CS4102 Algorithms Spring 2019

No time for a warm-up today!

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set
- NP-Completeness

CLRS Readings

• Chapter 34

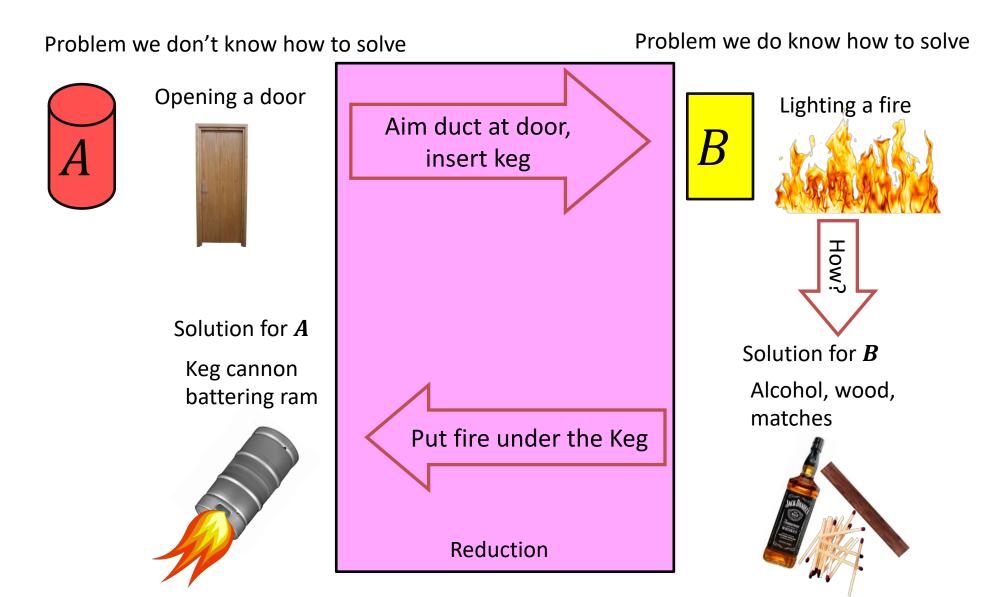
Homeworks, etc

- HW9 due Monday 4/29 Tuesday 4/30 at 11pm
 - Written (use LaTeX)
 - Reductions
- Final Exam: Saturday, May 4, 2-5pm
 - Heavily from material since midterm
 - May ask for runtime of an algorithm, some knowledge of D&C
 - Won't directly ask you to solve recurrences
 - Practice final online by tomorrow
 - Review session?

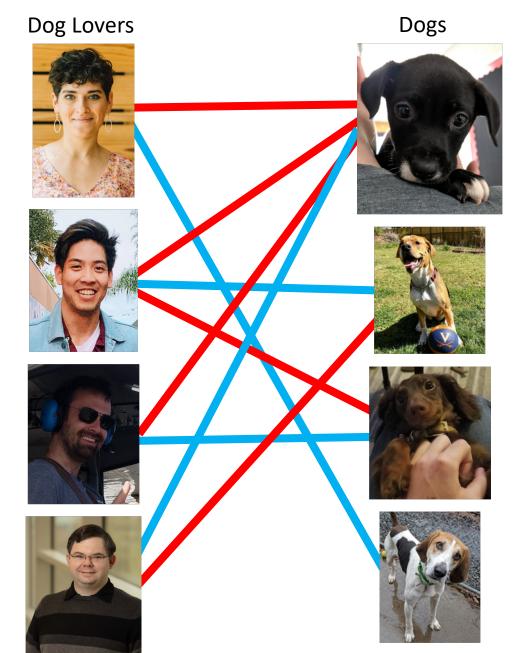
Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

MacGyver's Reduction



Maximum Bipartite Matching



Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

• Adding in a source and sink to the set of nodes:

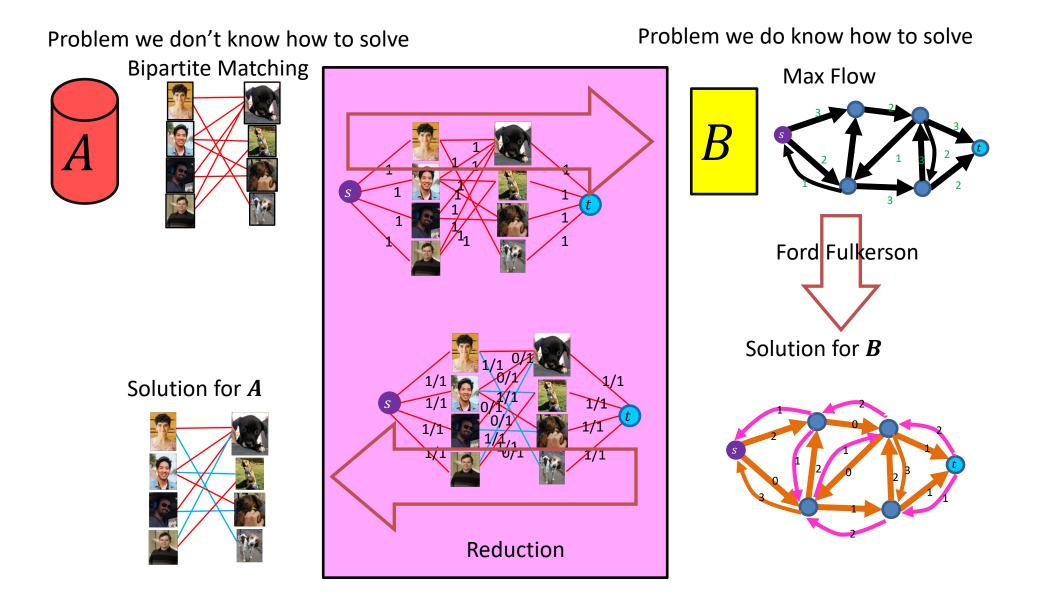
 $- V' = L \cup R \cup \{s, t\}$

- Adding an edge from source to *L* and from *R* to sink:
 - $E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$
- Make each edge capacity 1:
 - $\forall e \in E', c(e) = 1$

Remember: need to show

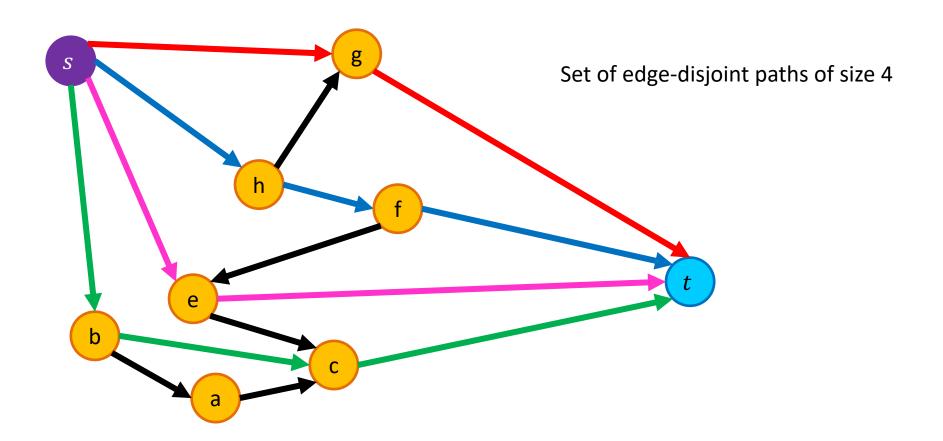
- How to map instance of MBM to MF (and back) - construction
- 2. A valid solution to MF instance is a valid solution to MBM instance

