
CS4102 Algorithms
Spring 2019

No time for a warm-up today!



Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
• NP-Completeness
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CLRS Readings

• Chapter 34

3



Homeworks, etc

• HW9 due Monday 4/29 Tuesday 4/30 at 11pm
– Written (use LaTeX)
– Reductions

• Final Exam: Saturday, May 4, 2-5pm
– Heavily from material since midterm
• May ask for runtime of an algorithm, some knowledge of D&C
• Won’t directly ask you to solve recurrences

– Practice final online by tomorrow
– Review session?
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for !

" #

Keg cannon 
battering ram

Solution for $

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Maximum Bipartite Matching
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Dog Lovers Dogs



Make ! = ($, &, ') a flow network !) = (*), ')) by:
• Adding in a source and sink to the set of nodes: 

– *) = $ ∪ & ∪ {-, .}
• Adding an edge from source to $ and from & to 

sink:
– ') = ' ∪ 0 ∈ $ -, 0 } ∪ 2 ∈ 3 2, . }

• Make each edge capacity 1:
– ∀6 ∈ '), 7 6 = 1

Maximum Bipartite Matching Using Max Flow
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Remember: need to show
1. How to map instance of MBM to 

MF (and back) - construction
2. A valid solution to MF instance is a 

valid solution to MBM instance



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $
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Reduction



Edge-Disjoint Paths

10

Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no edges

(

)

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4



Edge-Disjoint Paths Algorithm
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Make ! and " the source and sink, give each edge 
capacity 1, find the max flow.

!

"

g
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b
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a
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Set of edge-disjoint paths of size 4
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Vertex-Disjoint Paths
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Given a graph ! = ($, &), a start node ( and a 
destination node ), give the maximum number of paths 
from ( to ) which share no vertices

(

)

g

h

b
e

f

a
c

Not a vertex-disjoint path!



Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an 
instance of edge-disjoint paths

!

"

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming 
edges, the other to outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint paths on new graph

1

1

1 1



In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to 
Instances of !

Using any Algorithm 
for !

Map Solutions of problem ! to 
Solutions of $

%&

Remember: need to show
1. How to map instance of A to B 

(and back)
2. Why solution to B was a valid 

solution to A



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $
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Reduction

Then this is fast If this is fast



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $
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Reduction

If this is slow Then this is slow



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite 
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

$

%&

'
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

!

"!

"

To Show: " is slow



Reduction Proof Notation
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!(#)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

% is not a harder problem than &
% ≤ &

(

)*

+
Problem A

Problem B

If % requires time ,(- . ) time then & also requires ,(- . ) time
% ≤-(.) &

With /(! # ) overhead



Party Problem
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Draw Edges between people who don’t get along
Find the maximum number of people who get along



Maximum Independent Set

• Independent set: ! ⊆ # is an independent set if no two nodes 
in ! share an edge

• Maximum Independent Set Problem: Given a graph $ = (#, ()
find the maximum independent set !
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Example
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Independent set of size 6



Generalized Baseball
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Generalized Baseball

24

Need to place defenders on 
bases such that every edge is 
defended

What’s the fewest number 
of defenders needed?



Minimum Vertex Cover

• Vertex Cover: ! ⊆ # is a vertex cover if every edge in $ has 
one of its endpoints in !

• Minimum Vertex Cover: Given a graph % = (#, $) find the 
minimum vertex cover !
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Example
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Vertex cover of size 5



MaxIndSet≤"MinVertCov
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#(%)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

'

()

*
Problem A

Problem B

If + requires time ,(- . ) time then / also requires ,(- . ) time
+ ≤0 /

With #(%) overhead



We need to build this Reduction
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! "

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm 
for MinVertCov

Relate Solutions of MinVertCov to 
Solutions of MaxIndSet

#$

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Reduction Idea
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Independent Set Vertex Cover

! is an independent set of " iff # − ! is a vertex cover of "



Reduction Idea
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Independent SetVertex Cover

! is an independent set of " iff # − ! is a vertex cover of "



MaxVertCov !-Time Reducible to 
MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

$%

O(V) Time



Proof: ⇒
" is an independent set of # iff $ − " is a vertex cover of #
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Let " be an independent set

Consider any edge &, ( ∈ *
If & ∈ " then ( ∉ ", because otherwise " would not be an 
independent set

Therefore ( ∈ $ − ", so edge (&, () is covered by $ − "



Proof: ⇐
" is an independent set of # iff $ − " is a vertex cover of #
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Let V − " be a vertex cover

Consider any edge ', ) ∈ +
At least one of ' and ) belong to $ − ", because V − " is a 
vertex cover
Therefore ' and ) are not both in ", 
No edge has both end-nodes in ", thus " is an independent set 



MaxVertCov !-Time Reducible to 
MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

$%

O(V) Time



MaxIndSet !-Time Reducible to 
MinVertCov
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" #

Reduction

Do nothing

Take complement of solution

$%

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSetMinVertCov

Solution for MinVertCov Solution for MaxIndSet



Corollary

36

! "

Reduction

Do nothing

Using any Algorithm 
for MinIndSet

Take complement of solution

#$

O(V) Time

If Solving % was 
always slow

Then this shows 
solving & is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Corollary
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! "

Reduction

Do nothing

Take complement of solution

#$

O(V) Time

Using any Algorithm 
for MaxVertCovIf Solving % was 

always slow
Then this shows 
solving & is also slow

MaxIndSetMinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
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! Independent Set

41

Is there a set of non-adjacent nodes of size !?



