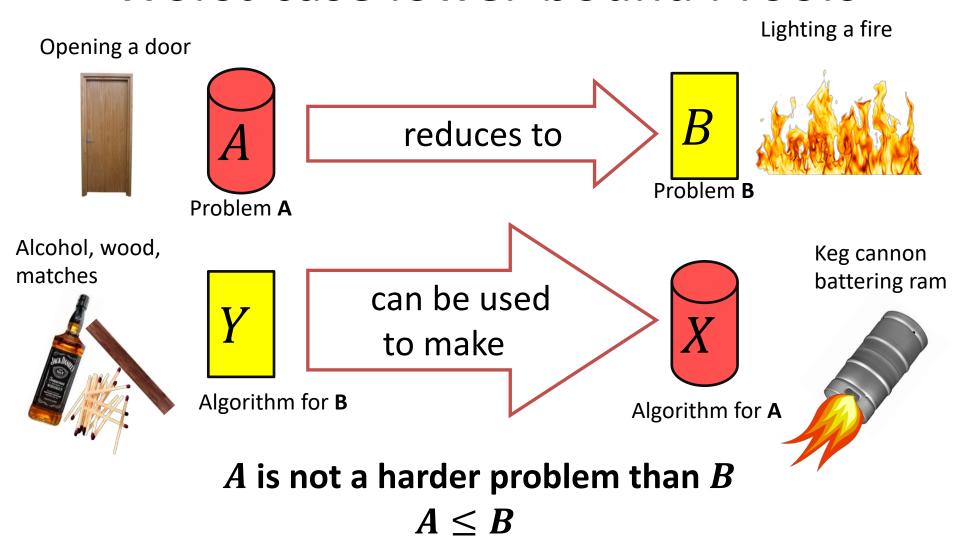
Problem we do know how to solve







Worst-case lower-bound Proofs

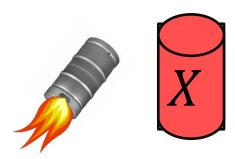


The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

1. We know X is slow (e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction] (Y = some way to light a fire)



3. Show how to use *Y* to perform *X* quickly

4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick