CS4102 Algorithms

Warm up

Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (%)



logn! = O(nlogn)

nNn=n-n-1)-n-2)-..-2-1

| N\ N\ N N
n“"=n- n - n -...n-n

n! <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)




-2 \2
V V V | \V/ Vol
n
-3 33 wd 1 ean
7’1!2(%)g
= log(n!) = log ((5)2)
n

= log(n!) = = > log2
= log(n!) = Q(nlogn)



Today’s Keywords

Divide and Conquer
Sorting

Quicksort

Decision Tree

Worst case lower bound



CLRS Readings

* Chapter 7
* Chapter 8



Homeworks

* HW2 due 11pm tonight!

— Divide and conquer

— Closest Pair of Points

— Remember to submit relevant .java or .py files (no .zip!)
e HW3 due 11pm Wednesday Feb. 20

— Divide and conquer

— Written (use LaTeX!)



ldea:

Quicksort

pick a pivot element, recursively sort two sublists around

that element

Divic
Cono

e: select an element p, Partition(p)
uer: recursively sort left and right sublists

Com

nine: Nothing!



Partition (Divide step)

* Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right




Is it worth it?

* Using Quickselect to pick median guarantees ©®(nlogn) run
time
— Approach has very large constants
— If you really want ©(n logn), better off using MergeSort

* Better approach: Random pivot

— Very small constant (very fast algorithm)

— Expected to run in @(nlogn) time
 Why? Unbalanced partitions are very unlikely



Quicksort Run Time

. 0
.
T(n)=T(f—O)+T((i—g)+n

f the partition is always :—Oth order statistic:

10



f0/q
T(n) =T@)+T(2—g)+n
n n
n
n/10 n/10 n 9n/10 9n/10 .
100 e N\ 90/100 9n/100e" g 817/100
n/100| +/9n/100 |+ 9n/100|+|81n/100 n
1 1
_I_
1| 1
+ 11

>10g(

10

)Tl



Quicksort Run Time

. 0
.
T(n)=T(f—O)+T((i—g)+n

T(n) = O(nlogn)

f the partition is always :—Oth order statistic:

12



Quicksort Run Time

* |f the partition is always d*" order statistic:

_

 Then we shorten by d each time
Tn)=Tn—d)+n

T(n) = 0(n?)

What'’s the probability of this occurring?

13



Probability of n* run time

We must consistently select pivot from within
the first d terms

Probability first pivot is among d smallest: %

o e : 1 d
Probability second pivot is among d smallest: —

Probability all pivot are among d smallest:
d d d d 1

E.n—d.n—Zd.""ﬁ.l (%)|




Random Pivot

* Using Quickselect to pick median guarantees ©®(nlogn) run
time
— Approach has very large constants
— If you really want ©(n logn), better off using MergeSort

* Better approach: Random pivot

— Very small constant (very fast algorithm)

— Expected to run in @(nlogn) time
 Why? Unbalanced partitions are very unlikely



Formal Argument for nlogn Average

e Remember, run time counts comparisons!

* Quicksort only compares against the pivot

— Element i only compared to element j if one of
them was the pivot



Partition (Divide step)

* Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right




Formal Argument for nlogn Average

 What is the probability of comparing two
given elements?

1 2 3 4 5 6 7 8 9 110 | 11 | 12

* (Probability of comparing3and4)=1
— Why?
* Otherwise | wouldn’t know which came first
* ANY sorting algorithm must compare adjacent elements



Formal Argument for nlogn Average

 What is the probability of comparing two
given elements?

1234567.9 10 | 11 | 12

* (Probability of comparing 1 and 12) = 12—2
— Why?

* We only compare 1 with 12 if either was chosen as the
first pivot

e Otherwise they would be divided into opposite sublists



Formal Argument for nlogn Average

* Probability of comparing i and j (where j > i):
— inversely proportional to the number of elements
between i and j

2
j—i+1

* Expected (average) number of comparisons:

.y 2

1<J j—i+1




Expected number of Comparisons

2
Consider wheni =1 ;j— i +1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far:E



Expected number of Comparisons

2
Consider wheni =1 ;j— i +1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 3 are chosen as pivot
(but not if 2 is ever chosen)

2 2
Sum so far:E + 3



Expected number of Comparisons

2
Consider wheni =1 ;j— i +1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 4 are chosen as pivot
(but not if 2 or 3 are chosen)

2 2 2
Sumso far:—=+ -+ -
2 3 4



Expected number of Comparisons

2
Consider wheni =1 ;j— i +1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 12 are chosen as pivot
(but not if 2 -> 11 are chosen)

Overallsum: 2+ 24+ 2424 ... 42
2 3 4 5 n



Expected number of Comparisons

z 2
j—i+1

<j

: 1,1, 1 1
Wheni = 1: 2(E+§+Z+°"+Z)

n terms overall

Y —g=2l(z+3++7) | dogn)

1<Jj

Quicksort overall: expected O(nlogn)

25



Sorting, so far

e Sorting algorithms we have discussed:

— Mergesort O(nlogn)
— Quicksort 0(nlogn)
e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)
— Heapsort O(nlogn)

Can we do better than O(nlogn)?

26



Worst Case Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)

* Non-existence proof!
— Very hard to do



Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the
order of input elements

* Draw tree to illustrate all possible execution paths

Possible Result of
comparison

execution path

[ >or<? ][ >or<? ][ p : [ >or<? ] >or<? ][ >or<? [ >or<?

Permutation

[ [1,2,3,4,5] ] [ [2,1,5,4,5] ] [ [5,24,1,3] ] [ 54,3,2,1] ] of sorted list

28



Strategy: Decision Tree

* Worst case run time is the longest execution path

* i.e., “height” of the decision tree

Possible Result of
comparison

execution path

log(n!)-‘[ >0r<? ][ >0r<? ][ . - [ >0r<? ] >or<? ][ >or<? [ 053
O(nlogn)

Permutation
of sorted list

i 12345 | [ 20%45 | | 524131 | - | 54321 |

\ )
|

n! Possible permutations

29



Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is

O(nlogn)
— There is no (comparison-based) sorting algorithm with run time
o(nlogn)
Possible Result of

comparison

execution path

log(n!)-‘[ >0r<? ][ >0r<? ][ . - [ >0r<? ] >or<? ][ >or<? [ 053
O(nlogn)

Permutation
of sorted list

i 12345 | [ 20%45 | | 524131 | - | 54321 |

\ )
|

n! Possible permutations

30



Sorting, so far

e Sorting algorithms we have discussed:

— Mergesort O(nlogn)  Optimal!

— Quicksort O(nlogn) Optimal!
e Other sorting algorithms

— Bubblesort 0(n?)

— Insertionsort 0(n?)

— Heapsort O(nlogn)  Optimal!

31



Speed Isn’t Everything

Important properties of sorting algorithms:

Run Time

— Asymptotic Complexity

— Constants

In Place (or In-Situ)

— Done with only constant additional space
Adaptive

— Faster if list is nearly sorted

Stable

— Equal elements remain in original order

Parallelizable
— Runs faster with many computers

32