Bipartite Matching Reduction



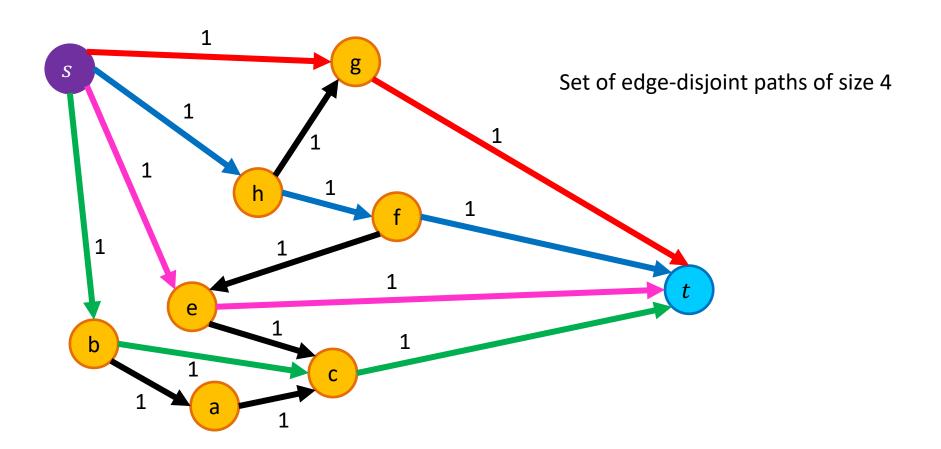
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



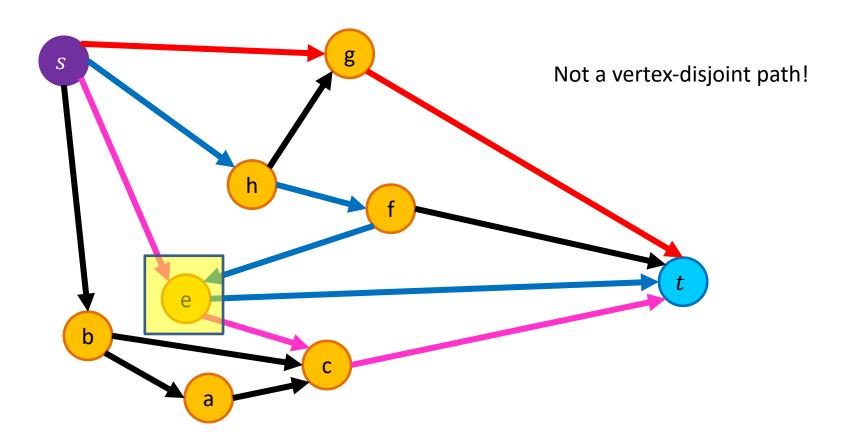
Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.



Vertex-Disjoint Paths

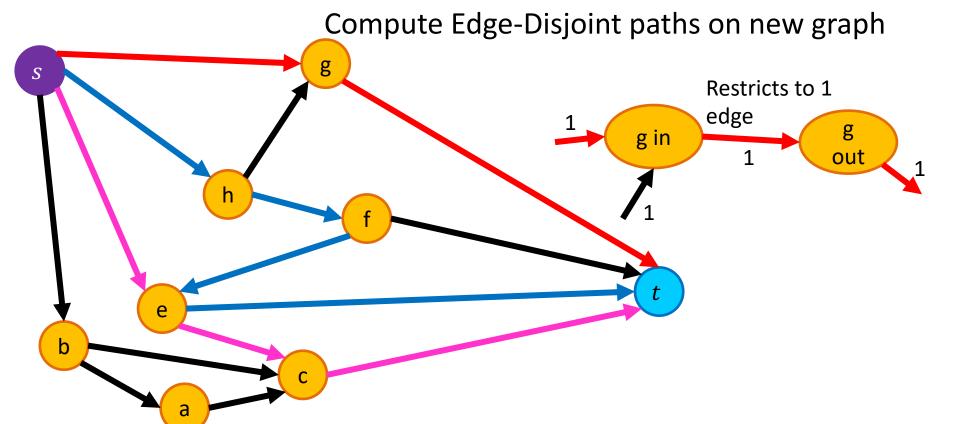
Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices



Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

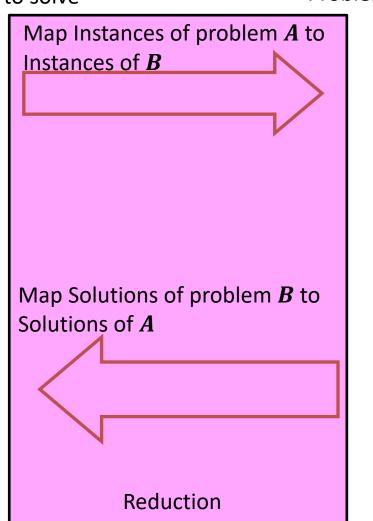


In General: Reduction

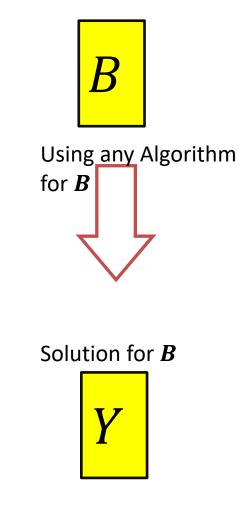
Problem we don't know how to solve

- Remember: need to show
- How to map instance of A to B (and back)
- 2. Why solution to B was a valid solution to A

Solution for A



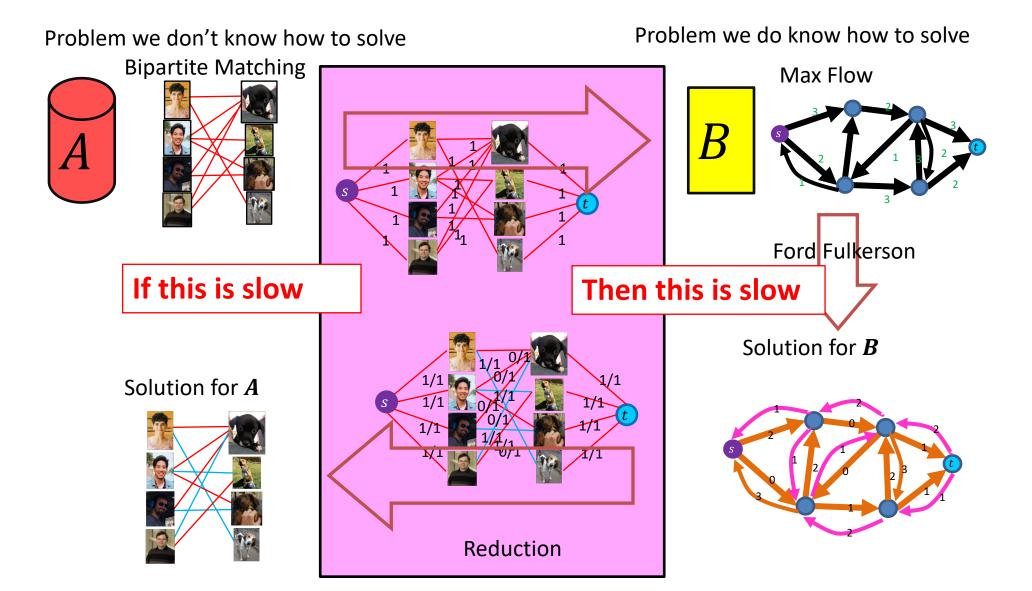
Problem we do know how to solve



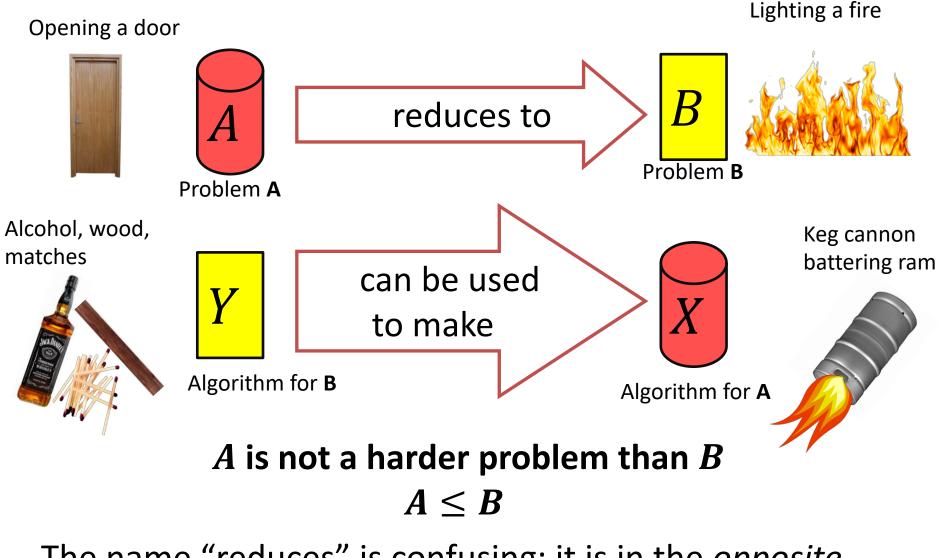
Bipartite Matching Reduction



Bipartite Matching Reduction



Worst-case lower-bound Proofs



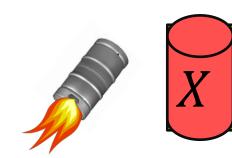
The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow(e.g., X = some way to open the door)

