
Warm up:
Pick up a slip of paper from the front

Take out a coin
(Pennies up front if you need one)

(please return them at end)
Think of embarrassing yes/no questions to ask me

CS4102 Algorithms
Spring 2019

Today’s Keywords

• Reductions
• NP-Completeness
• Vertex Cover
• Independent Set
• 3-SAT
• Clique
• Differential Privacy

2

CLRS Readings

• Chapter 34

3

Homeworks, etc

• HW9 due tomorrow at 11pm
– Written (use LaTeX)
– Reductions

• Final Exam: Saturday, May 4, 2-5pm
– Heavily from material since midterm

• May ask for runtime of an algorithm, some knowledge of D&C
• Won’t directly ask you to solve recurrences

– Practice final online by tomorrow
– Review session: Wednesday, 4pm, MEC 205

• Office Hours: Tomorrow 11am-1pm, Wed 11am-12pm

4

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

5

In General: Reduction

6

Problem we don’t know how to solve Problem we do know how to solve

Solution for !

" #

Solution for $

Reduction

Map Instances of problem $ to
Instances of !

Using any Algorithm
for !

Map Solutions of problem ! to
Solutions of $

%&

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite
direction of the making

! is not a harder problem than "
! ≤ "

Opening a door
Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

$

%&

'
Problem A

Problem B

Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

!

"!

"

To Show: " is slow

Max Independent Set

9

Find the largest set of non-adjacent nodes

! Independent Set

10

Is there a set of non-adjacent nodes of size !?

Maximum Independent Set

• Independent set: ! ⊆ # is an independent set if no two nodes
in ! share an edge

• Maximum Independent Set Problem: Given a graph $ = (#, ()
find the maximum independent set !

11

! Independent Set

• Independent set: " ⊆ $ is an independent set if no two nodes
in " share an edge

• ! Independent Set Problem: Given a graph % = ($,)) and a
number !, determine whether there is an independent set +
of size ,

12

Min Vertex Cover

13

Find the smallest set of nodes
which covers every edge

! Vertex Cover

14

Is there a set of nodes of size !
which covers every edge?

Minimum Vertex Cover

• Vertex Cover: ! ⊆ # is a vertex cover if every edge in $ has
one of its endpoints in !

• Minimum Vertex Cover: Given a graph % = (#, $) find the
minimum vertex cover !

15

! Vertex Cover

• Vertex Cover: " ⊆ $ is a vertex cover if every edge in % has
one of its endpoints in "

• ! Vertex Cover: Given a graph & = ($, %) and a number !,
determine whether there is a vertex cover + of size ,

16

Problem Types
• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size !?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size !

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size !?

17

If we can solve this

Then we can solve this

Using a !-VertexCover decider to build a searcher

• Set " = ! − 1
• Remove nodes (and incident edges) one at a time
• Check if there is a vertex cover of size "
– If so, then that removed node was part of the ! vertex cover, set " =
" − 1

– Else, it wasn’t

18

5 Vertex Cover (Decision)

19

Is there a set of nodes of size 5
which covers every edge?

Yes!

4 Vertex Cover (Decision)

20

Is there a set of nodes of size 4
which covers every edge?

No!

4 Vertex Cover (Decision)

21

Is there a set of nodes of size 4
which covers every edge?

No!

4 Vertex Cover (Decision)

22

Is there a set of nodes of size 4
which covers every edge?

Yes!

3 Vertex Cover (Decision)

23

Is there a set of nodes of size 3
which covers every edge?

No!

Reduction

24

!-VertexCover Solver !-VertexCover Decider

Solution for "

$

Solution for %

Reduction

Remove a node, etc…

Using any Algorithm
for "

Relate Solutions of problem " to
Solutions of %

&'

P vs NP
• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• !(#$) for some number &
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• !(#$) for some number &
• Open Problem: Does P=NP?
– Certainly ' ⊆)'

25

P

NP

!-Independent Set is NP

• To show: Given a potential solution, can we
verify it in "($%)? [$ =) + +]

26

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s an independent set "()-)

!-Vertex Cover is NP

• To show: Given a potential solution, can we
verify it in "($%)? [$ =) + +]

27

How can we verify it?
1. Check that it’s of size ! "())
2. Check that it’s a Vertex Cover "(+)

NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved

in polynomial time, then all NP problems can
be solved in polynomial time.

• Definition: NP-Hard:
– ! is NP-Hard if ∀# ∈ %&, # ≤) !
– # ≤) ! means # reduces to ! in polynomial

time

28

P

NP

NP-H
At least as
“hard” as NP

NP-Hardness Reduction

29

Any NP Problem Problem to show is NP-Hard

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier
– Show it is NP-Hard

• Give a reduction from another NP-H problem

30

P

NP

NP-H

NP-C

NP-Completeness

31

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

NP-Completeness

32

Any NP-Complete Problem Any other NP-Complete Problem

Solution for !

" #

Solution for $

Reduction

%&

'()*)

Then this cannot be
done in polynomial time

If this cannot be done
in polynomial time

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier
– Show it is NP-Hard

• Give a reduction from another NP-H problem

33

P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem

3-SAT

• Shown to be NP-Hard by Cook and Levin
(independently)

• Given a 3-CNF formula (logical AND of clauses,
each an OR of 3 variables), Is there an
assignment of true/false to each variable to
make the formula true?

