

Today's Keywords • Substitution Method • Divide and Conquer • Closest Pair of Points	
4	
CLRS Readings • Chapter 4	
Homeworks • Hw2 released today after class, due Wed 2/13 at 11pm — Programming assignment (Python or Java) — Divide and conquer	

Master Theorem
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n)=O(n^{\log_b a}-\varepsilon)$ for some constant $\varepsilon>0$, then $T(n)=\Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1and all sufficiently large n,

then $T(n) = \Theta(f(n))$

3 Cases $T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + a^3 f\left(\frac{n}{b^3}\right) + \dots + a^L f\left(\frac{n}{b^L}\right)$ Case 1: Most work happens at the leaves Case 2: Work happe consistently throughout

Recurrence	Solving	Technic	าแคร

"Cookbook"

Substitution

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

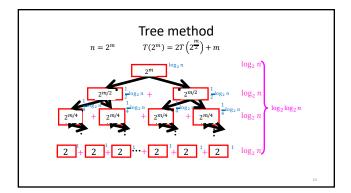
Let
$$n = 2^m$$
, i.e. $m = \log_2 n$

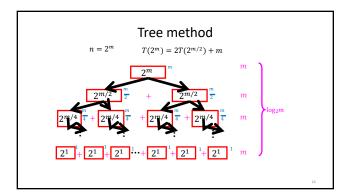
 $T(2^m) = 2T(2^{\frac{m}{2}}) + m$ Rewrite in terms of exponent!

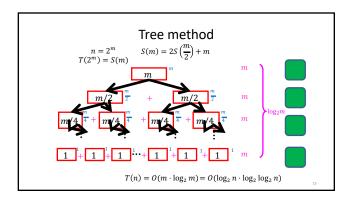
Let $S(m) = 2S\left(\frac{m}{2}\right) + m$ Case 2!

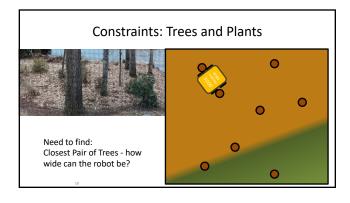
Let $S(m) = \Theta(m \log m)$ Substitute Back

Let $T(n) = \Theta(\log n \log \log n)$

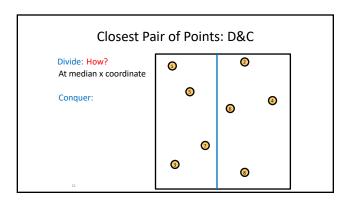




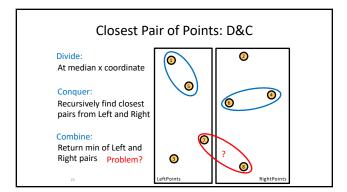


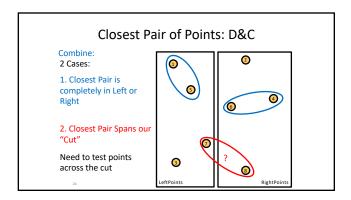


Closest Pair of Points: Naïve Given: A list of points Return: Pair of points with smallest distance apart Algorithm: O(n²) Test every pair of points, return the closest.



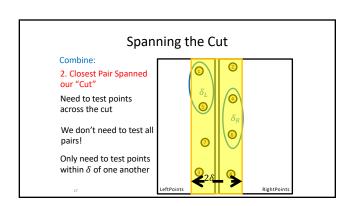
Closest Pair of Points: D&C Divide: At median x coordinate Conquer: Recursively find closest pairs from Left and Right Combine: Divide: O RightPoints RightPoints



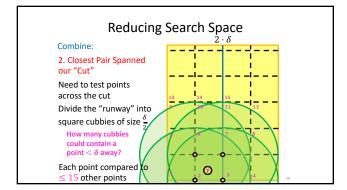


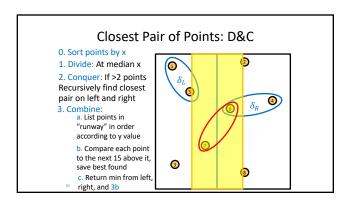
Spanning the Cut Combine: 2. Closest Pair Spanned our "Cut" Need to test points across the cut Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut. How many are there?

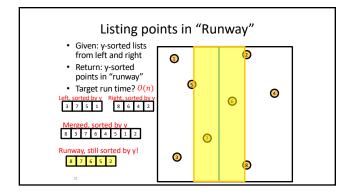
Spanning the Cut Combine: 2. Closest Pair Spanned our "Cut" Need to test points across the cut Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut. How many are there? $\tau_{(n)} = 2\tau \left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2 = \Theta(n^2)$ LeftPoints RightPoints



Reducing Search Space Combine: 2. Closest Pair Spanned our "Cut" Need to test points across the cut Divide the "runway" into square cubbies of size $\frac{\delta}{2}$ Each cubby will have at most 1 point!







Rı	ın Time	2	
0. Sort points by x1. Divide: At median x	$\Theta(n \log n)$ $\Theta(1)$]	
 Conquer: If >2 points, Recursively find closest pair on left and right 	$T\left(\frac{n}{2}\right)$		
3. Combine: a. Merge points to sort by y	$\Theta(n)$	$T(n) = 2T\left(\frac{n}{n}\right) + \Theta(n)$	
 b. Compare each runway point to the next 15 runway points, save closest pair 	$\Theta(n)$	$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ $Case 2!$ $T(n) = \Theta(n \log n)$	
c. Return y-sorted points and min from left, right, and 3b	Θ(1)	32	