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Today’s Keywords

• Divide and Conquer
• Sorting
• Quicksort
• Median
• Order statistic
• Quickselect
• Median of Medians
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CLRS Readings

• Chapter 7
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Homeworks

• Hw2 due 11pm Wednesday!
– Programming (use Python or Java!)
– Divide and conquer
– Closest pair of points

• Hw3 released tonight!
– Divide and conquer
– Written (use LaTeX!)
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Office Hours Wednesday

• Slight shift in my office hours Wednesday
– 10-11am, 12-12:30pm
– Scheduling conflict at 11am
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Quicksort

• Idea: pick a pivot element, recursively sort two sublists around 
that element

• Divide: select an element !, Partition(!)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!
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Partition (Divide step)

• Given: a list, a pivot !
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Partition Summary

1. Put ! at beginning of list
2. Put a pointer (Begin) just after !, and a pointer (End) at the 

end of the list
3. While Begin < End:

1. If Begin value < !, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < !: Swap ! with pointer position
5. Else If pointers meet at element > !: Swap ! with value to 

the left
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Quicksort Run Time

• Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = 2! "
2 + "

• If the pivot is always the median:

! " = &(" log ")



Quicksort Run Time

• Then we shorten by 1 each time
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1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

! " = ! " − 1 + "

• If the partition is always unbalanced:

! " = '("))



Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Can we find median in linear time?
– Yes!
– Quickselect
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Quickselect

• Finds !th order statistic
– !th smallest element in the list
– 1st order statistic: minimum
– "th order statistic: maximum

– #
$

th order statistic: median
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Quickselect

• Finds !th order statistic
• Idea: pick a pivot element, partition, then recurse on sublist

containing index !
• Divide: select an element ", Partition(")
• Conquer: if ! = index of ", done!
– if ! < index of " recurse left. Else recurse right

• Combine: Nothing!
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Partition (Divide step)

• Given: a list, a pivot value !
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Conquer
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2 5 7 3 6 4 1 8 10 9 11 12

All elements < " All elements > "

Exactly where it belongs!

Recurse on sublist that contains index $
(add index of the pivot to $ if recursing right)



Quickselect Run Time

• Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = ! "
2 + "

• If the pivot is always the median:

! " = &(")



Quickselect Run Time

• Then we shorten by 1 each time
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1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

! " = ! " − 1 + "

• If the partition is always unbalanced:

! " = '("))



Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Here’s what’s next:
– An algorithm for finding a “rough” split (Median of Medians)
– This algorithm uses Quickselect as a subroutine
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Déjà vu?



Good Pivot

• What makes a good Pivot?
– Both sides of Pivot >30%
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Or

>30%

>30%

Select Pivot from 
this range



Median of Medians

• Fast way to select a “good” pivot
• Guarantees pivot is greater than 30% of elements and less than 

30% of the elements
• Idea: break list into chunks, find the median of each chunk, use 

the median of those medians
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Median of Medians
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1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)



Why is this good?
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Why is this good?
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Quickselect

• Divide: select an element ! using Median of Medians, 
Partition(!)

• Conquer: if " = index of !, done, if " < index of ! recurse left. 
Else recurse right

• Combine: Nothing!
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Median of Medians, Run Time
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1. Break list into chunks of 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(#)

Θ(#)

% #
5

' # = % #
5 + Θ(#)



Quickselect
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! " = $ "
5 + Θ(")$ " ≤ $ 7"

10 +! " + Θ(")

= $ 7"
10 + $ "

5 + Θ(")

$ " = O(")

= $ 7"
10 + $ 2"

10 + Θ(")

≤ $ 9"
10 + Θ(")

Master theorem Case  3!

Because $ " = Ω(")

$ " = Θ(")



Phew! Back to Quicksort

• Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = 2! "
2 + Θ(")

• Using Quickselect, with a median-of-medians 
partition:

! " = Θ(" log ")



Is it worth it?

• Using Quickselect to pick median guarantees Θ(# log #) run 
time

• Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely
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