34

! ∨ # ∨ $ ∧ ! ∨ &# ∨ # ∧ ' ∨ # ∨ ̅$ ∧ $ ∨ !̅ ∨ ' ∧ (!̅ ∨ &# ∨ ̅$)
Clause

Variables
+ = -./0
1 = 23450
6 = 23450
/ = -./0

!-Independent Set is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (see earlier slide)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3#$% ≤' !()*#+,

35

3"#$ ≤& '()*"+,

36

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)

Instance of 3SAT to Instance of !IndSet

37

" ∨ $ ∨ % ∧ " ∨ '$ ∨ $ ∧ (∨ $ ∨ ̅% ∧ % ∨ "̅ ∨ (∧ ('(∨ '$ ∨ ̅%)

"

$%

"

'$$
(

$̅%

%

"̅(
'(

'$̅%

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

There is a !-IndSet in this graph iff there is a satisfying assignment

Let ! = number of clauses

!IndSet ⇒ Satisfying Assignment

38

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (() ∨ (% ∨ ̅&)

One node per triangle is in the Independent set:
because we can have exactly ! total in the set,
and 2 in a triangle would be adjacent

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

If # is selected in some triangle, #̅ is not selected in any triangle:
Because every # is adjacent to every #̅
Set the variable which each included node represents to “true”

- = /012
3 = 45672
8 = 45672
1 = /012

Satisfying Assignment ⇒ "IndSet

39

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (() ∨ (% ∨ ̅&)

Use one true variable from the assignment for each triangle

The independent set has " nodes, because there are " clauses

If any variable # is true then #̅ cannot be true

#

%&

#

(%%
)

%̅&

&

#̅)
()

(%̅&

- = /012
3 = 45672
8 = 45672
1 = /012

3"#$ ≤& '()*"+,

40

3SAT '-Ind Set

Solution for '-Ind Set

-

Solution for 3SAT

Reduction

./

0()&)
Make triangles, connect
opposites, ' = num clauses

Assign true to variables
from selected nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

!-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier (see earlier slide)

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed !"#$%&' ≤) !*&+',-.
• (Last Class)

41

!"#$%&' ≤) !*&+',-.

42

!"#$%&' !*&+',-.

Solution for !*&+',-.

/ 0

Solution for !"#$%&'

Reduction

12

3(#))

! = * − !

Take Complement of
nodes

Then This could be done
in polynomial time

If This could be done in
Polynomial time

!-Clique Problem

• Clique: A complete
subgraph

• !-Clique Problem:
– Given a graph " and a

number !, is there a clique
of size !?

43

3-Clique

4-Clique

!-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3#$% ≤' !()*+,-

44

!-Clique is NP

1. Given a Graph and a potential solution
2. Check that the solution has ! nodes
3. Check that every pair of nodes share an edge

45

3-Clique

4-Clique

3"#$ ≤& '()*+,-

46

3"#$ '()*+,-

Solution for '()*+,-

.

Solution for 3"#$

Reduction

/0

1(3&)

Instance of 3SAT to Instance of !Clique

47

"

#
$

" %##

&# ̅$

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

(also do this for the other
clauses, omitted due to clutter)

There is a !-Clique in this graph iff there is a satisfying assignment

Let ! = number of clauses

" ∨ # ∨ $ ∧ " ∨ %# ∨ # ∧ & ∨ # ∨ ̅$ ∧ $ ∨ "̅ ∨ & ∧ ("̅ ∨ %# ∨ ̅$)

$
"̅

&

%& %#
̅$

!Clique ⇒ Satisfying Assignment

48

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (#̅ ∨ (% ∨ ̅&)

There are ! triplets in the graph, and no two nodes in the same triplet
are adjacent

- = /012
3 = 45672
8 = 45672
1 = /012

#

%
&

(%%

)% ̅&

&
#̅

)

() (%
̅&

To have a !-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

Satisfying Assignment⇒ "Clique

49

∨ % ∨ & ∧ # ∨ (% ∨ % ∧) ∨ % ∨ ̅& ∧ & ∨ #̅ ∨) ∧ (#̅ ∨ (% ∨ ̅&)

Select one node for a true variable from each clause

- = /012
3 = 45672
8 = 45672
1 = /012

#

%
&

(%%

)% ̅&

&
#̅

)

() (%
̅&

There will be " nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

3"#$ ≤& '()*+,-

50

3"#$

.

Solution for 3"#$

Reduction

/0

1(3&)
Make a triplet per clause,
connect non-contraditcory
nodes among clauses

Assign each variable
selected to True

'()*+,-

Solution for '()*+,-

Then This could be done
in polynomial time

If This could be done in
Polynomial time

Academic Integrity

Differential Privacy

51

52

Differential Privacy

• Gives a way to probabilistically answer questions about data
without giving away its content

• You can get statistical certainty on the answer
• We’re going to use a simple example

53

Scheme

• Flip a coin:
– If Heads, respond “yes”
– If Tails, truthfully answer an embarrassing question:

• Questions

54

How does it work
• Assume everyone participates honestly
• We know 50% of “yes” answers were from the coin landing heads
– If 100 people participate, eliminate 50 “yes” responses
– Proportion of “yes” answers given by remaining “yes” answers over 50

• Consider a person who answers “no”
– We know this person didn’t cheat

• Consider a person who answers “yes”
– Most people who answered “yes” only did so because the coin landed

heads
– It’s still more likely that this person did not cheat

55

Example: How many people have streaked the
lawn?

• Flip a coin:
– If Heads, respond “yes”
– If Tails, truthfully answer an embarrassing question:
• Have you ever streaked the lawn?

– On the slip of paper, put a 1 in column 1, put a 1 in column 2 if you answered yes (else a
0 in column 2)

– Pass the slip to your left

56

Does P=NP?

57

When Will P=NP be resolved?

58

Notable Statements on P vs NP

59

Suggested rephrased question:

