CS4102 Algorithms Spring 2019

Warm up

Given 5 points on the unit equilateral triangle, show there's always a pair of distance $\leq \frac{1}{2}$ apart

If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \leq \frac{1}{2}$

Given 5 points, two must share the same quadrant

Historical Aside: Master Theorem

Jon Bentley

Dorothea Haken

James Saxe

Today's Keywords

- Substitution Method
- Divide and Conquer
- Closest Pair of Points

CLRS Readings

• Chapter 4

Homeworks

- Hw2 released today after class, due Wed 2/13 at 11pm
 - Programming assignment (Python or Java)
 - Divide and conquer

Master Theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1

and all sufficiently large n,

then
$$T(n) = \Theta(f(n))$$

3 Cases

Recurrence Solving Techniques

? Guess/Check

"Cookbook"

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example: $T(n) = 2T(\sqrt{n}) + \log_2 n$

 $T(n) = O(\log_2 n \cdot \log_2 \log_2 n)$

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example: $T(n) = 2T(\sqrt{n}) + \log_2 n$

Let
$$n = 2^m$$
, i.e. $m = \log_2 n$
 $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$ Rewrite in terms of exponent!
Let $S(m) = 2S\left(\frac{m}{2}\right) + m$ Case 2!
Let $S(m) = \Theta(m \log m)$ Substitute Back
Let $T(n) = \Theta(\log n \log \log n)$

Tree method

$$n = 2^m$$
 $T(2^m) = 2T(2^{m/2}) + m$

 $T(n) = O(m \cdot \log_2 m) = O(\log_2 n \cdot \log_2 \log_2 n)$

My Yard

There has to be an easier way!

Constraints: Trees and Plants

Need to find: Closest Pair of Trees - how wide can the robot be?

Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart

Closest Pair of Points: Naïve

Given: A list of points

Return: Pair of points with smallest distance apart

Algorithm: $O(n^2)$ Test every pair of points, return the closest.

Divide: How?

At median x coordinate

Conquer:

Divide:

At median x coordinate

Conquer: Recursively find closest pairs from Left and Right

Combine:

Divide:

At median x coordinate

Conquer: Recursively find closest pairs from Left and Right

Combine: Return min of Left and Right pairs Problem?

Combine: 2 Cases:

 Closest Pair is completely in Left or Right

2. Closest Pair Spans our "Cut"

Need to test points across the cut

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut.

How many are there?

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut.

How many are there?

$$T(n) = 2T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2 = \Theta(n^2)$$

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"Need to test points across the cut

We don't need to test all pairs!

Only need to test points within δ of one another

Reducing Search Space

Combine:

2. Closest Pair Spanned our "Cut" Need to test points across the cut Divide the "runway" into square cubbies of size $\frac{\delta}{2}$

Each cubby will have at most 1 point!

Reducing Search Space $2 \cdot \delta$

Combine:

2. Closest Pair Spanned our "Cut" Need to test points across the cut Divide the "runway" into square cubbies of size $\frac{\delta}{1}$ How many cubbies could contain a point $< \delta$ away? Each point compared to ≤ 15 other points

0. Sort points by x

1. Divide: At median x

2. Conquer: If >2 pointsRecursively find closestpair on left and right3. Combine:

a. List points in"runway" in orderaccording to y value

b. Compare each point to the next 15 above it, save best found

c. Return min from left,

³⁰ right, and 3b

Listing points in "Runway"

- Given: y-sorted lists from left and right
- Return: y-sorted points in "runway"
- Target run time? O(n)

Left, sorted by y Right, sorted by y

3

5

8 6 4

 Merged, sorted by y

 8
 3
 7
 6
 4
 5
 1
 2

Runway, still sorted by y!

|--|

Run Time

 $\Theta(1)$

 $\Theta(n \log n)$

0. Sort points by x
1. Divide: At median x
2. Conquer: If >2 points, Recursively find closest pair on left and right
3. Combine:

a. Merge points to sort by y

 $\Theta(n)$

 $\Theta(n)$

 $\Theta(1)$

 $T\left(\frac{\pi}{2}\right)$

b. Compare each runway
point to the next 15 runway
points, save closest pair

c. Return y-sorted pointsand min from left, right,and 3b

 $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ Case 2! $T(n) = \Theta(n \log n)$

32