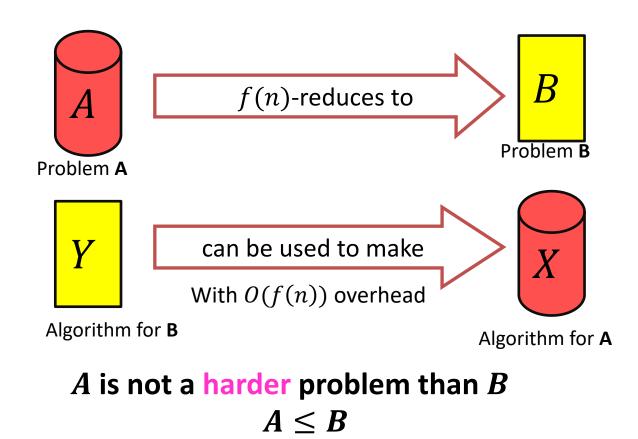
2. Assume Y is quick [toward contradiction](Y = some way to light a fire)



3. Show how to use *Y* to perform *X* quickly

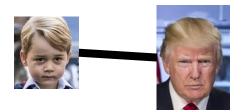
4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick

Reduction Proof Notation

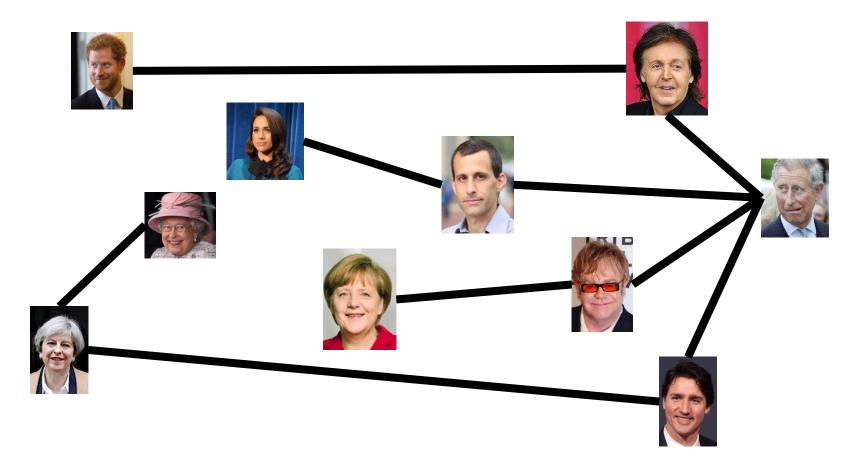


If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

Party Problem



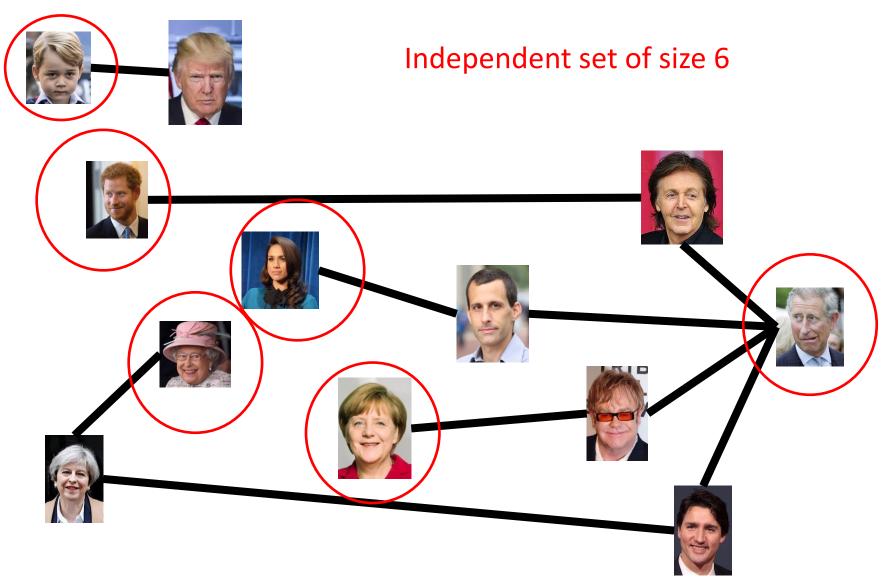
Draw Edges between people who don't get along Find the maximum number of people who get along

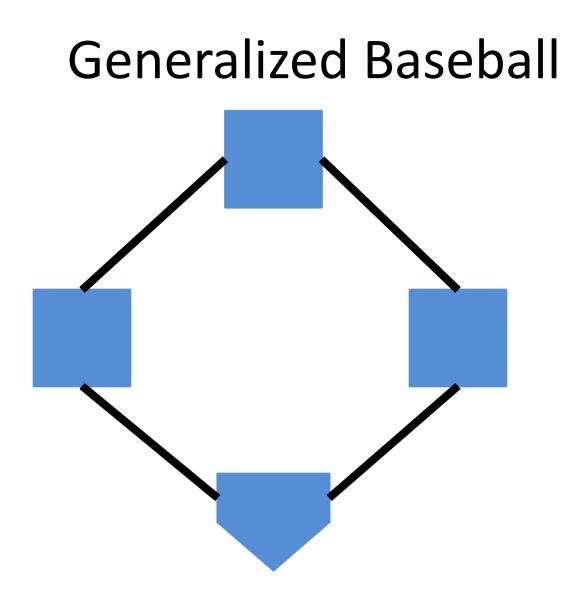


Maximum Independent Set

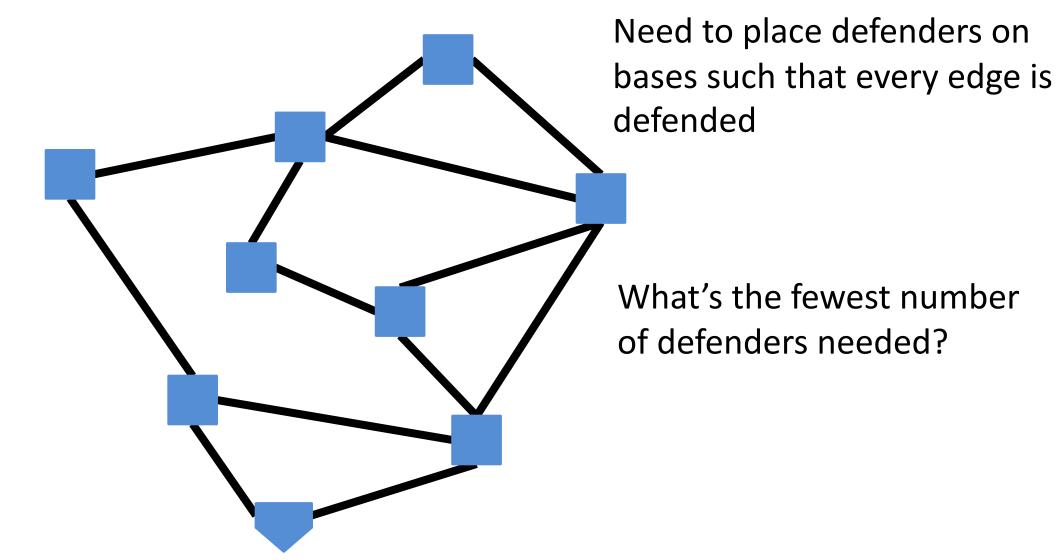
- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

