
CS4102 Algorithms
Spring 2019

Warm up:
Show that ! = #!

Just Kidding!

Come taste-test a cookie!
I baked cookies for you all this weekend.

Start with 2 cookies, come to office
hours for more.

Reminder: Residual Graph !"
• Keep track of net available flow along each edge
• “Forward edges”: weight is equal to available flow along that

edge in the flow graph
– # $ = & $ − (($)

• “Back edges”: weight is equal to flow along that edge in the
flow graph
– # $ = (($)

2

1/3

1/3

2/3
0/1

+

a

b

,2/2

2/2

1/1

2/3 1/2

1/2

2/3
+

a

b

,2

2

1
3

0

0

0 2 3

1

1

Flow Graph -
1 2

2

1

2

1

Residual Graph -.

1

Flow I could add

Flow I could remove

Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set

3

CLRS Readings

• Chapter 34

4

Homeworks

• HW8 due Tomorrow, 4/23, at 11pm
– Python or Java
– Tiling Dino

• HW9 out today, due Monday 4/29 at 11pm
– Graphs, Reductions
– Written (LaTeX)

5

Divide and Conquer*
• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first

7

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

8

So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of

Problem A
• Next:
– Take an instance of Problem A, relate it to an instance of Problem B

9

Edge-Disjoint Paths

10

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no edges

(

)

g

h

b
e

f

a
c

Edge-Disjoint Paths

11

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no edges

(

)

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3

Edge-Disjoint Paths

12

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no edges

(

)

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

Edge-Disjoint Paths Algorithm

13

Make ! and " the source and sink, give each edge
capacity 1, find the max flow.

!

"

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

Vertex-Disjoint Paths

14

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no vertices

(

)

g

h

b
e

f

a
c

Vertex-Disjoint Paths

15

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no vertices

(

)

g

h

b
e

f

a
c

Not a vertex-disjoint path!

Vertex-Disjoint Paths Algorithm

16

Idea: Convert an instance of the vertex-disjoint paths problem into an
instance of edge-disjoint paths

!

"

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming
edges, the other to outgoing edges

g
out

Restricts to 1
edge

Compute Edge-Disjoint paths on new graph

Maximum Bipartite Matching

17

Dog Lovers Dogs

Maximum Bipartite Matching

18

Dog Lovers Dogs

Maximum Bipartite Matching

19

Dog Lovers Dogs

Maximum Bipartite Matching

Given a graph ! = ($, &, ')
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges) ⊆ ' such that each node + ∈ $
or - ∈ & is incident to at most one edge.

20

Make ! = ($, &, ') a flow network !) = (*), ')) by:
• Adding in a source and sink to the set of nodes:

– *) = $ ∪ & ∪ {-, .}
• Adding an edge from source to $ and from & to

sink:
– ') = ' ∪ 0 ∈ $ -, 0 } ∪ 2 ∈ 3 2, . }

• Make each edge capacity 1:
– ∀6 ∈ '), 7 6 = 1

Maximum Bipartite Matching Using Max Flow

21

-
.

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1

Run Time

22

1. Make ! into !′
2. Compute Max Flow on !′
3. Return # as all “middle” edges with flow 1

Θ(& + ()

Θ(* ⋅ ,) - ≤ &

Θ(& + ()

Θ(* ⋅ ,)

/
0

0/1

0/11/1

1/1
0/1
0/1

1/1
1/1

0/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

23

24

Shows how two different problems relate to each other

MOVIE TIME!

Reductions

MacGyver’s Reduction

25

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for !

" #

Keg cannon
battering ram

Solution for $

Aim duct at door,
insert keg

How
?

Put fire under the Keg

Reduction

Bipartite Matching Reduction

26

Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

In General: Reduction

27

Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to
Instances of !

Using any Algorithm
for !

Map Solutions of problem ! to
Solutions of $

%&

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

$

%&

'
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

!

"!

"

To Show: " is slow

