
CS4102 Algorithms
Spring 2019

No time for a warm-up today!

Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
• NP-Completeness

2

CLRS Readings

• Chapter 34

3

Homeworks, etc

• HW9 due Monday 4/29 Tuesday 4/30 at 11pm
– Written (use LaTeX)
– Reductions

• Final Exam: Saturday, May 4, 2-5pm
– Heavily from material since midterm
• May ask for runtime of an algorithm, some knowledge of D&C
• Won’t directly ask you to solve recurrences

– Practice final online by tomorrow
– Review session?

4

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

5

MacGyver’s Reduction

6

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for !

" #

Keg cannon
battering ram

Solution for $

Aim duct at door,
insert keg

How
?

Put fire under the Keg

Reduction

Maximum Bipartite Matching

7

Dog Lovers Dogs

Make ! = ($, &, ') a flow network !) = (*), ')) by:
• Adding in a source and sink to the set of nodes:

– *) = $ ∪ & ∪ {-, .}
• Adding an edge from source to $ and from & to

sink:
– ') = ' ∪ 0 ∈ $ -, 0 } ∪ 2 ∈ 3 2, . }

• Make each edge capacity 1:
– ∀6 ∈ '), 7 6 = 1

Maximum Bipartite Matching Using Max Flow

8

-
.

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1

Remember: need to show
1. How to map instance of MBM to

MF (and back) - construction
2. A valid solution to MF instance is a

valid solution to MBM instance

Bipartite Matching Reduction

9

Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

Edge-Disjoint Paths

10

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no edges

(

)

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

Edge-Disjoint Paths Algorithm

11

Make ! and " the source and sink, give each edge
capacity 1, find the max flow.

!

"

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

1

1

1

1

1 1

1
1

1
1

11

1
1

1

Vertex-Disjoint Paths

12

Given a graph ! = ($, &), a start node (and a
destination node), give the maximum number of paths
from (to) which share no vertices

(

)

g

h

b
e

f

a
c

Not a vertex-disjoint path!

Vertex-Disjoint Paths Algorithm

13

Idea: Convert an instance of the vertex-disjoint paths problem into an
instance of edge-disjoint paths

!

"

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming
edges, the other to outgoing edges

g
out

Restricts to 1
edge

Compute Edge-Disjoint paths on new graph

1

1

1 1

In General: Reduction

14

Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to
Instances of !

Using any Algorithm
for !

Map Solutions of problem ! to
Solutions of $

%&

Remember: need to show
1. How to map instance of A to B

(and back)
2. Why solution to B was a valid

solution to A

Bipartite Matching Reduction

15

Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

Then this is fast If this is fast

Bipartite Matching Reduction

16

Bipartite Matching
Problem we don’t know how to solve

Max Flow
Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

If this is slow Then this is slow

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

$

%&

'
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

!

"!

"

To Show: " is slow

Reduction Proof Notation

19

!(#)-reduces to

Algorithm for B

can be used to make

Algorithm for A

% is not a harder problem than &
% ≤ &

(

)*

+
Problem A

Problem B

If % requires time ,(- .) time then & also requires ,(- .) time
% ≤-(.) &

With /(! #) overhead

Party Problem

20

Draw Edges between people who don’t get along
Find the maximum number of people who get along

Maximum Independent Set

• Independent set: ! ⊆ # is an independent set if no two nodes
in ! share an edge

• Maximum Independent Set Problem: Given a graph $ = (#, ()
find the maximum independent set !

21

Example

22

Independent set of size 6

Generalized Baseball

23

Generalized Baseball

24

Need to place defenders on
bases such that every edge is
defended

What’s the fewest number
of defenders needed?

Minimum Vertex Cover

• Vertex Cover: ! ⊆ # is a vertex cover if every edge in $ has
one of its endpoints in !

• Minimum Vertex Cover: Given a graph % = (#, $) find the
minimum vertex cover !

25

Example

26

Vertex cover of size 5

MaxIndSet≤"MinVertCov

27

#(%)-reduces to

Algorithm for B

can be used to make

Algorithm for A

'

()

*
Problem A

Problem B

If + requires time ,(- .) time then / also requires ,(- .) time
+ ≤0 /

With #(%) overhead

We need to build this Reduction

28

! "

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm
for MinVertCov

Relate Solutions of MinVertCov to
Solutions of MaxIndSet

#$

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction Idea

29

Independent Set Vertex Cover

! is an independent set of " iff # − ! is a vertex cover of "

Reduction Idea

30

Independent SetVertex Cover

! is an independent set of " iff # − ! is a vertex cover of "

MaxVertCov !-Time Reducible to
MinIndSet

31

MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

$%

O(V) Time

Proof: ⇒
" is an independent set of # iff $ − " is a vertex cover of #

32

Let " be an independent set

Consider any edge &, (∈ *
If & ∈ " then (∉ ", because otherwise " would not be an
independent set

Therefore (∈ $ − ", so edge (&, () is covered by $ − "

Proof: ⇐
" is an independent set of # iff $ − " is a vertex cover of #

33

Let V − " be a vertex cover

Consider any edge ',) ∈ +
At least one of ' and) belong to $ − ", because V − " is a
vertex cover
Therefore ' and) are not both in ",
No edge has both end-nodes in ", thus " is an independent set

MaxVertCov !-Time Reducible to
MinIndSet

34

MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

$%

O(V) Time

MaxIndSet !-Time Reducible to
MinVertCov

35

" #

Reduction

Do nothing

Take complement of solution

$%

O(V) Time

Using any Algorithm
for MaxIndSet

MaxIndSetMinVertCov

Solution for MinVertCov Solution for MaxIndSet

Corollary

36

! "

Reduction

Do nothing

Using any Algorithm
for MinIndSet

Take complement of solution

#$

O(V) Time

If Solving % was
always slow

Then this shows
solving & is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Corollary

37

! "

Reduction

Do nothing

Take complement of solution

#$

O(V) Time

Using any Algorithm
for MaxVertCovIf Solving % was

always slow
Then this shows
solving & is also slow

MaxIndSetMinVertCov

Solution for MinVertCov Solution for MaxIndSet

Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete

38

! Independent Set

41

Is there a set of non-adjacent nodes of size !?

! Independent Set

• Independent set: " ⊆ $ is an independent set if no two nodes
in " share an edge

• ! Independent Set Problem: Given a graph % = ($,)) and a
number !, determine whether there is an independent set +
of size ,

43

! Vertex Cover

45

Is there a set of nodes of
size ! which covers every
edge?

! Vertex Cover

• Vertex Cover: " ⊆ $ is a vertex cover if every edge in % has
one of its endpoints in "

• ! Vertex Cover: Given a graph & = ($, %) and a number !,
determine whether there is a vertex cover + of size ,

47

Problem Types
• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size !?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size !

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size !?

48

If we can solve this

Then we can solve this

Reduction

54

!-VertexCover Solver !-VertexCover Decider

Solution for "

$

Solution for %

Reduction

Remove a node, etc…

Using any Algorithm
for "

Relate Solutions of problem " to
Solutions of %

&'

P vs NP
• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• !(#$) for some number &
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• !(#$) for some number &
• Open Problem: Does P=NP?
– Certainly ' ⊆)'

55

P

NP

!-Independent Set is NP

• To show: Given a potential solution, can we
verify it in "($%)? [$ =) + +]

56

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s an independent set "()-)

NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved

in polynomial time, then all NP problems can
be solved in polynomial time.

• Definition: NP-Hard:
– ! is NP-Hard if ∀# ∈ %&, # ≤) !
– # ≤) ! means # reduces to ! in polynomial

time

57

P

NP

NP-H
At least as
“hard” as NP

NP-Hardness Reduction

58

Any NP-Hard Problem Problem to show is NP-Hard

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier
– Show it is NP-Hard

• Give a reduction from another NP-H problem

59

P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem

NP-Completeness

60

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
polynomial time

NP-Completeness

61

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this cannot be
done in polynomial time

If this cannot be done
in polynomial time

3-SAT

• Shown to be NP-Hard by Cook and Levin
(independently)

• Given a 3-CNF formula (logical AND of clauses,
each an OR of 3 variables), Is there an
assignment of true/false to each variable to
make the formula true?

62

! ∨ # ∨ $ ∧ ! ∨ &# ∨ # ∧ ' ∨ # ∨ ̅$ ∧ $ ∨ !̅ ∨ ' ∧ (!̅ ∨ &# ∨ ̅$)
Clause

Variables
+ = -./0
1 = 23450
6 = 23450
/ = -./0

!-Independent Set is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (slide 56)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3#$% ≤' !()*#+,

63

3"#$ ≤& '()*"+,

64

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)

Instance of 3SAT to Instance of !IndSet

65

" ∨ $ ∨ % ∧ " ∨ '$ ∨ $ ∧ (∨ $ ∨ ̅% ∧ % ∨ "̅ ∨ (∧ ("̅ ∨ '$ ∨ ̅%)

"

$%

"

'$$
(

$̅%

%

"̅(
'(

'$̅%

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

There is a !-IndSet in this graph, iff there
is a satisfying assignment

Let ! = number of clauses

!IndSet ⇒ Satisfying Assignment

66

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (#̅ ∨ (% ∨ ̅&)

One node per triangle is in the Independent set:
because we can have exactly ! total in the set,
and 2 in a triangle would be adjacent

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

If # is selected in some triangle, #̅ is not selected in any triangle:
Because every # is adjacent to every #̅
Set the variable which each included node represents to “true”

- = /012
3 = 45672
8 = 45672
1 = /012

Satisfying Assignment ⇒ "IndSet

67

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (#̅ ∨ (% ∨ ̅&)

Use one true variable from the assignment for each triangle

The independent set has " nodes, because there are " clauses

If any variable # is true then #̅ cannot be true

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

- = /012
3 = 45672
8 = 45672
1 = /012

3"#$ ≤& '()*"+,

68

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)
Make triangles, connect
opposites, ' = num clauses

Assign true to variables
from selected nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

!-Vertex Cover is NP

• To show: Given a potential solution, can we
verify it in "($%)? [$ =) + +]

69

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s a Vertex Cover "(+)

!-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (slide 69)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed !"#$%&' ≤) !*&+',-.

70

!"#$%&' ≤) !*&+',-.

71

!"#$%&' !*&+',-.

Solution for !*&+',-.

/ 0

Solution for !"#$%&'

Reduction

12

3(#))

! = * − !

Take Complement of
nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

