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Today’s Keywords

• Divide and Conquer
• Sorting
• Quicksort
• Decision Tree
• Worst case lower bound
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CLRS Readings

• Chapter 7
• Chapter 8
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Homeworks

• HW2 due 11pm tonight!
– Divide and conquer
– Closest Pair of Points
– Remember to submit relevant .java or .py files (no .zip!)

• HW3 due 11pm Wednesday Feb. 20
– Divide and conquer
– Written (use LaTeX!)
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Quicksort

• Idea: pick a pivot element, recursively sort two sublists around 
that element

• Divide: select an element !, Partition(!)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!
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Partition (Divide step)

• Given: a list, a pivot value !
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Is it worth it?

• Using Quickselect to pick median guarantees Θ(# log #) run 
time
– Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely
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Quicksort Run Time
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• If the partition is always ()*
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Quicksort Run Time
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! " = ! "
10 + ! 9"
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• If the partition is always ()*
th order statistic:

! " = Θ(" log ")



Quicksort Run Time

• Then we shorten by ! each time
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1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

" # = " # − ! + #

• If the partition is always !th order statistic:

" # = '(#))
What’s the probability of this occurring?



Probability of !" run time

We must consistently select pivot from within 
the first # terms
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Probability first pivot is among # smallest: $%

Probability second pivot is among # smallest: $
%&$

Probability all pivot are among # smallest:
#
! ⋅

#
! − # ⋅

#
! − 2# ⋅ … ⋅

#
2# ⋅ 1 =

1
!
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Random Pivot

• Using Quickselect to pick median guarantees Θ(# log #) run 
time
– Approach has very large constants
– If you really want Θ(# log #), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(# log #) time
• Why? Unbalanced partitions are very unlikely
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Formal Argument for ! log ! Average

• Remember, run time counts comparisons!
• Quicksort only compares against the pivot
– Element % only compared to element & if one of 

them was the pivot
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Partition (Divide step)

• Given: a list, a pivot value !
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < ! on left, all > ! on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Formal Argument for ! log ! Average

• What is the probability of comparing two 
given elements?
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1 2 3 4 5 6 7 8 9 10 11 12

• (Probability of comparing 3 and 4) = 
– Why? 
• Otherwise I wouldn’t know which came first

• ANY sorting algorithm must compare adjacent elements
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Formal Argument for ! log ! Average

• What is the probability of comparing two 
given elements?
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1 2 3 4 5 6 7 8 9 10 11 12

• (Probability of comparing 1 and 12) =
– Why?
• We only compare 1 with 12 if either was chosen as the 

first pivot

• Otherwise they would be divided into opposite sublists

2
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Formal Argument for ! log ! Average

• Probability of comparing % and & (where & > %):
– inversely proportional to the number of elements 

between % and &
• (
)*+,-

• Expected (average) number of comparisons:

• ∑+/) (
)*+,-
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Expected number of Comparisons
!
"#$

2
& − ( + 1
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Consider when ( = 1

Sum so far: ,,

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)



Expected number of Comparisons
!
"#$

2
& − ( + 1
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Consider when ( = 1

Sum so far: ,, +
,
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot
(but not if 2 is ever chosen)



Expected number of Comparisons
!
"#$

2
& − ( + 1
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Consider when ( = 1

Sum so far: ,, +
,
- +

,
.

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot
(but not if 2 or 3 are chosen)



Expected number of Comparisons
!
"#$

2
& − ( + 1
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Consider when ( = 1

Overall sum: ,, +
,
- +

,
. +

,
/ + ⋯+ ,

1

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot
(but not if 2 -> 11 are chosen)



Expected number of Comparisons
!
"#$

2
& − ( + 1
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When ( = 1:   2 ,
- +

,
. +

,
/ +⋯+ ,

1

2 terms overall

!
"#$

2
& − ( + 1 ≤ 22 1

2 +
1
3 +⋯+ 12 Θ(log 2)

Quicksort overall: expected Θ 2 log 2



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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!(# log #)
!(# log #)

!(# log #)

!(#()
!(#()

Can we do better than !(# log #)?



Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 
!(# log #)

• Non-existence proof!
– Very hard to do
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Strategy: Decision Tree
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order of input elements
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Strategy: Decision Tree

29

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …
… … … …

><

< >

< > >> >

<

< <<

>

One 
comparison Result of 

comparison

Permutation 
of sorted list

• Worst case run time is the longest execution path
• i.e., “height” of the decision tree
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Θ(! log !)



Strategy: Decision Tree
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comparison Result of 
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• Conclusion: Worst Case Optimal run time of sorting is 
Θ(# log #)
– There is no (comparison-based) sorting algorithm with run time 
((# log #)
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Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms
– Bubblesort
– Insertionsort
– Heapsort
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!(# log #)
!(# log #)

!(# log #)
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Optimal!
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Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with many computers 32


