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TWO NETWORK TRANSFORMATIONS

JOHN L. PFALTZ

Abstract. In this paper, we study relational networks. They may be as large as social
networks or as small as neural networks. We employ the concepts of closure and

closure operators to describe their structures, and introduce the idea of functional

transformation to model their dynamic qualities.
One transformation, ω, reduces a complex network to a much simpler form, yet

preserves important properties such as path connectivity and centrality measures.

The other transformation, ε, expands a network by using grammar-like productions.
Both are continuous (with respect to closure) and we show that ε is effectively ω−1

in that ω·ε·ω = ω.

It is thought that ω may model human memory consolidation and that ε may
model memory reconstruction.

1. Introduction

A network, N = (N, η), is a finite collection N of elements, frequently called
nodes together with a reflexive relation η on N . While η is a relation, it is often
convenient to treat it as an operator, that is, given y ∈ N , {y}.η = {z|(y, z) ∈ η}
which is called the neighborhood of y. (Operators, and later transformations, which
are functions that map sets into sets are denoted by Greek characters. We denote
their application to specific set arguments using a suffix notation to indicate that
they are not ordinary functions.) An operator, η, is said to be extensible if

Y.η =
⋃
y∈Y
{y}.η

A relational operator, η, can be arbitrarily complex, but if it is extensible, then it
can be visualized as a kind of “adjacency” operator denoting the adjacent neighbors
of elements inN and we can depict these networks as simple graphs, such as that of
Figure 1.1 We assume extensibility for all neighborhood operators, η, in this paper.
Proposition 1.2, which is central to our development, requires it. However, to
achieve maximal generality, we will not require the relation η to be symmetric until
Section 3.1. Consequently, some of the connections can be directional, denoted by

MSC (2010): primary 54A05.
Keywords: closure operator, continuous map, network centrality, chordless cycle.
1With the most general interpretation of η, a network is essentially a “hypergraph”. For

instance, one might have X.η = X ∪ {a}, Y.η = Y ∪ {b}, but (X ∪ Y ).η = X ∪ Y ∪ {abc}.
79
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Figure 1. A small network illustrating η on 10 elements.

the arrow heads. Others are symmetric, or bi-directional, to minimize clutter we
omit any arrow heads on them. In Figure 1, {d}.η = {abdfhg}, {fi}.η = {cefih}.2

It is doubtful if any real networks of interest actually look like Figure 1. We
know that real networks, be they neural networks or social networks of individuals,
are much larger and much more complex. Moreover, they are subject to constant
dynamic change. Nevertheless, graphical depictions such as this figure are useful
in visualizing basic concepts.

Since η is reflexive, Y ⊆ Y.η. In some textbooks [3, 15], this is called a closed
neighborhood of Y ; and Y.η − Y is called an open neighborhood.3 These are not
terms we will use in this paper. We call Y.η − Y the halo around Y . It will be
important in Section 3.

A path in N of length n is a sequence of elements 〈y0, y1, . . . , yn〉, yi ∈ N such
that yi+1 ∈ {yi}.η, for 0 ≤ i ≤ n − 1. If y0 6= y1 and y0 = yn, the path sequence
is said to be a cycle, C, of length n.

A pair of nodes yi, yk in a cycle, C, is said to constitute a chord if yk ∈ {yi}.η
and |k − i| > 1 and i, k 6= 0, n. A cycle C of length ≥ 4 is said to be chordless if
there are no chords in C. In Figure 1, the sequence of nodes C1 = 〈a, c, f, i, e, a〉
is a cycle. {c}.η = {ce} is a chord in that cycle. C2 = 〈c, e, i, f, c〉 is a chordless
cycle. So is C3 = 〈a, c, b, d, a〉. Both have be slightly emboldened in Figure 1 The
order of the bi-directional links (b, c) and (d, b) is reversed in C4 = 〈f, d, b, c, f〉.

