2 ~ Warm up: ’
ick up é‘s_llﬁzjf paper from the front
| Takeoutacoin

(please return them at end)

77

5, Q—:JT(E/)]
o //

rassing yes/no questions to ask L5 —

Today’s Keywords

Reductions
NP-Completeness
Vertex Cover
Independent Set
3-SAT

Clique

Differential Privacy

CLRS Readings

Chapter 34

4/29/19

Homeworks, etc

* HW9 due tomorrow at 11pm
— Written (use LaTeX)
— Reductions
* Final Exam: Saturday, May 4, 2-5pm

— Heavily from material since midterm
* May ask for runtime of an algorithm, some knowledge of D&C
+ Won’t directly ask you to solve recurrences

— Practice final online by tomorrow

— Review session: Wednesday, 4pm, MEC 205

« Office Hours: Tomorrow 11am-1pm, Wed 11am-12pm

4/29/19

Reductions

* Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

In General: Reduction

Problem we don’t know how to solve Problem we do know how to solve

Map Instances of problem 4 to
e ters : E

Using any Algorithm
for B

Map Solutions of problem B to
Solutions of A
Solution for A

Solution for B

Reduction

Worst-case lower-bound Proofs

Lighting a fire
Opening a door enting

e
reduces to il {‘MJ %

wa\em B
Problem A

Alcohol, wood,
matches

i\ Algorithm for B

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite

Keg cannon
battering ram

can be used
to make

Algunmm for A

4/29/19

Proof of Lower Bound by Reduction

1. We know X is slow
(e.g., X = some way to open the door)
2. Assume Y'is quick [toward contradiction]
Y (Y = some way to light a fire)
‘ﬂ. -

ﬁ . 3. Show how to use Y to perform X quickly

4. Xis slow, but Y could be used to perform X quickly
conclusion: ¥ must not actually be quick

Max Independent Set

N ‘_ﬁ Find the largest set of non-adjacent nodes

4/29/19

k Independent Set

. = .)
i&_ﬁ Is there a set of non-adjacent nodes of size k?
)4

Maximum Independent Set

* Independent set: S € V is an independent set if no two nodes
in S share an edge

* Maximum Independent Set Problem: Given a graph G = (V, E)
find the maximum independent set S

k Independent Set

* Independent set: S € V is an independent set if no two nodes
in S share an edge

* k Independent Set Problem: Given a graph G = (V,E) and a
number k, determine whether there is an independent set S
of size k

Min Vertex Cover

Find the smallest set of nodes
which covers every edge

4/29/19

k Vertex Cover

Is there a set of nodes of size k
which covers every edge?

Minimum Vertex Cover
* Vertex Cover: C € V is a vertex cover if every edge in E has
one of its endpoints in C

* Minimum Vertex Cover: Given a graph G = (V, E) find the
minimum vertex cover C

k Vertex Cover

* Vertex Cover: C € V is a vertex cover if every edge in E has
one of its endpoints in C

* k Vertex Cover: Given a graph G = (V, E) and a number k,
determine whether there is a vertex cover C of size k

4/29/19

Problem Types

.

Decision Problems: If we can solve this

— Is there a solution?
* Output is True/False

— Is there a vertex cover of size k?
Search Problems: Then we can solve this
— Find a solution
+ Output is complex
— Give a vertex cover of size k
Verification Problems:
— Given a potential solution, is it valid?
* Output is True/False
— Is this a vertex cover of size k?

.

.

Using a k-VertexCover decider to build a searcher

Seti=k—1
Remove nodes (and incident edges) one at a time
Check if there is a vertex cover of size i

— If so, then that removed node was part of the k vertex cover, set i =
i—-1
— Else, it wasn’t

5 Vertex Cover (Decision)

Is there a set of nodes of size 5

which covers every edge?
Yes!

4/29/19

4 Vertex Cover (Decision)

Is there a set of nodes of size 4

which covers every edge?
No!

