CS4102 Algorithms

Just Kidding!

Come taste-test a cookie!
| baked cookies for you all this weekend.
Start with 2 cookies, come to office
hours for more.

Reminder: Residual Graph G

Keep track of net available flow along each edge

“Forward edges”: weight is equal to available flow along that
edge in the flow graph Flow | could add

—w(e) =c(e) — f(e)
“Back edges”: weight is equal to flow along that edge in the
flow graph Flow | could remove

—w(e) = f(e)

Residual Graph Gf

Flow Graph G

Today’s Keywords

Reductions
Bipartite Matching
Vertex Cover
Independent Set

CLRS Readings

* Chapter 34

Homeworks

* HWS8 due Tomorrow, 4/23, at 11pm
— Python or Java
— Tiling Dino
 HW9 out today, due Monday 4/29 at 11pm

— Graphs, Reductions
— Written (LaTeX)

Divide and Conquer*

. . b
* Divide: e
— Break the problem into multiple subproblems, each smaller instances of

the original

* Conquer:

— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
* Solve them directly (base case)

* Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

So far

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A, relate it to smaller instances of
Problem A

* Next:

— Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Edge-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

11

Edge-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

12

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge
capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

13

Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Not a vertex-disjoint path!

15

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an
instance of edge-disjoint paths
Make two copies of each node, one connected to incoming

edges, the other to outgoing edges
Compute Edge-Disjoint paths on new graph

Restricts to 1

16

Maximum Bipartite Matching

Dog Lovers Dogs

e —

17

Maximum Bipartite Matching

Dog Lovers Dogs

e ot = —

18

Maximum Bipartite Matching

Dog Lovers Dogs

e ——

19

Maximum Bipartite Matching

Givena graph G = (L,R,E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V',E") by:
 Addingin a source and sink to the set of nodes:
— V' =LURU {s,t}

 Adding an edge from source to L and from R to
sink:

— E'=Ev{uel|(sswluiver|vit)}
 Make each edge capacity 1: o
— Ve€eE' cle)=1

21

1. Make G into G’

Run Time ©&E-V)

O(L + R)

2. Compute Max Flow on G’ O V) Ifl<L

3. Return M as all “mid

dle” edges with flow 1 oew +r)

22

Reductions

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

24

MacGyver’s Reduction

Problem we don’t know how to solve

Opening a door

1: v;rﬂw ‘"‘mq{ |

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

. <
}k,, N \ ‘Jg)“))
L\ .
A ’Qé&

Put fire under the Keg

Reduction

Solution for B

Alcohol, wood,
matches

25

Bipartite Matching Reduction

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow

Fo@rson

Solution for B

Solution for 4
4N,

Reduction

26

In General: Reduction

Problem we don’t know how to solve Problem we do know how to solve

Map Instances of problem A to

Instances of B > B

Using any Algorithm
for B

Map Solutions of problem B to

Solutions of 4

Solution for 4 Solution for B

Y

Reduction

27

Worst-case lower-bound Proofs

, Lighting a fire
Opening a door

¢'-uw“'FW ‘
reduces to B ﬁg‘i
Problem B o
Problem A
Alcohol, wood, Keg cannon
matches battering ram
' vV can be used
to make

Algorithm for B Algorithm for A

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite
direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

N
R "
e
= o7
(% .
= Cd ’y A
A é'{ -

} . 3. Show how to use Y to perform X quickly

4. X'is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

