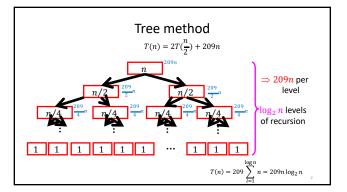
CS4102 Algorithms Spring 2019

Warm Up

What is the asymptotic run time of MergeSort if its recurrence is

$$T(n) = 2T\left(\frac{n}{2}\right) + 209n$$



Today's Keywords

- Karatsuba (finishing up)
- Guess and Check Method
- Induction
- Master Theorem

CLRS	Readings
------	----------

• Chapter 4

Homeworks

- Hw1 due Wed, January 30 at 11pm Sunday, Feb 3 at 11pm
 - Start early!
 - Written (use Latex!) Submit BOTH pdf and zip!
 - Asymptotic notation
 - Recurrences
 - Divide and Conquer

a b

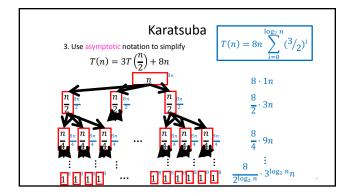
× d Karatsuba Algorithm

- 1. Recursively compute: ac, bd, (a+b)(c+d)2. (ad+bc)=(a+b)(c+d)-ac-bd
- 3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$

Pseudo-code

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

- 1. x = Karatsuba(a,c)
- 2. y = Karatsuba(a,d)
- 3. z = Karatsuba(a+b,c+d)-x-y
- 4. Return $10^{n}x + 10^{n/2}z + y$



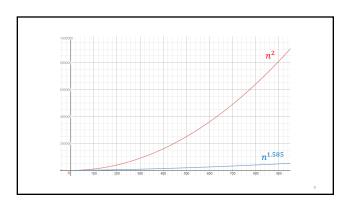
Karatsuba

3. Use asymptotic notation to simplify
$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n\sum_{i=0}^{\log_2 n} {3\choose 2}^i$$

$$T(n) = 8n\frac{{3\choose 2}^{\log_2 n}+1-1}{{3/2}-1}$$
 Math, math, and more math_(on board, see lecture supplemental)
$$T(n) = 24\left(n^{\log_2 3}\right) - 16n = \Theta(n^{\log_2 3})$$

$$\approx \Theta(n^{1.585})$$



	1
Recurrence Solving Techniques	
🜳 Tree	
? Guess/Check (induction)	-
• • Guess/Check	
"Cookbook"	
Substitution	
3 Substitution 10	
Industing (ravious)	<u></u>
Induction (review)	
Goal: $\forall k, P(k)$ holds	
Base case(s): P(1) holds	
Hypothesis: $\forall x \leq x_0, P(x)$ holds	
Inductive step: $P(x_0) \Rightarrow P(x_0 + 1)$	
п	
	1
Guess and Check Intuition	
• To Prove: $T(n) = O(g(n))$ • Consider: $g_*(n) = O(g(n))$	
• Goal: show $\exists n_0$ s.t. $\forall n > n_0, T(n) \leq g_*(n)$ - (definition of big-0)	-
Technique: Induction Base cases:	
 show T(1) ≤ g_*(1),T(2) ≤ g_*(2), for a small number of cases Hypothesis: ∀n ≤ x₀,T(n) ≤ g_*(n) 	
- Inductive step: • $T(x_0 + 1) \le g_*(x_0 + 1)$	

Karatsuba Guess and Check (Loose)

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

 $T(n) \le 3000 \, n^{1.6} = O(n^{1.6})$

Base cases:

 $T(1) = 8 \le 3000 \\ T(2) = 3(8) + 16 = 40 \le 3000 \cdot 2^{1.6} \\ \dots \text{ up to some small } k$

 $\mbox{Hypothesis:} \quad \forall n \leq x_0, T(n) \leq 3000 n^{1.6}$

Inductive step: $T(x_0 + 1) \le 3000(x_0 + 1)^{1.6}$

Math, math, and more math...(on board, see lecture supplemental)