4 Vertex Cover (Decision)

Is there a set of nodes of size 4
which covers every edge?

‘ Nol

4/29/19

4 Vertex Cover (Decision)

Is there a set of nodes of size 4

which covers every edge?
A « Yes!

3 Vertex Cover (Decision)
Is there a set of nodes of size 3
® which covers every edge?

* Nol

Reduction

k-VertexCover Solver k-VertexCover Decider

Remove a node, etc...
Using any Algorithm
for @

Solution for B

Relate Solutions of problem B to
Solutions of A

Solution for A

Reduction

P vs NP

* P
— Deterministic Polynomial Time
— Problems solvable in polynomial time
* 0(nP) for some number p
* NP
— Non-Deterministic Polynomial Time
— Problems verifiable in polynomial time
* 0(nP) for some number p
* Open Problem: Does P=NP?
— Certainly P € NP

4/29/19

k-Independent Set is NP

* To show: Given a potential solution, can we
verify itin O(nP)? [n =V + E]
How can we verify it?
1. Check that it’s of size k O (V)
2. Check that it’s an independent set 0(V?2)

k-Vertex Cover is NP

 To show: Given a potential solution, can we
verify itin O(nP)? [n =V + E]

How can we verify it?
1. Check that it’s of size k O(V)
2. Check that it’s a Vertex Cover O(E)

NP-Hard

How can we try to figure out if P=NP?

Identify problems at least as “hard” as NP

— If any of these “hard” problems can be solved
in polynomial time, then all NP problems can
be solved in polynomial time.

Definition: NP-Hard:

— BisNP-HardifVA € NP,A<, B

— A <, B means A reduces to B in polynomial
time

4/29/19

NP-Hardness Reduction

Any NP Problem 0(nP) Problem to show is NP-Hard

—>

If This could be done in

Polynomial time

Then this could be done
in polynomial time

Solution for 4 <: Solution for B

Reduction

NP-Complete

“Together they stand, together they fall”

Problems solvable in polynomial time iff
ALL NP problems are

NP-Complete = NP N NP-Hard

How to show a problem is NP-Complete?
— Show it belongs to NP

+ Give a polynomial time verifier
— Show it is NP-Hard

+ Give a reduction from another NP-H problem

10

NP-Completeness

Any NP-Complete Problem 0(n?) Any other NP-Complete Problem

—>

Then this could be done
in polynomial time

If This could be done in
Polynomial time

I
Solution for A Solution for B

Reduction

4/29/19

NP-Completeness

Any NP-Complete Problem ()(nl’) Any other NP-Complete Problem

—>

If this cannot be done
in polynomial time

Then this cannot be
done in polynomial time

Solution for 4 <: Solution for B

Reduction

NP-Complete

“Together they stand, together they fall”

Problems solvable in polynomial time iff
ALL NP problems are

NP-Complete = NP N NP-Hard

How to show a problem is NP-Complete?
— Show it belongs to NP

+ Give a polynomial time verifier
— Show it is NP-Hard
+ Give a reduction from another NP-H problem

We now just need a FIRST NP-Hard problem

11

3-SAT

* Shown to be NP-Hard by Cook and Levin
(independently)

* Given a 3-CNF formula (logical AND of clauses,
each an OR of 3 variables), Is there an
assignment of true/false to each variable to
make the formula true?

GV VNV YVYIAUVYVAEZVXVU) AV YV Z)
Clause x =true
Variables y = false
z = false
u = true

4/29/19

k-Independent Set is NP-Complete

1. Show that it belongs to NP
— Give a polynomial time verifier (see earlier slide)
2. Show it is NP-Hard
— Give a reduction from a known NP-Hard problem
— Show 3SAT <p kIndSet

3SAT <, kindSet

3SAT 0(nP) k-Ind Set

Solution for 3SAT <: Solution for k-Ind Set

Reduction

<=l

[=]