Example



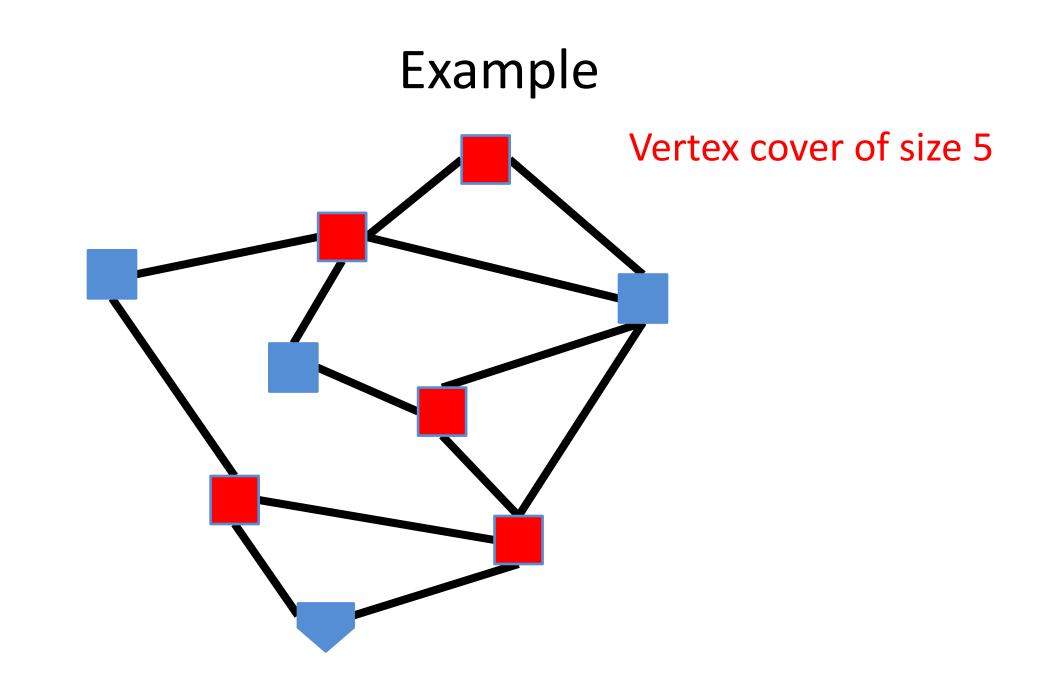


Generalized Baseball

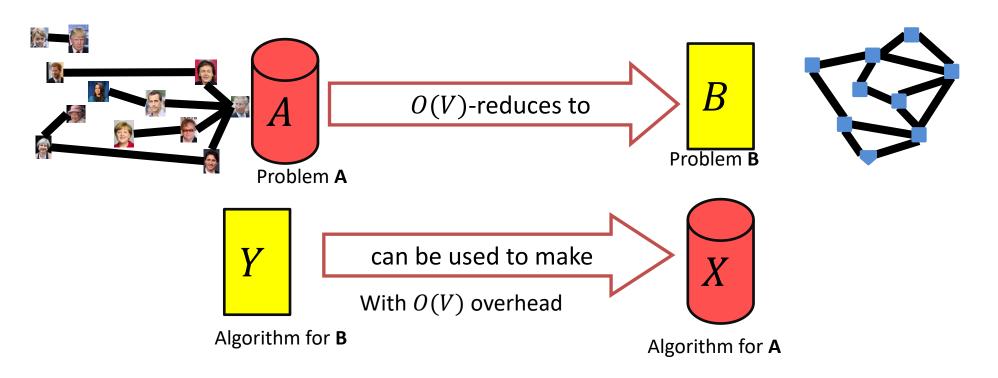


Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

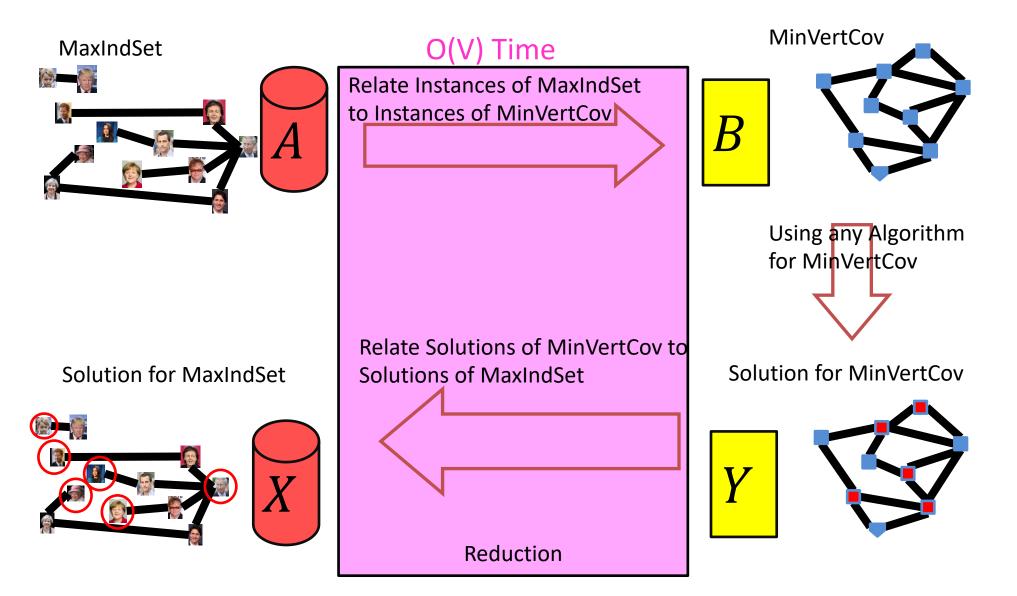


$MaxIndSet \leq_V MinVertCov$



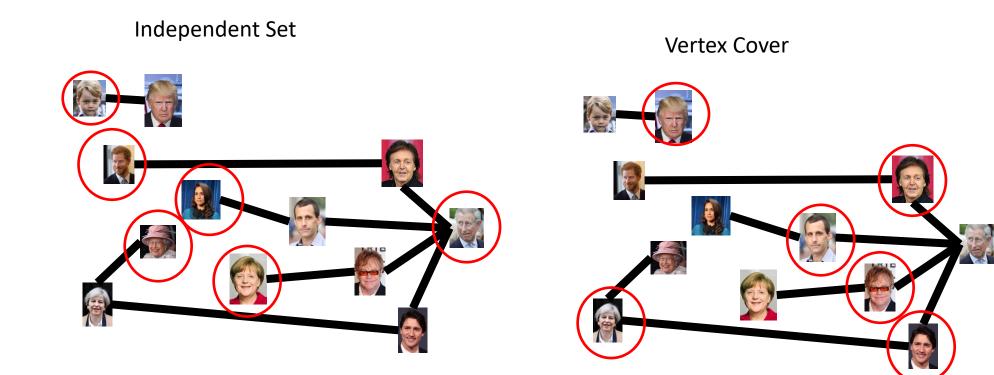
If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction



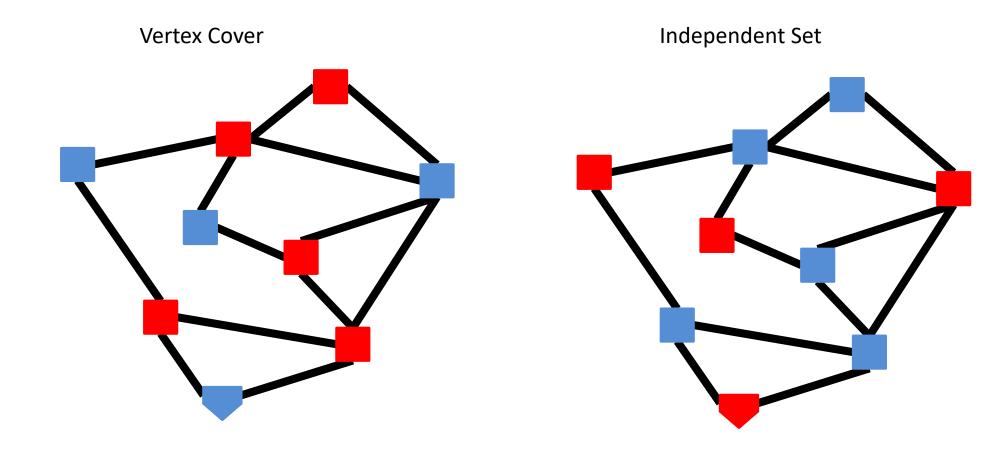
Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

