
4/24/19

1

CS4102 Algorithms
Spring 2019

No time for a warm-up today!

Today’s Keywords
• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
• NP-Completeness

2

CLRS Readings
• Chapter 34

3

4/24/19

2

Homeworks, etc
• HW9 due Monday 4/29 Tuesday 4/30 at 11pm
–Written (use LaTeX)
– Reductions

• Final Exam: Saturday, May 4, 2-5pm
– Heavily from material since midterm
• May ask for runtime of an algorithm, some knowledge of D&C
• Won’t directly ask you to solve recurrences

– Practice final online by tomorrow
– Review session?

4

Reductions
• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

5

MacGyver’s Reduction

6

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for !

" #

Keg cannon
battering ram

Solution for $

Aim duct at door,
insert keg

H
ow

?

Put fire under the Keg

Reduction

4/24/19

3

Maximum Bipartite Matching

7

Dog Lovers Dogs

Make ! = ($, &, ') a flow network !) = (*), ')) by:
• Adding in a source and sink to the set of nodes:

– *) = $ ∪ & ∪ {-, .}
• Adding an edge from source to $ and from & to

sink:
– ') = ' ∪ 0 ∈ $ -, 0 } ∪ 2 ∈ 3 2, . }

• Make each edge capacity 1:
– ∀6 ∈ '), 7 6 = 1

Maximum Bipartite Matching Using Max Flow

8

-
.

1

11

1
1

1

1
1 1

1

1

1

1

1

1

1

1

Remember: need to show
1. How to map instance of MBM to

MF (and back) - construction
2. A valid solution to MF instance is a

valid solution to MBM instance

Bipartite Matching Reduction

9

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

4/24/19

4

Edge-Disjoint Paths

10

Given a graph ! = ($,&), a start node (and a
destination node), give the maximum number of paths
from (to) which share no edges

(

)

g

h

b

e

f

a
c

Set of edge-disjoint paths of size 4

Edge-Disjoint Paths Algorithm

11

Make ! and " the source and sink, give each edge
capacity 1, find the max flow.

!

"

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

1

1

1

1

1 1

1
1

1
1

11

1
1

1

Vertex-Disjoint Paths

12

Given a graph ! = ($,&), a start node (and a
destination node), give the maximum number of paths
from (to) which share no vertices

(

)

g

h

b
e

f

a
c

Not a vertex-disjoint path!

4/24/19

5

Vertex-Disjoint Paths Algorithm

13

Idea: Convert an instance of the vertex-disjoint paths problem into an
instance of edge-disjoint paths

!

"

g

h

b

e

f

a
c

g in

Make two copies of each node, one connected to incoming
edges, the other to outgoing edges

g
out

Restricts to 1
edge

Compute Edge-Disjoint paths on new graph

1

1

1 1

In General: Reduction

14

Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to
Instances of !

Using any Algorithm
for !

Map Solutions of problem ! to
Solutions of $

%&

Remember: need to show
1. How to map instance of A to B

(and back)
2. Why solution to B was a valid

solution to A

Bipartite Matching Reduction

15

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1

1/1

Reduction

Then this is fast If this is fast

4/24/19

6

Bipartite Matching Reduction

16

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for !

" #

Solution for $

3

3

3

2

%
&

1

2

1 3 2

2

3

%
&2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

% &

1
11

11
1
111

1
1

1
1

1
1
1
1

% &

0/1
0/1

1/1

1/10/1
0/1

1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1

1/1
1/1

Reduction

If this is slow Then this is slow

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

$

%&

'
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

!

"!

"

To Show: " is slow

4/24/19

7

Reduction Proof Notation

19

!(#)-reduces to

Algorithm for B

can be used to make

Algorithm for A

% is not a harder problem than &
% ≤ &

(

)*

+
Problem A

Problem B

If % requires time ,(- .) time then & also requires ,(- .) time
% ≤-(.) &

With /(! #) overhead

Party Problem

20

Draw Edges between people who don’t get along
Find the maximum number of people who get along

Maximum Independent Set
• Independent set: ! ⊆ # is an independent set if no two nodes

in ! share an edge
• Maximum Independent Set Problem: Given a graph $ = (#,()

find the maximum independent set !

