CS4102 Algorithms

Warm up
Compare f(n +m) with f(n) + f(m)
When f(n) = 0(n)
When f(n) = Q(n)

2/12/19

f(n) =0(m)
o afl fm)
g g
e
§0'>/ o) fm) fo

D‘ 40) 0 100 120 140
frm < f) +fm)

f) = Q(n)

fm

f()

m

ftm)= f) + fm)

2/12/19

f(n) =06(n)
T
Fom)
57 ¥ sia
I Tw| few @
i) ;ZE ;'[l b - n:l-wm b *

fn+m) =f1)+f(m)

Today’s Keywords

Divide and Conquer

Sorting

Quicksort

Median

Order statistic
Quickselect
Median of Medians

CLRS Readings

* Chapter 7

Homeworks

Hw2 due 11pm Wednesday!

— Programming (use Python or Java!)
— Divide and conquer

— Closest pair of points

* Hws3 released tonight!

— Divide and conquer

— Written (use LaTeX!)

2/12/19

Office Hours Wednesday

« Slight shift in my office hours Wednesday
—10-11am, 12-12:30pm
— Scheduling conflict at 11am

Quicksort

* Idea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select an element p, Partition(p)

* Conquer: recursively sort left and right sublists

¢ Combine: Nothing!

2/12/19

Partition (Divide step)

* Given: a list, a pivot p

Start: unordered list
.SI7I3|12|10|1|2I4IEI6I11I

Goal: All elements on left, all > p on right

CLLLT-T-T- T

Partition Summary

1. Put p at beginning of list
2. Put a pointer () just after p, and a pointer (End) at the

end of the list

3. While < End:
1. If value < p, move right
2. Else swap value with End value, move End Left

4. If pointers meet at element : Swap p with
5. Else If pointers meet at element > p: Swap p with

Quicksort Run Time

« If the pivot is always the median:

pononon
[T e

* Then we divide in half each time

T(n) = 2T (;) +n
T(n) = O(nlogn)

Quicksort Run Time
« If the partition is always unbalanced:
* Then we shorten by 1 each time

Tn)=Tnh—-1)+n

T(n) = 0(n?)

2/12/19

Good Pivot

* What makes a good Pivot?

— Roughly even split between left and right
— Ideally: median

Can we find median in linear time?
— Yes!
— Quickselect

Quickselect

* Finds ith order statistic
— ih smallest element in the list
— 1t order statistic: minimum

— nth order statistic: maximum

n, . ar .
— zth order statistic: median

Quickselect

Finds ith order statistic

Idea: pick a pivot element, partition, then recurse on sublist

containing index i

Divide: select an element p, Partition(p)
Conquer: if i = index of p, done!

— if i <index of p recurse left. Else recurse right
Combine: Nothing!

2/12/19

Partition (Divide step)

* Given: a list, a pivot value p
Start: unordered list

.5|7|3|12|10|1|ZI4I9ISI11I

Goal: All elements on left, all > p on right

CLLLT-T-T- T

Conquer

G

All elements < p All elements > p

Exactly where it belongs!

Recurse on sublist that contains index i

(add index of the pivot to i if recursing right)

2/12/19

Quickselect Run Time

« If the pivot is always the median:

ElEEIEEE
G180 T-T- T- I

* Then we divide in half each time

S(n) =S(rzi)+n

S(n) =0(n)

Quickselect Run Time

« If the partition is always unbalanced:

* Then we shorten by 1 each time

Sm)=Sn—-1)+n

S(n) = 0(n?)

Good Pivot

* What makes a good Pivot?

Q
. . o
— Roughly even split between left and right
— Ideally: median O‘Q,\,b

* Here’s what’s next:

— An algorithm for finding a “rough” split (Median of Medians)
— This algorithm uses Quickselect as a subroutine

Good Pivot

* What makes a good Pivot?
— Both sides of Pivot >30%

>30%

OI’ Select Pivot from

this range

>30%

2/12/19

Median of Medians

 Fast way to select a “good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

* Idea: break list into chunks, find the median of each chunk, use
the median of those medians

Median of Medians
1. Break list into chunks of size 5
OO T TITTTITIT]

2. Find the median of each chunk
OO T T T T I TT]
3. Return median of medians (using Quickselect)

oo

Why is this good?
OO T T T T I T

Each chunk sorted, chunks ordered by their medians

MedianofMedians
is Greater than all
of these

A

2/12/19

Why is this good?

MedianofMedians /\D /\D ? ?
is larger than all

of these ? Q P g g
O<0<@<0<0
AN TN AN A
O0000
AN AN AN A

Larger than 3 LD _? o

)

things in each [
(but one) list to 1 .
the left 3 (" [;] - 2) ~ =—6elements < (]

Similarly: 3 (l- E] - 2) = i—;— 6 elements >0

Quickselect

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + 0(n)

» Conquer: if i = index of p, done, if i < index of p recurse left.
Else recurse right 7
<S (—n)

e Combine: Nothing!

NOER (%n) + M) +0(n)

Median of Medians, Run Time
1. Break list into chunks of 5 o(n)

(EENEESSSSSNNEENEEEEEEEEE)

2. Find the median of each chunk @(n)

I

3. Return median of medians (using Quickselect)

2/12/19

n
T s(3)
n
M) =S (g) +0(n)
Quickselect
s0n) =5 (35) + wow + 0 M =5 (5) + 00
n n o
=5E)+5(5—)+®(n) n
= s(%) + s(i—g) +06(m)
9n
<Ss E) +0(M) Because S(n) = Q)

Master theorem Case 3!

o St = 80

Phew! Back to Quicksort

« Using Quickselect, with a median-of-medians
partition:

Dononon
[T e

* Then we divide in half each time

T(n) = 2T ('zl) +om)

T(n) = O(nlogn)

10

Is it worth it?

* Using Quickselect to pick median guarantees ©(nlogn) run
time
* Approach has very large constants
— If you really want ©(nlogn), better off using MergeSort
* Better approach: Random pivot
— Very small constant (very fast algorithm)
— Expected to run in @(nlogn) time
* Why? Unbalanced partitions are very unlikely

2/12/19

11