If a collection of subsets {Ci} of elements in N has the property that no set
Ci is completely contained in another, that is if Ci 6⊂ Ck for all i 6= k, and
N = ∪i Ci, then N and the subsets Ci are said to constitute a Sperner system.
Such systems are so called after Emanuel Sperner who first described them [11].
With a little thought, we see that if Ci and Ck are chordless cycles, then Ci cannot
contain Ck, or vice versa because the larger cycle must contain a chord. Consider
C1 = {a, c, e, f, i} and C2 = {c, e, f, i}, now just as sets of elements. C2 is a subset
of C1 so C1 cannot be chordless, and indeed it is not, the edge (c, e) is a chord.
Consequently, a system of chordless cycles {Ci} constitutes a Sperner system, N ,
with each cycle being a unique set in this system.

Let S be any set of elements, possibly the set N of nodes in a network. An
operator ϕ is said to be a closure operator if for all subsets X, Y ,

2One might expect to denote the neighborhood of a single node, such as d, in Figure 1, by

d.η. But, η is a mapping on the powerset, 2N , of N ; that is 2N
η−→ 2N

′
. Therefore, {d} denotes

a particular singleton set of 2N . Eliding the braces has caused confusion in earlier papers.
3Many authors prefer to use Y.η\Y to denote set difference.
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(C1) Y ⊆ Y.ϕ, (expansive),
(C2) X ⊆ Y implies X.ϕ ⊆ Y.ϕ, (monotone),
(C3) Y.ϕ.ϕ = Y.ϕ, (idempotent).

Such a system (S, ϕ) is called a closure system. A set Y is said to be closed if
Y.ϕ = Y . Closure operators have been widely studied, c.f. [5,6,10,12,16,20–22,36].
The concept of closure is fundamental to our way of approaching the properties
of discrete networks. Since ϕ is expansive (C1), in any network N , the set of all
nodes N must itself be closed.

There are alternative definitions of closure systems and closure operators. For
example, let C denote an arbitrary collection of sets {Yi}. This collection, C, is
a closure system if

(C4) (∀i) Yi ∈ C implies
⋂
i Yi ∈ C (closure under all intersections)

Proposition 1.1 is well known, but it is worth repeating here.

Proposition 1.1. Let (S, ϕ) be a finite system whose operator ϕ satisfies the
axioms (C1), (C2), and (C3), then (C4) is true for all subsets Y ⊆ S such that
Y.ϕ = Y , (a closed subset). Conversely, if C is a collection of sets such that (C4)
is true, then an operator ϕ defined Y.ϕ =

⋂
Z∈C{Y ⊆ Z} will satisfy (C1), (C2)

and (C3).

Given the importance of the neighborhood concept η, we define the neighborhood
closure operator4 ϕη to be

Y.ϕη = {x|{x}.η ⊆ Y.η}. (1.1)

Effectively, Y.ϕη consists of all elements of Y itself, plus those adjacent elements
x with no larger a relational horizon than that of Y . In a social network, this
is indeed a “closed” group! While there can be many closure operators, such as
transitive closure, on a set of elements, we are solely concerned with ϕη in this
paper. Readily, for all Y ,

Y ⊆ Y.ϕη ⊆ Y.η. (1.2)

Proposition 1.2. If η is an extensible operator, then ϕη is a closure operator.

Proof. (C1) Readily, Y ⊆ Y.ϕη by definition.
(C2) Let X ⊆ Y and let z ∈ X.ϕη. By (1.1) {z}.η ⊆ X.η ⊆ Y.η , hence,

z ∈ Y.ϕη.
(C3) Let z ∈ Y.ϕη.ϕη. Then, {z}.η ⊆ Y.ϕη.η =

⋃
x∈Y.ϕη{x}.η ⊆ Y.η, hence,

z ∈ Y.ϕη. �

To see why extensibility is required to establish (C3), let N = {a, b, c} and let
{a}.η = {ab}, {b}.η = {ab}, {c}.η = {c}, but {ab}.η = {abc}. η is not extensible
and {a}.ϕη.ϕη = {ab}.ϕη = {abc} 6= {ab} = {a}.ϕη, so ϕη as defined by (1.1) is
not idempotent. (We often elide the commas when denoting a set by enumeration.)