12

Instance of 3SAT to Instance of kIndSet

(VYyVIOAEVYVYIA@VYVZ)AEZVXVUW)AUVyVz)

For each clause, produce a triangle graph with its three variables as nodes
Connect each node to all of its opposites
Let k = number of clauses

There is a k-IndSet in this graph iff there is a satisfying assignment

4/29/19

kindSet = Satisfying Assignment

(VyVZIOAEVYVY)IA@VYVZ)AEZVXVUW)AUVYVz)

x = true

y = false
One node per triangle is in the Independent set: z = false
because we can have exactly k total in the set, u=true

and 2 in a triangle would be adjacent

If x is selected in some triangle, x is not selected in any triangle:
Because every x is adjacent to every x

Set the variable which each included node represents to “true”

Satisfying Assignment = klIndSet

(VYyVIOAEVYVYIA@VYVZ)A@ZVXVU)AuVyVz)

x = true
y = false
. . . z = false
Use one true variable from the assignment for each triangle 4, — ¢4/
The independent set has k nodes, because there are k clauses

If any variable x is true then x cannot be true

13

4/29/19

3SAT <, kIndSet

3SAT 0(n?) k-Ind Set
Make triangle onne
opposites, k = num clauses

Then This could be done
in polynomial time

Solution for 35AT - - Solution for k-Ind Set
Assign true to variables
from selected nodes

Reduction

If This could be done in
Polynomial time

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP
— Give a polynomial time verifier (see earlier slide)
2. Show it is NP-Hard
— Give a reduction from a known NP-Hard problem
— We showed kindSet <, kVertCov
¢ (Last Class)

kindSet <p kVertCov

kindSet 0(n?) kVertCov

Then This could be done
in polynomial time

Solution for kindSet Solution for kVertCov
Take Complement o
nodes

Reduction

If This could be done in
Polynomial time

14

k-Clique Problem

* Clique: A complete /.\
subgraph
4-Clique

¢ k-Clique Problem:

— Given a graph G and a
number k, is there a clique

of size k? w

4/29/19

k-Cligue is NP-Complete

1. Show that it belongs to NP
— Give a polynomial time verifier

2. Show it is NP-Hard
— Give a reduction from a known NP-Hard problem
— We will show 3SAT <, kClique

k-Clique is NP

1. Given a Graph and a potential solution
2. Check that the solution has k nodes
3. Check that every pair of nodes share an edge

4-Clique

\g =

15

3SAT <, kClique

354T on?) kClique

—>

Solution for 3SAT <: Solution for kClique

Reduction

4/29/19

Instance of 3SAT to Instance of kClique
(xVYyVZIAEVYVYIA@VYVZ)A@EZVXVU)AXVYVZ)

) uﬂ
(also do this for the other
.‘ clauses, omitted due to clutter)
o
bono @

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

Let k = number of clauses

There is a k-Clique in this graph iff there is a satisfying assignment

kClique = Satisfying Assignment

(VYyVIOAEVYVIA@VYVZ)AEZVXVU)A(XVyV2)

x =true

D y = false

z = false

ﬂ u = true
2]

There are k triplets in the graph, and no two nodes in the same triplet
are adjacent

To have a k-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

16

4/29/19

Satisfying Assignment= kClique

VyVIOAEVYVIA@VYVZ)AEZVXVUWA(XVYVZ)

x = true
Dﬂ y = false
z = false
u = true
ull
a

Select one node for a true variable from each clause

There will be k nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

3SAT <, kClique

3SAT 0(n?) kClique

Wake 3 triplet per clause,
connect non-contraditcory
nodes among clauses :

Then This could be done
in polynomial time

Solution for 3SAT
olution for Solution for kClique
Assign each variable
selected to True

Reduction

If This could be done in
Polynomial time

Academic Integrity

Differential Privacy

17

EheNew ok Times

As Computer Coding Classes Swell, So Does Cheating
@rs)TECHNICA =

Code copypasta increasingly common in
CS education

Roughly 22 percent of Stanford honor code violations involve plagiarism n...

