
Warm up
Compare ! " +$ with ! " + !($)

When ! " = ((")
When ! " = Ω(")

CS4102 Algorithms
Spring 2019

1

2

! " ! +"

$(!) $(") $(!)

$(")

$! = O(!)

$)
=)

*.,-

$! + " ≤ $! + $(")

3

! "
= "

$.&
'

() (+)

!(() !(()

!())

! (+) ≥ ! (+ !())

! (= Ω(()

!())

4

! " = "

$ % $ +%

!($) !(%) !($)

!(%)

! $ + % = ! $ + !(%)

! $ = Θ($)

Today’s Keywords

• Divide and Conquer
• Sorting
• Quicksort
• Median
• Order statistic
• Quickselect
• Median of Medians

6

CLRS Readings

• Chapter 7

7

Homeworks

• Hw2 due 11pm Wednesday!
– Programming (use Python or Java!)
– Divide and conquer
– Closest pair of points

• Hw3 released tonight!
– Divide and conquer
– Written (use LaTeX!)

8

Office Hours Wednesday

• Slight shift in my office hours Wednesday
– 10-11am, 12-12:30pm
– Scheduling conflict at 11am

9

Quicksort

• Idea: pick a pivot element, recursively sort two sublists around
that element

• Divide: select an element !, Partition(!)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

10

Partition (Divide step)

• Given: a list, a pivot !

11

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition Summary

1. Put ! at beginning of list
2. Put a pointer (Begin) just after !, and a pointer (End) at the

end of the list
3. While Begin < End:

1. If Begin value < !, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < !: Swap ! with pointer position
5. Else If pointers meet at element > !: Swap ! with value to

the left

12

Quicksort Run Time

• Then we divide in half each time

13

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = 2! "
2 + "

• If the pivot is always the median:

! " = &(" log ")

Quicksort Run Time

• Then we shorten by 1 each time

14

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

! " = ! " − 1 + "

• If the partition is always unbalanced:

! " = '("))

Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Can we find median in linear time?
– Yes!
– Quickselect

15

Quickselect

• Finds !th order statistic
– !th smallest element in the list
– 1st order statistic: minimum
– "th order statistic: maximum

– #
$

th order statistic: median

16

Quickselect

• Finds !th order statistic
• Idea: pick a pivot element, partition, then recurse on sublist

containing index !
• Divide: select an element ", Partition(")
• Conquer: if ! = index of ", done!
– if ! < index of " recurse left. Else recurse right

• Combine: Nothing!

17

Partition (Divide step)

• Given: a list, a pivot value !

18

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Conquer

19

2 5 7 3 6 4 1 8 10 9 11 12

All elements < " All elements > "

Exactly where it belongs!

Recurse on sublist that contains index $
(add index of the pivot to $ if recursing right)

Quickselect Run Time

• Then we divide in half each time

20

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = ! "
2 + "

• If the pivot is always the median:

! " = &(")

Quickselect Run Time

• Then we shorten by 1 each time

21

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

! " = ! " − 1 + "

• If the partition is always unbalanced:

! " = '("))

Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Here’s what’s next:
– An algorithm for finding a “rough” split (Median of Medians)
– This algorithm uses Quickselect as a subroutine

22

Déjà vu?

Good Pivot

• What makes a good Pivot?
– Both sides of Pivot >30%

23

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

• Fast way to select a “good” pivot
• Guarantees pivot is greater than 30% of elements and less than

30% of the elements
• Idea: break list into chunks, find the median of each chunk, use

the median of those medians

24

Median of Medians

25

1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Why is this good?

26

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

Each chunk sorted, chunks ordered by their medians
MedianofMedians
is Greater than all

of these

"
5

5

Why is this good?

27

MedianofMedians
is larger than all

of these

Larger than 3
things in each
(but one) list to
the left <3 #

$ ⋅
&
' − 2 ≈ +&

#, − 6 elements

Similarly: >3 #
$ ⋅

&
' − 2 ≈ +&

#, − 6 elements

/
5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Quickselect

• Divide: select an element ! using Median of Medians,
Partition(!)

• Conquer: if " = index of !, done, if " < index of ! recurse left.
Else recurse right

• Combine: Nothing!

28

% & + Θ(&)

≤ , 7
10&

, & ≤ , 7
10& + % & + Θ(&)

Median of Medians, Run Time

29

1. Break list into chunks of 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(#)

Θ(#)

% #
5

' # = % #
5 + Θ(#)

Quickselect

30

! " = $ "
5 + Θ(")$ " ≤ $ 7"

10 +! " + Θ(")

= $ 7"
10 + $ "

5 + Θ(")

$ " = O(")

= $ 7"
10 + $ 2"

10 + Θ(")

≤ $ 9"
10 + Θ(")

Master theorem Case 3!

Because $ " = Ω(")

$ " = Θ(")

Phew! Back to Quicksort

• Then we divide in half each time

31

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

! " = 2! "
2 + Θ(")

• Using Quickselect, with a median-of-medians
partition:

! " = Θ(" log ")

Is it worth it?

• Using Quickselect to pick median guarantees Θ(# log #) run
time

• Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely

32