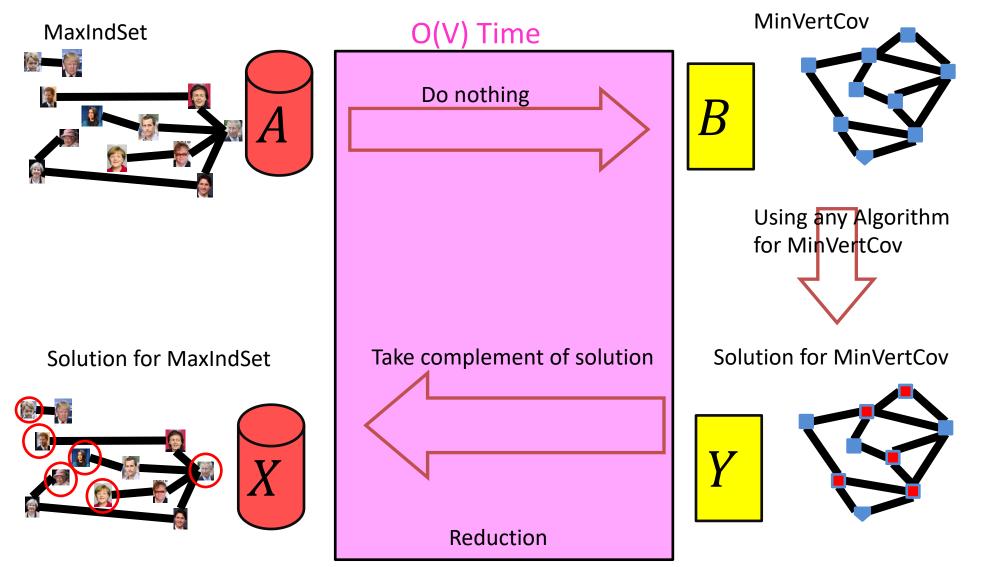


Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G



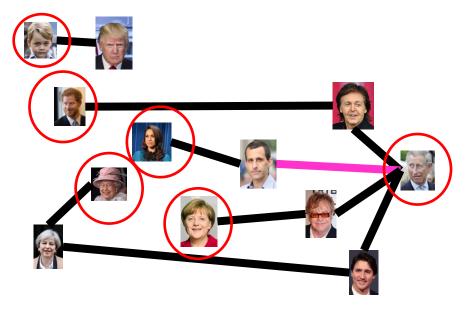
MaxVertCov V-Time Reducible to MinIndSet



$\mathsf{Proof}: \Rightarrow$

S is an independent set of G iff V - S is a vertex cover of G

Let *S* be an independent set



Consider any edge $(x, y) \in E$

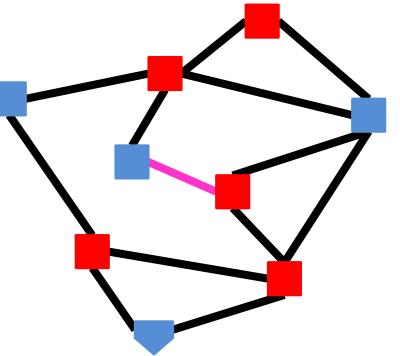
If $x \in S$ then $y \notin S$, because otherwise S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

$\mathsf{Proof:} \Leftarrow$

S is an independent set of G iff V - S is a vertex cover of G

Let V - S be a vertex cover



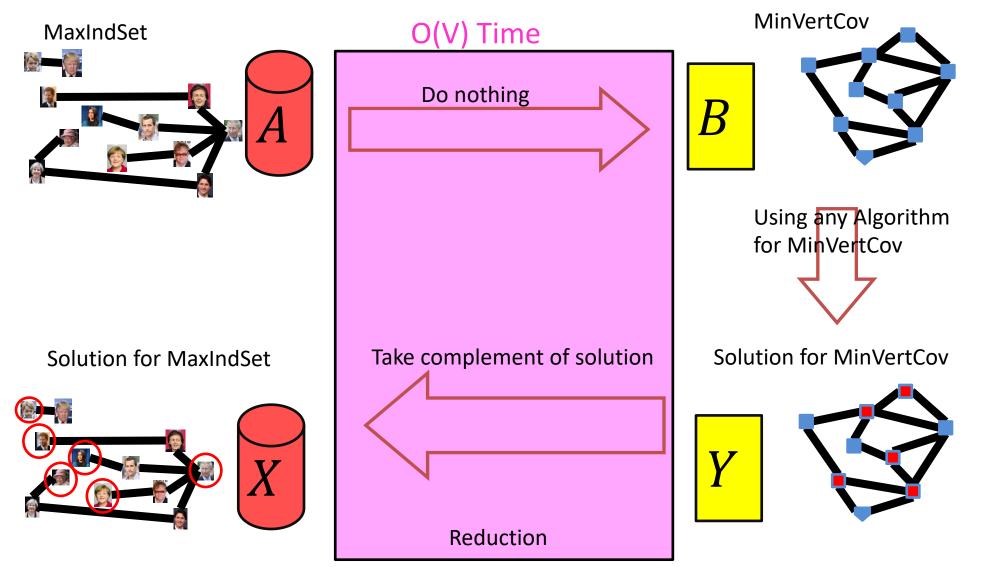
Consider any edge $(x, y) \in E$

At least one of x and y belong to V - S, because V - S is a vertex cover

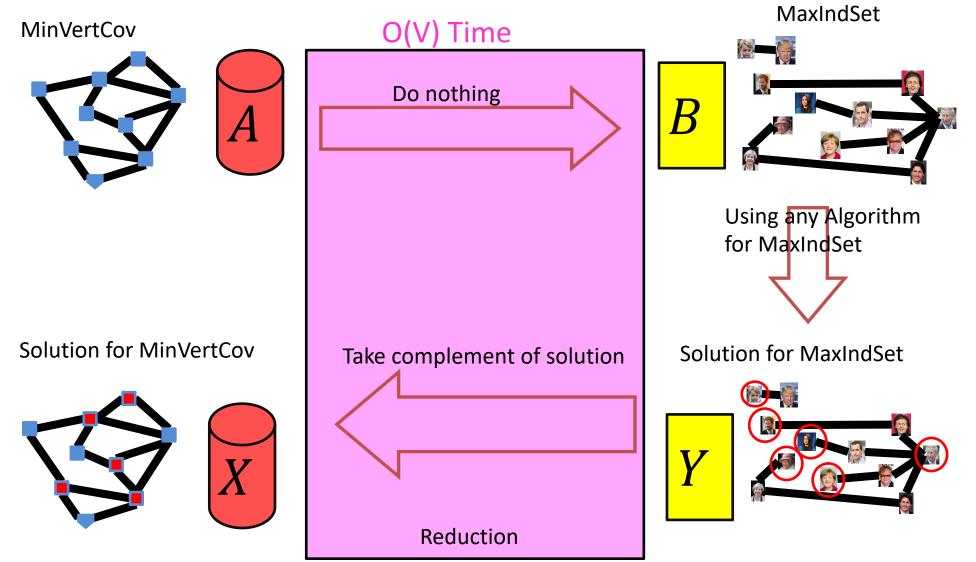
Therefore x and y are not both in S,

No edge has both end-nodes in *S*, thus *S* is an independent set

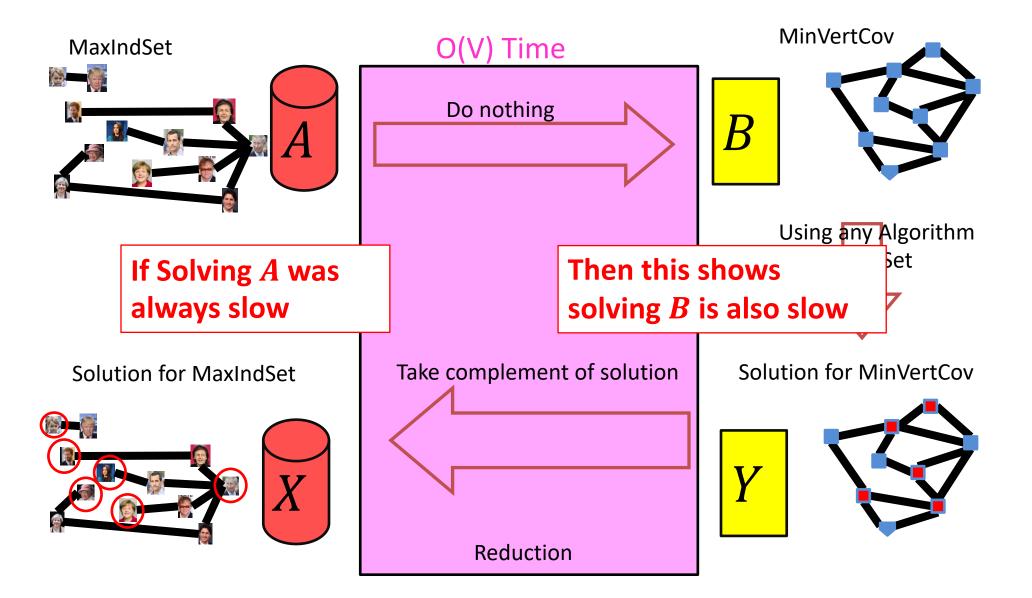
MaxVertCov V-Time Reducible to MinIndSet



