CS4102 Algorithms

Warm up
Show log(n!) = O(nlogn)

Hint: show n! < n™

Hint 2: show n! > (—721)_1;

2/13/19

logn! = O(nlogn)

n=n-m-1)-n—-2) ..-2-1
I AN N VARIVAN
n"=n- n - n -.on-n

nl <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)

logn! = Q(nlogn)

n!=n~(n—1)-(n—2)-...-—121-61—1)-...-2-1
Emom o o

(E) =55 3 = 1 .11
n!EGY

= log(n!) = log (3)'?)

= log(n!) zlzlloglzl
= log(n!) = Q(nlogn)

2/13/19

Today’s Keywords
* Divide and Conquer
* Sorting
* Quicksort

* Decision Tree

* Worst case lower bound

CLRS Readings

* Chapter7
* Chapter 8

Homeworks

HW2 due 11pm tonight!
— Divide and conquer
— Closest Pair of Points

— Remember to submit relevant .java or .py files (no .zip!)
HWS3 due 11pm Wednesday Feb. 20

— Divide and conquer

— Written (use LaTeX!)

Quicksort

* |dea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select an element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

2/13/19

Partition (Divide step)

* Given: alist, a pivot value p

Start: unordered list
.5|7|3|12|10|1|z|4|9|s|11|

Goal: All elements on left, all > p on right

Is it worth it?

* Using Quickselect to pick median guarantees @(nlogn) run
time
— Approach has very large constants
— If you really want O@(n logn), better off using MergeSort
* Better approach: Random pivot
— Very small constant (very fast algorithm)
— Expected to run in @(nlogn) time
* Why? Unbalanced partitions are very unlikely

Quicksort Run Time

* If the partition is always—lrglh order statistic:
T =T() +T@") +n
— 10 10

2/13/19

n

g1y

Quicksort Run Time
* If the partition is always—::)‘h order statistic:
n n
T(n) = T(To) +T&0) +n

T(n) = O(nlogn)

Quicksort Run Time

« If the partition is always dt" order statistic:

* Then we shorten by d each time
Tn)=Th—-d)+n
T(n) = 0(n%)

What's the probability of this occurring?

2/13/19

Probability of n? run time

We must consistently select pivot from within
the first d terms

Probability first pivot is among d smallest:—fl
Probability second pivot is among d smallest:n—fd
Probability all pivot are among d smallest:

d d d d 1
z'm'm*m‘@!

Random Pivot

* Using Quickselect to pick median guarantees @(nlogn) run
time
— Approach has very large constants
— If you really want ©(n logn), better off using MergeSort
* Better approach: Random pivot
— Very small constant (very fast algorithm)
— Expected to run in @(nlogn) time
* Why? Unbalanced partitions are very unlikely

Formal Argument for nlogn Average

* Remember, run time counts comparisons!
* Quicksort only compares against the pivot

— Element i only compared to element j if one of
them was the pivot

2/13/19

Partition (Divide step)

* Given: alist, a pivot value p

Start: unordered list
.5|7|3|12|10|1|z|4|9|s|11|

Goal: All elements on left, all > p on right

&l]]

Formal Argument for nlogn Average

* What is the probability of comparing two
given elements?

Il|2I3I4I5I6I7IBI9I1OI11I12I

* (Probability of comparing3and 4) =1
— Why?
* Otherwise | wouldn’t know which came first
* ANY sorting algorithm must compare adjacent elements

Formal Argument for nlogn Average

* What is the probability of comparing two
given elements?

Il|2|3|4|5|6|7.9|10|11|12|

a1 . 2
* (Probability of comparing 1 and 12) = =
— Why?
« We only compare 1 with 12 if either was chosen as the
first pivot
« Otherwise they would be divided into opposite sublists

2/13/19

Formal Argument for nlogn Average

* Probability of comparing i and j (where j > i):
— inversely proportional to the number of elements
between i and j
2
J—i+l
* Expected (average) number of comparisons:

2
L3 Y
EK] Toiri

Expected number of Comparisons

2
Consider wheni =1 ;;‘ —i+1

IlIZI3I4I5I6I7IBI9I1OI11I12I
Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far: 5

Expected number of Comparisons

2
Consider wheni =1 Z}:j —i+1

IlIZI3I4I5I6I7IEI9I10|11|12|
Compared if 1 or 3 are chosen as pivot
(but not if 2 is ever chosen)

2, 2
Sum so far.; +5

2/13/19

Expected number of Comparisons

2
Consider wheni =1 ij —i+1

LR]
Compared if 1 or 4 are chosen as pivot
(but not if 2 or 3 are chosen)

2 2 2
Sum so far: s+t

Expected number of Comparisons

2
Consider wheni =1 ;;‘ —i+1

|1|2I3I4I5I6I7IBI9I10|11|12|
Compared if 1 or 12 are chosen as pivot
(but not if 2 -> 11 are chosen)

2,2,2,2 2
Overall SUM:S 4= 4=

Expected number of Comparisons
2
Zj —i+1
i<j
Wheni=1: 2 (—: +-; +-: + 4—;)

n terms overall

TSt | edogn)

Quicksort overall: expected ©(n logn)

2/13/19

Sorting, so far

Sorting algorithms we have discussed:

— Mergesort O(nlogn)
— Quicksort O(nlogn)
* Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)
— Heapsort O(nlogn)

Can we do better than O(nlogn)?

Worst Case Lower Bounds
* Prove that there is no algorithm which can sort faster than
O(nlogn)
* Non-existence proof!
— Very hard to do

Strategy: Decision Tree
* Sorting algorithms use comparisons to figure out the
order of input elements
* Draw tree to illustrate all possible execution paths

Possible Result of
execution path comparison

Permuts

of sorted lis

2/13/19

Strategy: Decision Tree

* Worst case run time is the longest execution path
* i.e., “height” of the decision tree

Possible Result of
comparison

execution path
-

log(n!) =4

O(nlogn)

. Permutation
G -)
)

n! Possible permutation

Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is

O(nlogn)
— There is no (comparison-based) sorting algorithm with run time
o(nlogn)
Possible Result of
comparison

execution path
<

log(n!) =4

0(nlogn)

Permutation

I [1,2,3,4,5] I

of sorted list

I [5,2,4,1,3] | " I [5,4,32,1] I
J

n! Possible permutations

10

Sorting, so far

Sorting algorithms we have discussed:

— Mergesort O(nlogn) Optimal!

— Quicksort O(nlogn) Optimal!
* Other sorting algorithms

— Bubblesort 0(n?)

— Insertionsort 0(n?)

— Heapsort O(nlogn) Optimal!

2/13/19

Speed Isn’t Everything

Run Time

— Asymptotic Complexity

— Constants

In Place (or In-Situ)

— Done with only constant additional space

Adaptive

— Faster if list is nearly sorted

Stable

— Equal elements remain in original order

Parallelizable
— Runs faster with many computers

Important properties of sorting algorithms:

11

