CS4102 Algorithms Spring 2019

Warm up

Show $\log(n!) = \Theta(n \log n)$

Hint: show $n! \le n^n$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n! = O(n \log n)$

 $n! \le n^n$

 $\Rightarrow \log(n!) \le \log(n^n)$

 $\Rightarrow \log(n!) \le n \log n$ $\Rightarrow \log(n!) = O(n \log n)$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot 1$$

$$\Rightarrow \log(n!) \ge \frac{n}{2} \log \frac{n}{2}$$

$$\Rightarrow \log(n!) = \overline{\Omega}(n \log n)$$

 $\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$ $\Rightarrow \log(n!) \ge \frac{n}{2}\log\frac{n}{2}$ $\Rightarrow \log(n!) = \Omega(n\log n)$

Today's Keywords • Divide and Conquer • Sorting • Quicksort • Decision Tree • Worst case lower bound	
4	
CLRS Readings • Chapter 7 • Chapter 8	
	1
Homeworks • HW2 due 11pm tonight! - Divide and conquer - Closest Pair of Points - Remember to submit relevant .java or .py files (no .zip!) • HW3 due 11pm Wednesday Feb. 20 - Divide and conquer - Written (use LaTeX!)	

Quicksort

- Idea: pick a pivot element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

• Given: a list, a pivot value p

Start: unordered list

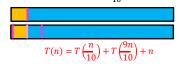
Goal: All elements < p on left, all > p on right

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n\log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

Quicksort Run Time

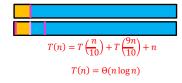
• If the partition is always $\frac{n}{10}$ th order statistic:



 $T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$ n = n

Quicksort Run Time

• If the partition is always $\frac{n}{10}$ th order statistic:



Quicksort Run Time

• If the partition is always d^{th} order statistic:

1 2 3 5 6 4 7 8 10 9 11 12

• Then we shorten by d each time T(n) = T(n-d) + n $T(n) = O(n^2)$

What's the probability of this occurring?

Probability of n^2 run time

We must consistently select pivot from within the first \boldsymbol{d} terms

Probability first pivot is among d smallest $\frac{d}{d}$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivot are among \boldsymbol{d} smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\binom{n}{d}}$$

Random Pivot

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n\log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

Formal Argument for $n \log n$ Average

- Remember, run time counts comparisons!
- Quicksort only compares against the pivot
 - Element i only compared to element j if one of them was the $\operatorname{\underline{pivot}}$

Partition (Divide step)

• Given: a list, a pivot value p

Start: unordered list

Goal: All elements < p on left, all > p on right

17

Formal Argument for $n \log n$ Average

- What is the probability of comparing two given elements?
 - 1 2 3 4 5 6 7 8 9 10 11 12
- (Probability of comparing 3 and 4) = 1
 - Why?
 - Otherwise I wouldn't know which came first
 - ANY sorting algorithm must compare adjacent elements

Formal Argument for $n \log n$ Average

- What is the probability of comparing two given elements?
 - 1 2 3 4 5 6 7 8 9 10 11 12
- (Probability of comparing 1 and 12) = $\frac{2}{12}$ Why?
 - We only compare 1 with 12 if either was chosen as the first pivot
 - Otherwise they would be divided into opposite sublists

19

Formal Argument for $n \log n$ Average

- Probability of comparing i and j (where j > i):
 - $-\,$ inversely proportional to the number of elements between i and j

$$-\frac{2}{j-i+1}$$

- Expected (average) number of comparisons:
 - $\sum_{i < j} \frac{2}{j-i+1}$

Expected number of Comparisons

Consider when i=1

 $\sum_{i \le i} \frac{2}{j-i+1}$

Compared if 1 or 2 are chosen as pivot (these will always be compared)

Sum so far: $\frac{2}{2}$

Expected	number	of Com	naricono
Expected	number	or com	parisons

Consider when i=1

$$\sum_{j=i+1}^{\infty} \frac{2}{j-i+1}$$

Compared if 1 or 3 are chosen as pivot (but not if 2 is ever chosen)

Sum so far: $\frac{2}{2} + \frac{2}{3}$

Expected number of Comparisons Consider when i=1 $\sum_{i \in J} \frac{2}{J-i+1}$

Consider when i = 1

$$\sum_{i < j} \frac{2}{j - i + 1}$$

Compared if 1 or 4 are chosen as pivot (but not if 2 or 3 are chosen)

Sum so far: $\frac{2}{2} + \frac{2}{3} + \frac{2}{4}$

Expected number of Comparisons

Consider when i=1

$$\sum_{i=i+1}^{2}$$

	1	2	3	4	5	6	7	8	9	10	11	12
--	---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 12 are chosen as pivot (but not if 2 -> 11 are chosen)

Overall sum: $\frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n}$

$$\sum_{i \le i} \frac{2}{j-i+1}$$

When i = 1: $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$

n terms overall

$$\sum_{i < j} \frac{2}{j - i + 1} \le 2n \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \quad \Theta(\log n)$$

Quicksort overall: expected $\Theta(n \log n)$

Sorting, so far

• Sorting algorithms we have discussed:

 $\begin{array}{ll} - \mbox{ Mergesort } & O(n \log n) \\ - \mbox{ Quicksort } & O(n \log n) \end{array}$

• Other sorting algorithms (will discuss):

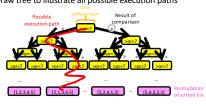
- Bubblesort $O(n^2)$ - Insertionsort $O(n^2)$ - Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

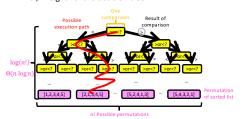
Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $\mathcal{O}(n\log n)$
- Non-existence proof!
 - Very hard to do

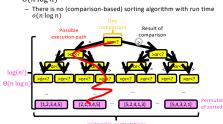
- Strategy: Decision Tree
 Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths



- Strategy: Decision Tree
 Worst case run time is the longest execution path
- i.e., "height" of the decision tree



- Strategy: Decision Tree Conclusion: Worst Case Optimal run time of sorting is $\Theta(n\log n)$



Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal! Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms
 - Bubblesort $O(n^2)$ $- \\Insertions or t$ $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

- Speed Isn't Everything
 Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
- Equal elements remain in original order
- Parallelizable
 - Runs faster with many computers