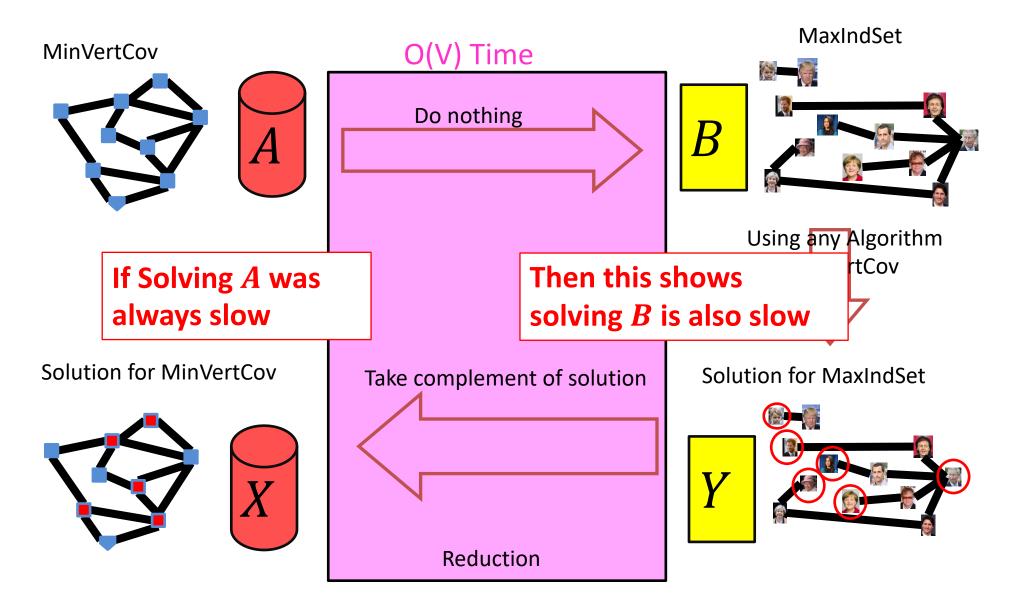
MaxIndSet V-Time Reducible to MinVertCov



Corollary



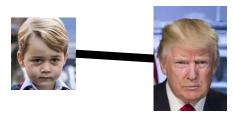
Corollary



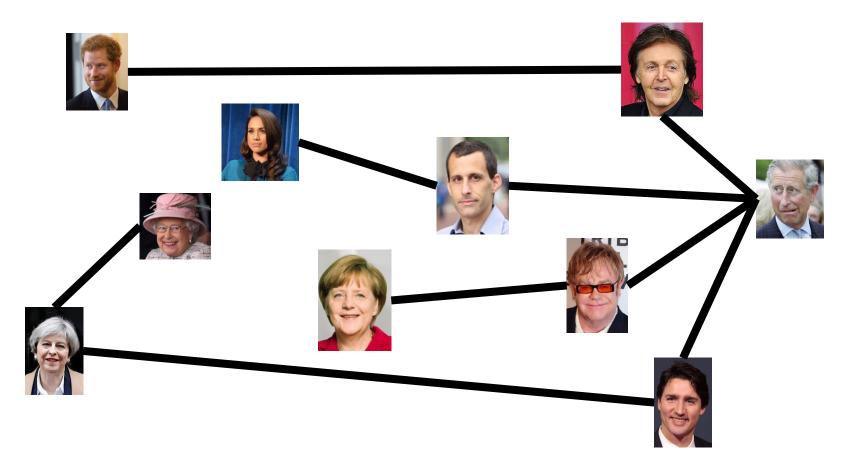
Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete

k Independent Set



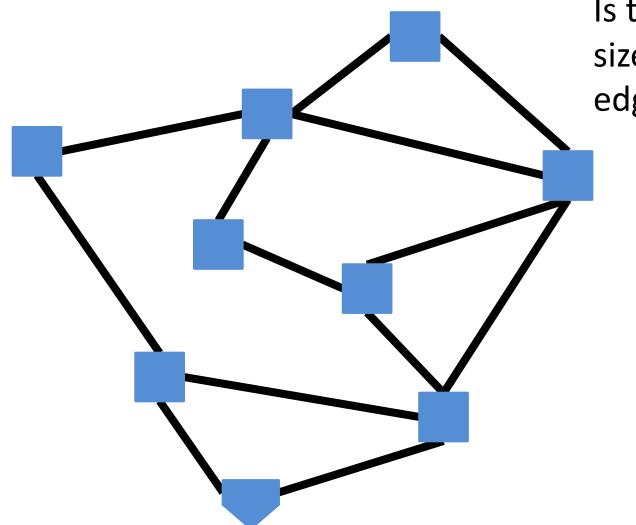
Is there a set of non-adjacent nodes of size k?



k Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

k Vertex Cover



Is there a set of nodes of size k which covers every edge?

k Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph G = (V, E) and a number k,
 determine whether there is a vertex cover C of size k

Problem Types

• Decision Problems:

— Is there a solution?

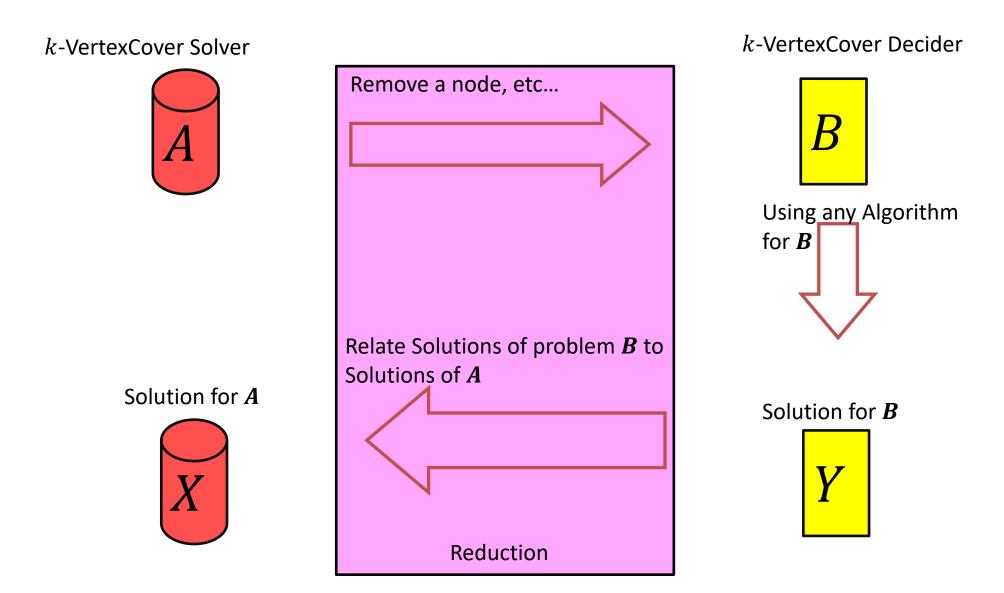
- Output is True/False
- Is there a vertex cover of size k?
- Search Problems:

Then we can solve this

If we can solve this

- Find a solution
 - Output is complex
- Give a vertex cover of size k
- Verification Problems:
 - Given a potential solution, is it valid?
 - Output is True/False
 - Is this a vertex cover of size k?

