CS4102 Algorithms Spring 2019

Warm up

Show $\log(n!) = \Theta(n \log n)$

Hint: show
$$n! \le n^n$$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$$\log n! = O(n \log n)$$

$$n! \le n^{n}$$

$$\Rightarrow \log(n!) \le \log(n^{n})$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) = O(n \log n)$$

$$\log n! = \Omega(n \log n)$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2}-1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \quad \vee \quad \vee \quad \parallel \quad \vee \quad \vee \quad \parallel$$

$$\frac{\left(\frac{n}{2}\right)^{\frac{n}{2}}}{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2}\log\frac{n}{2}$$

$$\Rightarrow \log(n!) \ge \Omega(n \log n)$$

Today's Keywords

- Divide and Conquer
- Sorting
- Quicksort
- Decision Tree
- Worst case lower bound

CLRS Readings

- Chapter 7
- Chapter 8

Homeworks

- HW2 due 11pm tonight!
 - Divide and conquer
 - Closest Pair of Points
 - Remember to submit relevant .java or .py files (no .zip!)
- HW3 due 11pm Wednesday Feb. 20
 - Divide and conquer
 - Written (use LaTeX!)

Quicksort

- Idea: pick a pivot element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

• Given: a list, a pivot value p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

Quicksort Run Time

• If the partition is always $\frac{n}{10}$ th order statistic:

Quicksort Run Time

• If the partition is always $\frac{n}{10}$ th order statistic:

Quicksort Run Time

• If the partition is always d^{th} order statistic:

• Then we shorten by d each time T(n) = T(n - d) + n $T(n) = O(n^2)$

What's the probability of this occurring?

Probability of n^2 run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivot are among d smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\left(\frac{n}{d}\right)!}$$

Random Pivot

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

- Remember, run time counts comparisons!
- Quicksort only compares against the pivot
 - Element *i* only compared to element *j* if one of them was the pivot

Partition (Divide step)

• Given: a list, a pivot value p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

• What is the probability of comparing two given elements?

- (Probability of comparing 3 and 4) = 1
 - Why?
 - Otherwise I wouldn't know which came first
 - ANY sorting algorithm must compare adjacent elements

• What is the probability of comparing two given elements?

- (Probability of comparing 1 and 12) = $\frac{2}{12}$
 - Why?
 - We only compare 1 with 12 if either was chosen as the first pivot
 - Otherwise they would be divided into opposite sublists

- Probability of comparing i and j (where j > i):
 - inversely proportional to the number of elements
 between *i* and *j*

•
$$\frac{2}{j-i+1}$$

• Expected (average) number of comparisons:

•
$$\sum_{i < j} \frac{2}{j - i + 1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 2 are chosen as pivot (these will always be compared)

Sum so far:
$$\frac{2}{2}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 3 are chosen as pivot (but not if 2 is ever chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 4 are chosen as pivot (but not if 2 or 3 are chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 12 are chosen as pivot (but not if 2 -> 11 are chosen)

Overall sum:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n}$$

Expected number of Comparisons

$$\sum_{i < j} \frac{2}{j - i + 1}$$

When
$$i = 1$$
: $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$

n terms overall

$$\sum_{i < j} \frac{2}{j - i + 1} \le 2n \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \quad \Theta(\log n)$$

Quicksort overall: expected $\Theta(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$
 - Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than
 O(n log n)
- Non-existence proof!
 - Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort

 $O(n \log n)$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with many computers