Karatsuba Guess and Check (Loose) G_{∞} 1 $\tau(x_{+})$ 1 $\leq 3\infty$ $(x_{+})^{1/4}$ 1 $(x_{-})^{1/4}$ 1 $(x_{-})^{1/4}$ 2 $(x_{-})^{1/4}$ 3 $(x_{-})^{1$ $T(x_{0}+1) = 3T\left(\frac{x_{0}+1}{2}\right) + 8(x_{0}+1)$ $\leq 3\cdot \left(3000\cdot \left(\frac{x_{0}+1}{2}\right)^{1/4}\right) + 8(x_{0}+1)$ $= \frac{3}{2^{1/4}}\left(3000\cdot \left(x_{0}+1\right)^{1/4}\right) + 8(x_{0}+1)$ $\frac{2 (0.997)(3000 (x_{0}t))^{1/4}) + 8 (x_{0}t1)}{(0.005)(x_{0}t)^{1/4}} + 8 (x_{0}t1) + 8 (x_{0}t1) + 8 (x_{0}t1) + 8 (x_{0}t1)^{1/4}}$ $= (0.997)(3000 (x_{0}t))^{1/4} + 8 (x_{0}t1) + 8 (x_{0}t1) + 9 (x_{0}t1)^{1/4}}$ $= 3000(x_{0}t1)^{1/4} + 8 (x_{0}t1) + 9 (x_{0}t1)^{1/4}}$ $\leq 3000(x_{0}t1)^{1/4} + 9 (x_{0}t1) + 9 (x_{0}t1)^{1/4}$ $\leq 3000(x_{0}t1)^{1/4} + 9 (x_{0}t1)^{1/4}$ $\leq 3000(x_{0}t1)^{1/4} + 9 (x_{0}t1)^{1/4}$

Karatsuba Guess and Check (Loose)

$$T(n) \leq 3000 (n)^{16}$$
 $T(n) = O(n^{16})$

Mergesort Guess and Check

 $T(n) = 2T(\frac{n}{2}) + n$ $T(n) \le n \log_2 n = O(n \log_2 n)$

Base cases:

T(1) = 0 $T(2) = 2 \le 2 \log_2 2$... up to some small k

Inductive step: $T(x_0 + 1) \le (x_0 + 1) \log_2(x_0 + 1)$

Math, math, and more math...(on board, see lecture supplemental)

Mergesort Guess and Check

$$T(x,r) = 2 + (x,r) + (x,r) \qquad T(n) \leq n \log n$$

$$= (x,r) \log_2(\frac{x_r}{2}) + (x_r)$$

$$= (x_r) \log_2(\frac{x_r}{2}) + (x_r)$$

$$= (x_r) (\log_2(x_r) - \log_2 2) + (x_r)$$

$$= (x_r) (\log_2(x_r) - (x_r) + (x_r)$$

Karatsuba Guess and Check

 $T(n) = 3T\left(\frac{n}{2}\right) + 8n$ $T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$ Goal:

Base cases: by inspection, holds for small n (at home)

Hypothesis: $\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$

Inductive step: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$

Math, math, and more math...(on board, see lecture supplemental)

Karatsuba Guess and Check

$$h_{yy}$$
: $\forall h_{yz} = 24 n^{\log 3} - 16 n$
 $\forall h_{yz} = 0 (n^{\log 3})$
 $\forall h_{z} = 0 (n^{\log 3})$

What if we leave out the -16n?

 $T(n) = 3T \binom{n}{2} + 8n$ Goal: $T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$ Base cases: by inspection, holds for small n (at home) Hypothesis: $\forall n \le x_0, T(n) \le 24n^{\log_2 3} - 16n$ Inductive step: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16n$ What we wanted: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16n$ What we got: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16n$ Induction failed! What we got: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} + 8(x_0 + 1)$

"Bad Mergesort" Guess and Check

 $T(n) = 2T(\frac{n}{2}) + 209n$ Goal: $T(n) \le 209n \log_2 n = O(n \log_2 n)$ Base cases: T(1) = 0 $T(2) = 518 \le 209 \cdot 2 \log_2 2$

 $T(2) = 518 \le 209 \cdot 2 \log_2 2$... up to some small k

 $\mbox{Hypothesis:} \quad \forall n \leq x_0, T(n) \leq 209 n \log_2 n$

Inductive step: $T(x_0 + 1) \le 209(x_0 + 1)\log_2(x_0 + 1)$

_

Recurrence	Solving	Technia	II P
necurrence	JUIVILIE	recilling	uc.

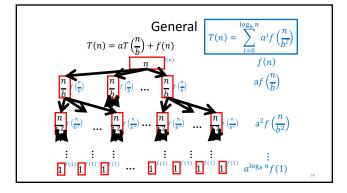
Observation

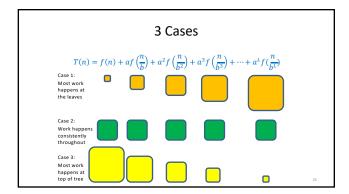
- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

• Many D&C recurrences are of form:

$$-T(n) = aT\left(\frac{n}{b}\right) + f(n)$$





Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n)=O(n^{\log_b a}-\varepsilon)$ for some constant $\varepsilon>0$, then $T(n)=\Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n)=\Omega(n^{\log_b a+\varepsilon})$ for some constant $\varepsilon>0$, and if $af\left(\frac{n}{b}\right)\leq cf(n)$ for some constant c<1 and all sufficiently large n, then $T(n)=\Theta(f(n))$