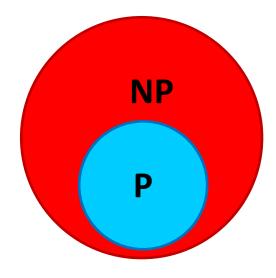
Reduction



P vs NP

• P

- Deterministic Polynomial Time
- Problems solvable in polynomial time
 - $O(n^p)$ for some number p
- NP
 - Non-Deterministic Polynomial Time
 - Problems verifiable in polynomial time
 - $O(n^p)$ for some number p
- Open Problem: Does P=NP?
 - Certainly $P \subseteq NP$



k-Independent Set is NP

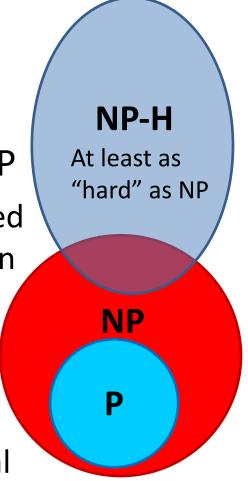
• To show: Given a potential solution, can we **verify** it in $O(n^p)$? [n = V + E]

How can we verify it?

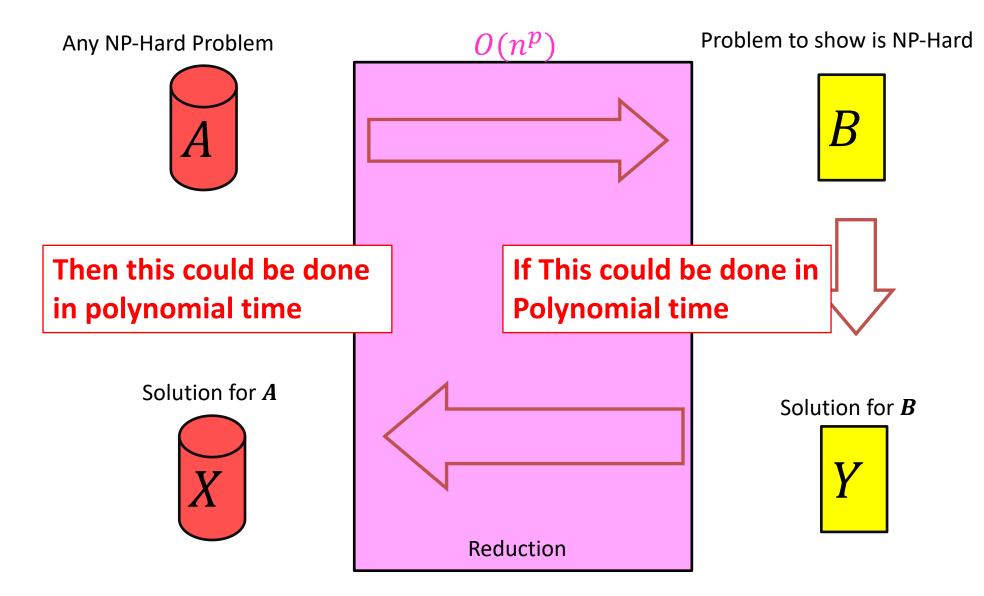
- 1. Check that it's of size k O(V)
- 2. Check that it's an independent set $O(V^2)$

NP-Hard

- How can we try to figure out if P=NP?
- Identify problems at least as "hard" as NP
 - If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
 - -B is NP-Hard if $\forall A \in NP, A \leq_p B$
 - $-A \leq_p B$ means A reduces to B in polynomial time



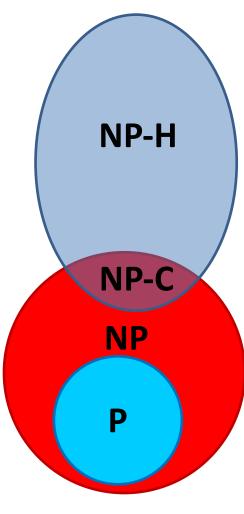
NP-Hardness Reduction



NP-Complete

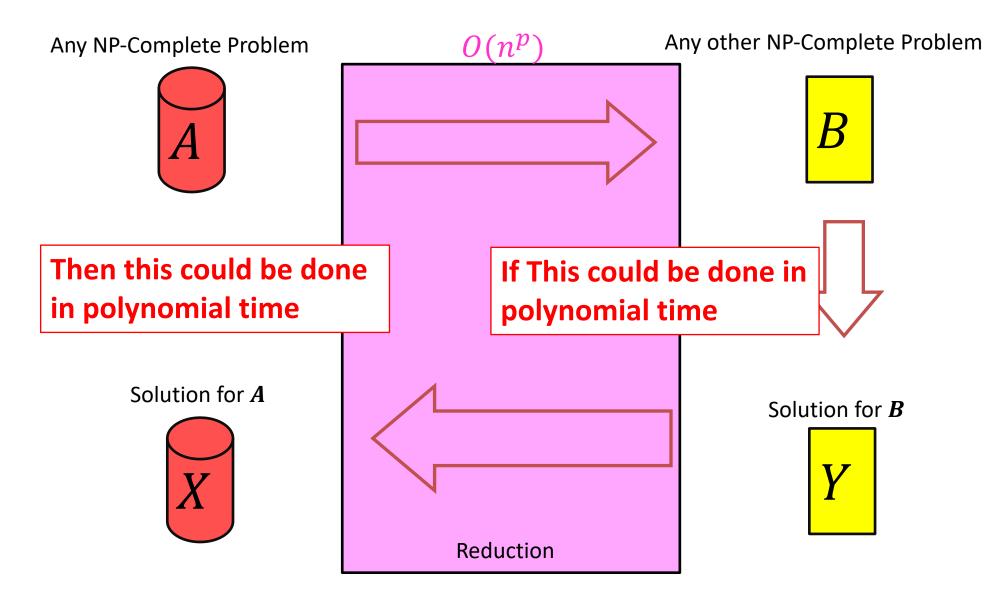
- "Together they stand, together they fall"
- Problems solvable in polynomial time iff ALL NP problems are
- NP-Complete = NP \cap NP-Hard
- How to show a problem is NP-Complete?
 - Show it belongs to NP
 - Give a polynomial time verifier
 - Show it is NP-Hard
 - Give a reduction from another NP-H problem

We now just need a FIRST NP-Hard problem

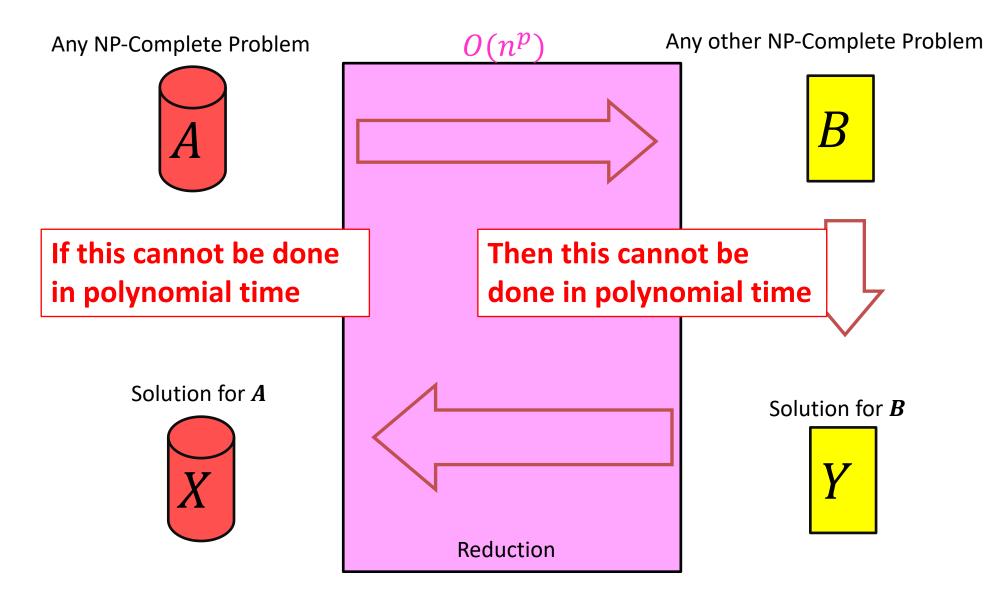


 $A \leq H \leq B$

NP-Completeness



NP-Completeness



3-SAT

- Shown to be NP-Hard by Cook and Levin (independently)
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$
Clause
$$x = true$$

