
Warm up
Show log $! = Θ($ log $)

Hint: show $! ≤ $+

Hint 2: show $! ≥ +
-

.
/

CS4102 Algorithms
Spring 2019

1

2

!! = ! ⋅ ! − 1 ⋅ ! − 2 ⋅ … ⋅ 2 ⋅ 1

!) = ! ⋅ ! ⋅ ! ⋅ … ⋅ ! ⋅ !

= < < < <
!! ≤ !)
⇒ log !! ≤ log !)

log !! = 0 ! log !

⇒ log !! ≤ ! log !
⇒ log !! = 0(! log !)

3

!! = ! ⋅ ! − 1 ⋅ ! − 2 ⋅ … ⋅ !2 ⋅
!
2 − 1 ⋅ … ⋅ 2 ⋅ 1

!
2

)
* = !

2 ⋅
!
2 ⋅ !

2 ⋅ … ⋅ !2 ⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=

!! ≥ !
2

)
*

⇒ log !! ≥ log !
2

)
*

⇒ log !! ≥ !
2 log

!
2

⇒ log !! = Ω(! log !)

log !! = Ω ! log !

> =

Today’s Keywords

• Divide and Conquer
• Sorting
• Quicksort
• Decision Tree
• Worst case lower bound

4

CLRS Readings

• Chapter 7
• Chapter 8

5

Homeworks

• HW2 due 11pm tonight!
– Divide and conquer
– Closest Pair of Points
– Remember to submit relevant .java or .py files (no .zip!)

• HW3 due 11pm Wednesday Feb. 20
– Divide and conquer
– Written (use LaTeX!)

6

Quicksort

• Idea: pick a pivot element, recursively sort two sublists around
that element

• Divide: select an element !, Partition(!)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

7

Partition (Divide step)

• Given: a list, a pivot value !

8

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Is it worth it?

• Using Quickselect to pick median guarantees Θ(# log #) run
time
– Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely

9

Quicksort Run Time

10

! " = ! "
10 + ! 9"

10 + "

• If the partition is always ()*
th order statistic:

!

" ! = " !
10 + " 9!

10 + !

⁄! 10 ⁄9! 10

⁄! 100 ⁄9! 100 ⁄9! 100 ⁄81! 100

… … … …

1
1

1
1

!

!/10 9!/10

!/100 9!/100 9!/100 81!/100

1
1

1

1

!

!

!

+

+ + +

+
+

+

log ./
0
!

Quicksort Run Time

12

! " = ! "
10 + ! 9"

10 + "

• If the partition is always ()*
th order statistic:

! " = Θ(" log ")

Quicksort Run Time

• Then we shorten by ! each time

13

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

" # = " # − ! + #

• If the partition is always !th order statistic:

" # = '(#))
What’s the probability of this occurring?

Probability of !" run time

We must consistently select pivot from within
the first # terms

14

Probability first pivot is among # smallest: $%

Probability second pivot is among # smallest: $
%&$

Probability all pivot are among # smallest:
#
! ⋅

#
! − # ⋅

#
! − 2# ⋅ … ⋅

#
2# ⋅ 1 =

1
!
!

Random Pivot

• Using Quickselect to pick median guarantees Θ(# log #) run
time
– Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely

15

Formal Argument for ! log ! Average

• Remember, run time counts comparisons!
• Quicksort only compares against the pivot
– Element % only compared to element & if one of

them was the pivot

16

Partition (Divide step)

• Given: a list, a pivot value !

17

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Formal Argument for ! log ! Average

• What is the probability of comparing two
given elements?

18

1 2 3 4 5 6 7 8 9 10 11 12

• (Probability of comparing 3 and 4) =
– Why?
• Otherwise I wouldn’t know which came first

• ANY sorting algorithm must compare adjacent elements

1

Formal Argument for ! log ! Average

• What is the probability of comparing two
given elements?

19

1 2 3 4 5 6 7 8 9 10 11 12

• (Probability of comparing 1 and 12) =
– Why?
• We only compare 1 with 12 if either was chosen as the

first pivot

• Otherwise they would be divided into opposite sublists

2
12

Formal Argument for ! log ! Average

• Probability of comparing % and & (where & > %):
– inversely proportional to the number of elements

between % and &
• (
)*+,-

• Expected (average) number of comparisons:

• ∑+/) (
)*+,-

20

Expected number of Comparisons
!
"#$

2
& − (+ 1

21

Consider when (= 1

Sum so far: ,,

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

Expected number of Comparisons
!
"#$

2
& − (+ 1

22

Consider when (= 1

Sum so far: ,, +
,
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot
(but not if 2 is ever chosen)

Expected number of Comparisons
!
"#$

2
& − (+ 1

23

Consider when (= 1

Sum so far: ,, +
,
- +

,
.

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot
(but not if 2 or 3 are chosen)

Expected number of Comparisons
!
"#$

2
& − (+ 1

24

Consider when (= 1

Overall sum: ,, +
,
- +

,
. +

,
/ + ⋯+ ,

1

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot
(but not if 2 -> 11 are chosen)

Expected number of Comparisons
!
"#$

2
& − (+ 1

25

When (= 1: 2 ,
- +

,
. +

,
/ +⋯+ ,

1

2 terms overall

!
"#$

2
& − (+ 1 ≤ 22 1

2 +
1
3 +⋯+ 12 Θ(log 2)

Quicksort overall: expected Θ 2 log 2

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

26

!(# log #)
!(# log #)

!(# log #)

!(#()
!(#()

Can we do better than !(# log #)?

Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than
!(# log #)

• Non-existence proof!
– Very hard to do

27

Strategy: Decision Tree

28

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

• Sorting algorithms use comparisons to figure out the
order of input elements

• Draw tree to illustrate all possible execution paths

Possible
execution path

Strategy: Decision Tree

29

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …
… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

• Worst case run time is the longest execution path
• i.e., “height” of the decision tree

Possible
execution path

!! Possible permutations

log !!
Θ(! log !)

Strategy: Decision Tree

30

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

• Conclusion: Worst Case Optimal run time of sorting is
Θ(# log #)
– There is no (comparison-based) sorting algorithm with run time
((# log #)

Possible
execution path

#! Possible permutations

log #!
Θ(# log #)

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms
– Bubblesort
– Insertionsort
– Heapsort

31

!(# log #)
!(# log #)

!(# log #)

!(#()
!(#()

Optimal!

Optimal!

Optimal!

Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with many computers 32