21

4/24/19

8

Example

22

Independent set of size 6

Generalized Baseball

23

Generalized Baseball

24

Need to place defenders on
bases such that every edge is
defended

What’s the fewest number
of defenders needed?

4/24/19

9

Minimum Vertex Cover

• Vertex Cover: ! ⊆ # is a vertex cover if every edge in $ has
one of its endpoints in !

• Minimum Vertex Cover: Given a graph % = (#,$) find the
minimum vertex cover !

25

Example

26

Vertex cover of size 5

MaxIndSet≤"MinVertCov

27

#(%)-reduces to

Algorithm for B

can be used to make

Algorithm for A

'

()

*
Problem A

Problem B

If + requires time ,(- .) time then / also requires ,(- .) time
+ ≤0 /

With #(%) overhead

4/24/19

10

We need to build this Reduction

28

! "

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm
for MinVertCov

Relate Solutions of MinVertCov to
Solutions of MaxIndSet

#$

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction Idea

29

Independent Set
Vertex Cover

! is an independent set of " iff # − ! is a vertex cover of "

Reduction Idea

30

Independent SetVertex Cover

! is an independent set of " iff # − ! is a vertex cover of "

4/24/19

11

MaxVertCov !-Time Reducible to
MinIndSet

31

MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

$%

O(V) Time

Proof: ⇒
" is an independent set of # iff $ − " is a vertex cover of #

32

Let " be an independent set

Consider any edge &, (∈ *
If & ∈ " then (∉ ", because otherwise " would not be an
independent set

Therefore (∈ $ − ", so edge (&, () is covered by $ − "

Proof: ⇐
" is an independent set of # iff $ − " is a vertex cover of #

33

Let V− " be a vertex cover

Consider any edge ',) ∈ +
At least one of ' and) belong to $ − ", because V− " is a
vertex cover
Therefore ' and) are not both in ",
No edge has both end-nodes in ", thus " is an independent set

4/24/19

12

MaxVertCov !-Time Reducible to
MinIndSet

34

MaxIndSet MinVertCov

Solution for MinVertCov

" #

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

$%

O(V) Time

MaxIndSet !-Time Reducible to
MinVertCov

35

" #

Reduction

Do nothing

Take complement of solution

$%

O(V) Time

Using any Algorithm
for MaxIndSet

MaxIndSetMinVertCov

Solution for MinVertCov Solution for MaxIndSet

Corollary

36

! "

Reduction

Do nothing

Using any Algorithm
for MinIndSet

Take complement of solution

#$

O(V) Time

If Solving %was
always slow

Then this shows
solving & is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

4/24/19

13

Corollary

37

! "

Reduction

Do nothing

Take complement of solution

#$

O(V) Time

Using any Algorithm
for MaxVertCovIf Solving %was

always slow
Then this shows
solving & is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete

38

! Independent Set

41

Is there a set of non-adjacent nodes of size !?

4/24/19

14

! Independent Set

• Independent set: " ⊆ $ is an independent set if no two nodes
in " share an edge

• ! Independent Set Problem: Given a graph % = ($,)) and a
number !, determine whether there is an independent set +
of size ,

43

! Vertex Cover

45

Is there a set of nodes of
size ! which covers every
edge?

! Vertex Cover
• Vertex Cover: " ⊆ $ is a vertex cover if every edge in % has

one of its endpoints in "
• ! Vertex Cover: Given a graph & = ($,%) and a number !,

determine whether there is a vertex cover + of size ,

47

4/24/19

15

Problem Types
• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size !?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size !

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size !?