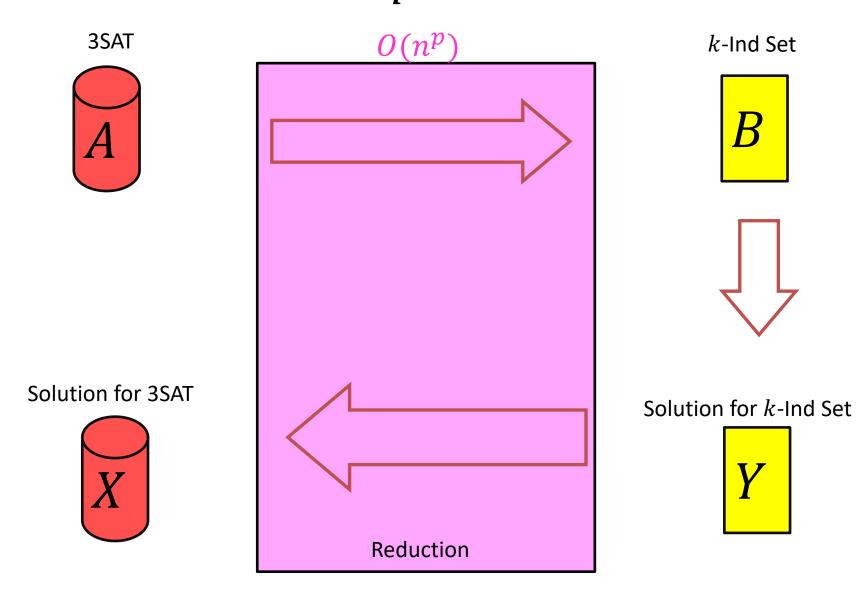
$$y = false$$

$$z = false$$

k-Independent Set is NP-Complete

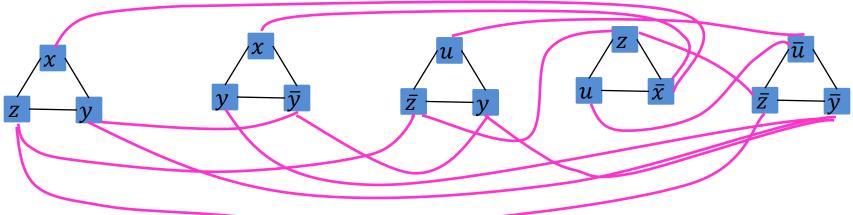
- 1. Show that it belongs to NP
 - Give a polynomial time verifier (slide 56)
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - Show $3SAT \leq_p kIndSet$

 $3SAT \leq_p kIndSet$



Instance of 3SAT to Instance of kIndSet

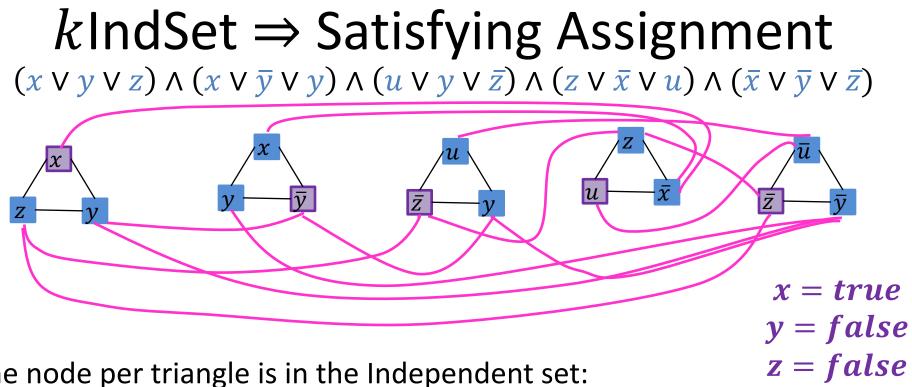
 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$



For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

Let k = number of clauses There is a k-IndSet in this graph, iff there is a satisfying assignment

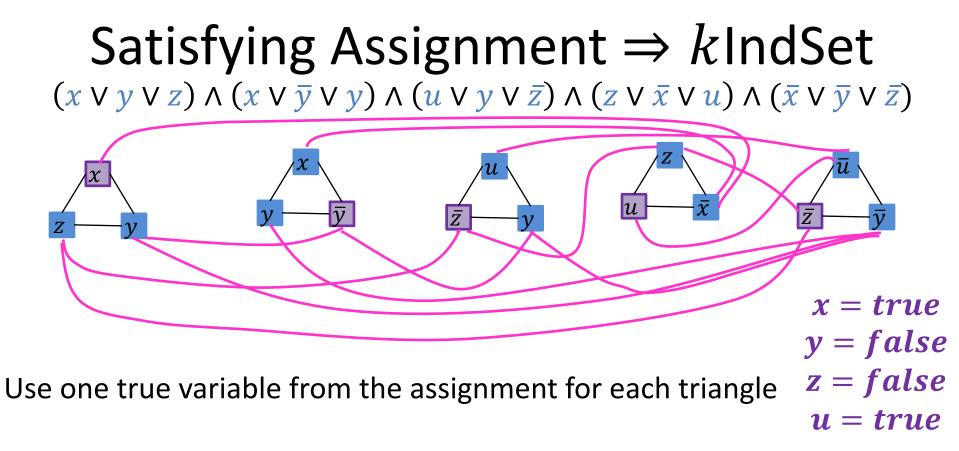


u = true

One node per triangle is in the Independent set: because we can have exactly k total in the set, and 2 in a triangle would be adjacent

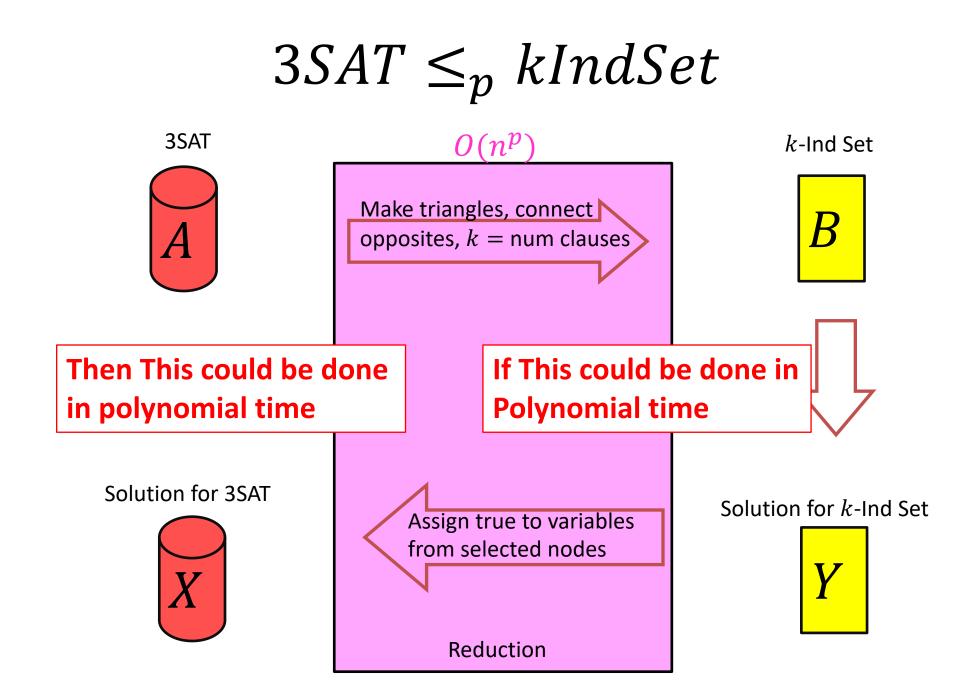
If x is selected in some triangle, \bar{x} is not selected in any triangle: Because every x is adjacent to every \bar{x}

Set the variable which each included node represents to "true"



The independent set has k nodes, because there are k clauses

If any variable x is true then \bar{x} cannot be true



k-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in $O(n^p)$? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's a Vertex Cover O(E)

k-Vertex Cover is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier (slide 69)
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - We showed $kIndSet \leq_p kVertCov$

 $kIndSet \leq_p kVertCov$

