
Warm up
Given 5 points on the unit equilateral triangle,

show there’s always a pair of distance ≤ "
apart

CS4102 Algorithms
Spring 2019

1

1

1

1

If points !", !$ in same quadrant, then % !", !$ ≤ "
$

Given 5 points, two must share the same quadrant
Pigeonhole Principle!

1

1

1

2

Historical Aside: Master Theorem

3

Jon Bentley Dorothea Haken James Saxe

No Picture Found

Today’s Keywords

• Substitution Method
• Divide and Conquer
• Closest Pair of Points

4

CLRS Readings

• Chapter 4

5

Homeworks

• Hw2 released today after class, due Wed 2/13 at 11pm
– Programming assignment (Python or Java)
– Divide and conquer

6

Master Theorem

• Case 1: if ! " = $("&'() * +,) for some constant . > 0,
then 1 " = Θ("&'() *)

• Case 2: if ! " = Θ("&'() *), then 1 " = Θ("&'() * log ")
• Case 3: if ! " = Ω("&'() *7,) for some constant . > 0,

and if 8! 9
: ≤ <!(") for some constant < < 1

and all sufficiently large ",
then 1 " = Θ(! ")

1 " = 81 "
? + !(")

7

3 Cases

! " = $ " + &$ "
' + &($ "

'(+ &)$ "
') +⋯+ &+$("'+)

Case 1:
Most work
happens at
the leaves

Case 2:
Work happens
consistently
throughout

Case 3:
Most work
happens at
top of tree 8

Recurrence Solving Techniques
Tree

Guess/Check

“Cookbook”

Substitution

?

9

Substitution Method

• Idea: take a “difficult” recurrence, re-express it such that one
of our other methods applies.

• Example: ! " = 2! " + log) "

10

Tree method

!

" ! = 2"(!) + log+ !

! !

! ! ! !

… … … …

2 2 2 … 2 2 2

log+ !

1
2 log+ !

1
2 log+ !

1
4 log+ !

1
4 log+ !

1
4 log+ !

1
4 log+ !

1 1 1 11 1

log+ !

log+ !

log+ !

log+ !

+

+ + +

+ + + + +

log+ log+ !

" ! = .(log+ ! ⋅ log+ log+ !) 11

Substitution Method

• Idea: take a “difficult” recurrence, re-express it such that one
of our other methods applies.

• Example: ! " = 2! " + log) "
Let " = 2*, i.e. + = log) "

Let , + = 2, *
) + +

! 2* = 2! 2
*
) + + Rewrite in terms of exponent!

Case 2!

Let , + = Θ(+ log+) Substitute Back

Let T " = Θ(log " log log ") 12

Tree method

!

" ! = 2"(!) + log+ !

! !

! ! ! !

… … … …

2 2 2 … 2 2 2

log+ !

1
2 log+ !

1
2 log+ !1

4 log+ !
1
4 log+ !

1
4 log+ !

1
4 log+ !

1 1 1 11 1

log+ !

log+ !

log+ !

log+ !

+

+ + +

+ + + + +

log+ log+ !

! = 2. " 2. = 2" 2
.
+ +/

2.

2./+ 2./+

2./1 2./1 2./1 2./1

13

Tree method

2"
2" = 2#(2"/') + *

2"/' 2"/'

2"/+ 2"/+ 2"/+ 2"/+

… … … …

2, 2, 2, … 2, 2, 2,

*

*
2

*
2

*
4

*
4

*
4

*
4

1 1 1 11 1

*

*

*

*

+

+ + +

+ + + + +

log'*

2 = 2"

14

Tree method

!

!/2 !/2

!/4 !/4 !/4 !/4

… … … …

1 1 1 … 1 1 1

!

!
2

!
2

!
4

!
4

!
4

!
4

1 1 1 11 1

!

!

!

!

+

+ + +

+ + + + +

log*!

+ , = .(! ⋅ log* !)

, = 22
+ 22 = 3(!)

3 ! = 23 !
2 +!

= .(log* , ⋅ log* log* ,) 15

My Yard

16

There has to be an easier way!

17

Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?

18

1 2

3

4
5

6

7

8

ROBO

mulcher

3000

Closest Pair of Points

1 2

3

4
5

6

7

8

Given:
A list of points

Return:
Pair of points with
smallest distance apart

19

Closest Pair of Points: Naïve

1
2

3

4

5

6

7

8

Given:

A list of points

Return:

Pair of points with

smallest distance apart

!(#$)Algorithm:

Test every pair of points,

return the closest.

20

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

Divide: How?
At median x coordinate

Conquer:

21

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:

22

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs Problem? ?

23

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2 Cases:

?

1. Closest Pair is
completely in Left or
Right

2. Closest Pair Spans our
“Cut”

Need to test points
across the cut

24

Spanning the Cut

1
2

3

4

5

6

7

8

LeftPoints RightPoints

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

!"

!#
Compare all points
within ! = min{!", !#}
of the cut.

2!
How many are there?

25

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

!"

!#

2!

Compare all points
within ! = min{!", !#}
of the cut.

How many are there?

, - = 2, -
2 + -

2
/
= Θ -/

26

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

!"

!#

2!

We don’t need to test all
pairs!

Only need to test points
within ! of one another

27

Reducing Search Space
Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

2 ⋅ #

#
2

#
2

Divide the “runway” into
square cubbies of size $%
Each cubby will have at
most 1 point!

28

Reducing Search Space
Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

2 ⋅ #

Divide the “runway” into
square cubbies of size $%

7

How many cubbies
could contain a
point < ' away?

1 2 3 4

5 6 7 8

9 10 11 12
13 14 15

Each point compared to
≤ 15 other points 29

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

1. Divide: At median x
2. Conquer: If >2 points
Recursively find closest
pair on left and right
3. Combine:

a. List points in
“runway” in order
according to y value
b. Compare each point
to the next 15 above it,
save best found
c. Return min from left,
right, and 3b

!"

!#

0. Sort points by x

30

Listing points in “Runway”
• Given: y-sorted lists

from left and right
• Return: y-sorted

points in “runway”
• Target run time? !(#)

1
2

3

4
5

6

7

8

8 3 7 6 4 5 1 2

8 7 6 5 2

Merged, sorted by y

Runway, still sorted by y!

31

3 7 5 1 8 6 4 2
Left, sorted by y Right, sorted by y

Run Time

1. Divide: At median x

2. Conquer: If >2 points,
Recursively find closest
pair on left and right

0. Sort points by x

3. Combine:
a. Merge points to sort by y

b. Compare each runway
point to the next 15 runway
points, save closest pair

c. Return y-sorted points
and min from left, right,
and 3b

Θ(# log #)
Θ(1)

) #
2

Θ(#)

Θ(#)

Θ(1)

) # = 2) #
2 + Θ(#)

) # = Θ(# log #)
Case 2!

32