! Independent Set

• Independent set: " ⊆ $ is an independent set if no two nodes 
in " share an edge

• ! Independent Set Problem: Given a graph % = ($, )) and a 
number !, determine whether there is an independent set +
of size ,
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! Vertex Cover
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Is there a set of nodes of 
size ! which covers every 
edge?



! Vertex Cover

• Vertex Cover: " ⊆ $ is a vertex cover if every edge in % has 
one of its endpoints in "

• ! Vertex Cover: Given a graph & = ($, %) and a number !, 
determine whether there is a vertex cover + of size ,
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Problem Types
• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size !?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size !

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size !?

48

If we can solve this

Then we can solve this



Reduction
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!-VertexCover Solver !-VertexCover Decider

Solution for "

# $

Solution for %

Reduction

Remove a node, etc…

Using any Algorithm 
for "

Relate Solutions of problem " to 
Solutions of %

&'



P vs NP
• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• !(#$) for some number &
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• !(#$) for some number &
• Open Problem: Does P=NP?
– Certainly ' ⊆ )'

55

P

NP



!-Independent Set is NP

• To show: Given a potential solution, can we 
verify it in "($%)? [$ = ) + +]
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How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s an independent set "()-)



NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved 

in polynomial time, then all NP problems can 
be solved in polynomial time.

• Definition: NP-Hard:
– ! is NP-Hard if ∀# ∈ %&, # ≤) !
– # ≤) ! means # reduces to ! in polynomial 

time

57

P

NP

NP-H
At least as 
“hard” as NP



NP-Hardness Reduction
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Any NP-Hard Problem Problem to show is NP-Hard

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done 
in polynomial time

If This could be done in 
Polynomial time



NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier
– Show it is NP-Hard

• Give a reduction from another NP-H problem

59

P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done 
in polynomial time

If This could be done in 
polynomial time



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this cannot be 
done in polynomial time

If this cannot be done 
in polynomial time



3-SAT

• Shown to be NP-Hard by Cook and Levin 
(independently)

• Given a 3-CNF formula (logical AND of clauses, 
each an OR of 3 variables), Is there an 
assignment of true/false to each variable to 
make the formula true?
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! ∨ # ∨ $ ∧ ! ∨ &# ∨ # ∧ ' ∨ # ∨ ̅$ ∧ $ ∨ !̅ ∨ ' ∧ (!̅ ∨ &# ∨ ̅$)
Clause

Variables
+ = -./0
1 = 23450
6 = 23450
/ = -./0



!-Independent Set is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (slide 56)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3#$% ≤' !()*#+,
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3"#$ ≤& '()*"+,
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3SAT '-Ind Set

Solution for '-Ind Set

# -

Solution for 3SAT

Reduction

./

0()&)



Instance of 3SAT to Instance of !IndSet
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" ∨ $ ∨ % ∧ " ∨ '$ ∨ $ ∧ ( ∨ $ ∨ ̅% ∧ % ∨ "̅ ∨ ( ∧ ("̅ ∨ '$ ∨ ̅%)

"

$%

"

'$$
(

$̅%

%

"̅(
'(

'$̅%

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

There is a !-IndSet in this graph, iff there 
is a satisfying assignment

Let ! = number of clauses



!IndSet ⇒ Satisfying Assignment
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# ∨ % ∨ & ∧ # ∨ (% ∨ % ∧ ) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨ ) ∧ (#̅ ∨ (% ∨ ̅&)

One node per triangle is in the Independent set: 
because we can have exactly ! total in the set, 
and 2 in a triangle would be adjacent

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

If # is selected in some triangle, #̅ is not selected in any triangle:
Because every # is adjacent to every #̅
Set the variable which each included node represents to “true”

- = /012
3 = 45672
8 = 45672
1 = /012



Satisfying Assignment ⇒ "IndSet
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# ∨ % ∨ & ∧ # ∨ (% ∨ % ∧ ) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨ ) ∧ (#̅ ∨ (% ∨ ̅&)

Use one true variable from the assignment for each triangle

The independent set has " nodes, because there are " clauses

If any variable # is true then #̅ cannot be true

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

- = /012
3 = 45672
8 = 45672
1 = /012



3"#$ ≤& '()*"+,
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3SAT '-Ind Set

Solution for '-Ind Set

# -

Solution for 3SAT

Reduction

./

0()&)
Make triangles, connect 
opposites, ' = num clauses

Assign true to variables 
from selected nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time



!-Vertex Cover is NP

• To show: Given a potential solution, can we 
verify it in "($%)? [$ = ) + +]
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How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s a Vertex Cover "(+)



!-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (slide 69)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed !"#$%&' ≤) !*&+',-.
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!"#$%&' ≤) !*&+',-.
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!"#$%&' !*&+',-.

Solution for !*&+',-.

/ 0

Solution for  !"#$%&'

Reduction

12

3(#))

! = * − !

Take Complement of 
nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time


