CS4102 Algorithms

Warm up
Compare f(n + m) with f(n) + f(m)
When f(n) = 0(n)
When f(n) = Q(n)
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Today’s Keywords

Divide and Conquer
Sorting

Quicksort

Median

Order statistic
Quickselect

Median of Medians



CLRS Readings

* Chapter 7



Homeworks

* Hw2 due 11pm Wednesday!
— Programming (use Python or Javal!)
— Divide and conquer
— Closest pair of points

* Hw3 released tonight!
— Divide and conquer
— Written (use LaTeX!)



Office Hours Wednesday

* Slight shift in my office hours Wednesday
—10-11am, 12-12:30pm

— Scheduling conflict at 11am



ldea: pick a pivot element, recursively sort two sublists around

Quicksort

that element

Divic
Cono

e: select an element p, Partition(p)
uer: recursively sort left and right sublists

Com

nine: Nothing!
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Partition (Divide step)

* Given: alist, a pivot p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right




Partition Summary

1. Put p at beginning of list

2. Put a pointer ( ) just after p, and a pointer (End) at the
end of the list

3. While < End:
1. |If value < p, move right
2. Else swap value with End value, move End Left

4. If pointers meet at element : Swap p with

5. Else If pointers meet at element > p: Swap p with



Quicksort Run Time

* |f the pivot is always the median:
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nalf each time

n

T(n) = 2T(2)+n
T(n) = 0(nlogn)
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Quicksort Run Time

* |f the partition is always unbalanced:

_

* Then we shorten by 1 each time
Tn)=Tn—1)+n

T(n) = 0(n?)
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Good Pivot

 What makes a good Pivot?
— Roughly even split between left and right

— |deally: median

e Can we find median in linear time?
— Yes!
— Quickselect



Quickselect

* Finds it" order statistic
— ith smallest element in the list
— 15t order statistic: minimum
— nth order statistic: maximum

n . .
— ;th order statistic: median



Quickselect

Finds ith order statistic

ldea: pick a pivot element, partition, then recurse on sublist
containing index i

Divide: select an element p, Partition(p)

Conquer: if i = index of p, done!
— if i < index of p recurse left. Else recurse right

Combine: Nothing!
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Partition (Divide step)

* Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right




Conquer

2 5 7 3 6

4

All elements < p

1IF.II!III'

All elements > p

Exactly where it belongs!

Recurse on sublist that contains index i

(add index of the pivot to i if recursing right)
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Quickselect Run Time

* |f the pivot is always the median:
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e Then we divide in half each time

S(n) =S(E)+n

2
S(n) =0(n)
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Quickselect Run Time

* |f the partition is always unbalanced:

_

* Then we shorten by 1 each time
Sm)=Sn—1)+n

S(n) = 0(n?)
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Good Pivot

* What makes a good Pivot? Q
— Roughly even split between left and right <

— |deally: median O'Q,

* Here’s what’s next:
— An algorithm for finding a “rough” split (Median of Medians)

— This algorithm uses Quickselect as a subroutine



Good Pivot

 What makes a good Pivot?
— Both sides of Pivot >30%

Or

>30%

I

Select Pivot from

this range
‘ |
>30%
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Median of Medians

* Fast way to select a “good” pivot
* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

* |dea: break list into chunks, find the median of each chunk, use
the median of those medians



Median of Medians

1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)




Why is this good?
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Quickselect

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + 0(n)

* Conquer: ifi = index of p, done, if i < index of p recurse left.

Else recurse right 7
<3S (—n)

10
* Combine: Nothing!

S(n)<S (1—7071) + M(n) + 0(n)
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Median of Medians, Run Time
1. Break list into chunks of 5 ©(n)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)

[ S (g)

Mn) =S (g) + 0(n)




Quickselect

S(n) <SS (—) + M(n) + 0(n) M(n) =S (g) +0(n)

1 S(n)
:5(%)+5(g)+@(n) / n
:S(7n)+5(2—n>+®(n) Jf

)

+ O(n) Because S(n) = Q(n)

Master theorem Case 3!

S() = 6(m)



Phew! Back to Quicksort

* Using Quickselect, with a median-of-medians

nartition:
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* Then we divide in
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T(n) = 2T (2) +0(n)
T(n) = O(nlogn)
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Is it worth it?

* Using Quickselect to pick median guarantees ©®(nlogn) run
time

* Approach has very large constants
— If you really want ©(n logn), better off using MergeSort

* Better approach: Random pivot
— Very small constant (very fast algorithm)

— Expected to run in @(nlogn) time
 Why? Unbalanced partitions are very unlikely