THE DAILY ILLINI

SPORTS OPINONS UFE&CULTURE SPECIALSECTIONS LONGFORM BUZZ CLASSIFEDS

College of Engineering piloting

program to combat cheating Top Stores

4/29/19

Differential Privacy

* Gives a way to probabilistically answer questions about data
without giving away its content

* You can get statistical certainty on the answer
* We're going to use a simple example

Scheme

* Flip a coin:

— If Heads, respond “yes”
— If Tails, truthfully answer an embarrassing question:
Questions

“lheve you ever Jraskd?

—hae b bded ¥ o< Q- 07
—ds you ke EPoP?

- WYHA\‘V:\ llngk\?

18

How does it work

* Assume everyone participates honestly

* We know 50% of “yes” answers were from the coin landing heads
— 1f 100 people participate, eliminate 50 “yes” responses
— Proportion of “yes” answers given by remaining “yes” answers over 50

« Consider a person who answers “no”
— We know this person didn’t cheat

« Consider a person who answers “yes”

— Most people who answered “yes” only did so because the coin landed
heads

— It’s still more likely that this person did not cheat

4/29/19

Example: How many people have streaked the
lawn?

* Flip a coin:
— If Heads, respond “yes”
— If Tails, truthfully answer an embarrassing question:

* Have you ever streaked the lawn?
— On the slip of paper, put a 1 in colueand, put a 1 in columa2 if you answered yes (else a

0in column 2 [d:-{—ﬂlb 6n ngw’ ade.

— Pass the slip to your left

Does P=NP?

[DK and DC [other |
0(0%) 3(3%) |
1(0.6%) 1(0.6%) |

P#ZNP [P=NP| Ind | DC | <
2002 | 61(61%) | 9(9%) | 4(4%) | 1(1%) | 2)
2012 | 126 (83%) | 12 (9%) | 5 (3%) | 5 (3%) | 1(0.67

19

When Will P=NP be resolved?

9 | 30-39 [4049 [50-59 [60-69 | 70-

02-09 [10-19 [2

|
2002 | 5(5%) | 12(12%) | 13(13%) | 10(10%) | 5(5%) | 12 (12%) 0(0%
2012 | 0(0%) | 2(.01%) | 17(11%) | 18(12%) | 5(3%) | 10 (6.5%) 9(6%)

[80-89 [°90-99 [100-109 [110-119 | 150159 | 2200-3000 | 4000-4100
2002 [1(1%) | 0(0%) | 0(0%) | 00%) | 0(0%) | 5(5%) 0(0%)
2012 | 4(3%) | 5(3%) | 201.2%) | 5(3%) | 201.2%) | 3(2%) 3(2%)

Sooner than 2100 | Later than 2100 |

Long Time | Never | Don't Know

[
2002 | 0(0%) 5%) | 21(21%) 62(62 7 (17%)
2012 | 22(14%) | 5(3%) | 8(%) 81(53%) 63 (41%)

4/29/19

Notable Statements on P vs NP

Scott Aaronson T believe P # NP on basically the same grounds that T think T won’t be
devoured tomorrow by a 500-foot-tall robotic marmoset from Venus, despite my lack of proof
in both cases.

Suggested rephrased question:
will humans manage to prove P # NP before they either kill themselves out or are transcended
by superintelligent cyborgs? And if the latter, will the cyborgs be able to prove P # NP?

Neil Immerman P # NP will be resolved somewhere between 2017 and

combination of logic, algebra, and combinatorics.

Donald Knuth: (Retired from Stanford) It will be solved by either 2048 or 4096. 1 am
currently somewhat pessimistic. The outcome will be the truly worst case scenario: namely
that someone will prove “P=NP because there are only finitely many obstructions to the
opposite hypothesis”; lence there will exists a polynomial time solution to SAT but we will
never know its complexity!

, using some

20