48

If we can solve this

Then we can solve this

Reduction

54

!-VertexCover Solver !-VertexCover Decider

Solution for "

$

Solution for %

Reduction

Remove a node, etc…

Using any Algorithm
for "

Relate Solutions of problem " to
Solutions of %

&'

P vs NP
• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• !(#$) for some number &
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• !(#$) for some number &
• Open Problem: Does P=NP?
– Certainly ' ⊆)'

55

P

NP

4/24/19

16

!-Independent Set is NP

• To show: Given a potential solution, can we
verify it in "($%)? [$ =) ++]

56

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s an independent set "()-)

NP-Hard
• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved

in polynomial time, then all NP problems can
be solved in polynomial time.

• Definition: NP-Hard:
– ! is NP-Hard if ∀# ∈ %&, # ≤) !
– # ≤) ! means # reduces to ! in polynomial

time

57

P

NP

NP-H
At least as
“hard” as NP

NP-Hardness Reduction

58

Any NP-Hard Problem Problem to show is NP-Hard

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

4/24/19

17

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier
– Show it is NP-Hard

• Give a reduction from another NP-H problem

59

P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem

NP-Completeness

60

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
polynomial time

NP-Completeness

61

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this cannot be
done in polynomial time

If this cannot be done
in polynomial time

4/24/19

18

3-SAT

• Shown to be NP-Hard by Cook and Levin
(independently)

• Given a 3-CNF formula (logical AND of clauses,
each an OR of 3 variables), Is there an
assignment of true/false to each variable to
make the formula true?

62

! ∨ # ∨ $ ∧ ! ∨ # ∨ # ∧ & ∨ # ∨ $ ∧ $ ∨ ! ∨ & ∧ (! ∨ # ∨ $)
Clause

Variables

) = +,-.
/ = 0123.
4 = 0123.
- = +,-.

!-Independent Set is NP-Complete
1. Show that it belongs to NP
– Give a polynomial time verifier (slide 56)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3#$% ≤' !()*#+,

63

3"#$ ≤& '()*"+,

64

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)

4/24/19

19

Instance of 3SAT to Instance of !IndSet

65

" ∨ $ ∨ % ∧ " ∨ $ ∨ $ ∧ ' ∨ $ ∨ % ∧ % ∨ " ∨ ' ∧ (" ∨ $ ∨ %)

"

$%

"

$$

'

$%

%

"'
'

$%

For each clause, produce a triangle graph with its three variables as nodes
Connect each node to all of its opposites

There is a !-IndSet in this graph, iff there
is a satisfying assignment

Let ! = number of clauses

!IndSet⇒ Satisfying Assignment

66

∨ % ∨ & ∧ # ∨ % ∨ % ∧ (∨ % ∨ & ∧ & ∨ # ∨ (∧ (# ∨ % ∨ &)

One node per triangle is in the Independent set:
because we can have exactly ! total in the set,
and 2 in a triangle would be adjacent

#

%&

#

%%
(

%&

&

#(
(

%&

If # is selected in some triangle, # is not selected in any triangle:
Because every # is adjacent to every #
Set the variable which each included node represents to “true”

+ = -./0
1 = 23450
6 = 23450
/ = -./0

Satisfying Assignment ⇒ "IndSet

67

∨ % ∨ & ∧ # ∨ % ∨ % ∧ (∨ % ∨ & ∧ & ∨ # ∨ (∧ (# ∨ % ∨ &)

Use one true variable from the assignment for each triangle

The independent set has " nodes, because there are " clauses

If any variable # is true then # cannot be true

#

%&

#

%%
(

%&

&

#(
(

%&

+ = -./0
1 = 23450
6 = 23450
/ = -./0

4/24/19

20

3"#$ ≤& '()*"+,

68

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)
Make triangles, connect
opposites, ' = num clauses

Assign true to variables
from selected nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

!-Vertex Cover is NP
• To show: Given a potential solution, can we

verify it in "($%)? [$ =) ++]

69

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s a Vertex Cover "(+)

!-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (slide 69)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed !"#$%&' ≤) !*&+',-.

70

4/24/19

21

!"#$%&' ≤) !*&+',-.

71

!"#$%&' !*&+',-.

Solution for !*&+',-.

/ 0

Solution for !"#$%&'

Reduction

12

3(#))

! = * − !

Take Complement of
nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