Proposition 1.3. If X.η ⊆ Y.η then X.ϕη ⊆ Y.ϕη.

Proof. Let X.η ⊆ Y.η. Let z ∈ X.ϕη then {z}.η ⊆ X.η ⊆ Y.η. Hence z ∈
Y.ϕη. �

4Neighborhood closure has been called “experiential” and “relational” closure in other papers
[27,28].
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One might expect that every point in a discrete network must be closed, e.g.
{x}.ϕη = {x}. But, this need not be true, as shown in Figure 1. Here, {d}.η =
{abdfgh} and {g}.η = {dgh}, so {d}.ϕη = {dg}. Similarly, j ∈ {h}.ϕη.

Equation (1.2) suggests an effective computer algorithm to calculate the closure
Y.ϕη of any set Y . Initially, let Y.ϕη = Y ; then since Y.ϕη ⊆ Y.η examine only
the points z in the halo, Y.η − Y , of Y . If {z}.η ⊆ Y.η, add z to Y.ϕη.

We say η1 ⊆ η2 if for all Y, Y.η1 ⊆ Y.η2. (If one thinks in terms of simple
graphs, then E1 ⊆ E2.) Given Proposition 1.3, one would expect that we could
prove a proposition of the form η1 ⊆ η2 implies ϕη1 ⊆ ϕη2. But neighborhood
closure is more complex than that. Consider two neighborhood operators η1, η2
defined on a set N = {a, b, c} as shown in Table 1.

Table 1. Two neighborhood operators η1 and η2 on N and their closure operators ϕη1, ϕη2.

N η1 η2 ϕη1 ϕη2
{a} {ab} ⊆ {abc} {ab} ⊆ {abc}
{b} {ab} = {ab} {ab} ⊇ {b}
{c} {c} ⊆ {ac} {c} = {c}

Readily, η1 ⊆ η2 in that {x}.η1 ⊆ {x}.η2 for all x ∈ N , but no consistent pattern
exists between ϕη1 and ϕη2. (a 6∈ {b}.ϕη2 because although a ∈ η2, {a}.η2 =
{abc} 6⊆ {b}.η2.)

We can, however, prove the weaker assertion,

Proposition 1.4. Let η1 ⊆ η2. For any Y ⊆ S, if Y.η2 = Y.η1 then Y.ϕη2 ⊆
Y.ϕη1.

Proof. Let Y be such that Y.η2 = Y.η1. Then,

Y.ϕη2 = ∪z∈Y.η2
{{z}.η2 ⊆ Y.η2}

⊆ ∪z∈Y.η2
{{z}.η1 ⊆ Y.η2} since {z}.η1 ⊆ {z}.η2

= ∪z∈Y.η1
{{z}.η1 ⊆ Y.η1} since Y.η1 = Y.η2

= Y.ϕη1.

�

The second line of Table 1 illustrates this result.

2. Network transformations

By a transformation N τ−→ N ′ of a network N = (N, η), we mean a mapping
between the powersets of nodes N,N ′ of two networks N ,N ′ a function τ mapping

the subsets of N onto subsets of N ′, that is 2N
τ−→ 2N ‘. The concepts of operator

and transformation are indistinguishable, except that the domain and codomain
of an operator are the same set, whereas with a transformation they may be
distinct. The important property of transformations is that they map sets onto
sets, therefore, Y.τ = ∅ is meaningful and provides a way of functionally deleting
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elements from a discrete domain N . Similarly ∅.τ = X ′ is a well-defined function
introducing new elements to the codomain N ′.

A transformation, τ , is said to be monotone if for all non-empty X,Y ,5 X ⊆ Y
implies X.τ ⊆ Y.τ . All operators and transformations considered in this paper
will be monotone. Without monotonicity, very little can be proved. Observe that
an operator corresponding to a binary relation is always monotone.

We will say that a transformation τ : (N, η) → (N ′, η′) is continuous with
respect to closure operators ϕ,ϕ′ on N and N ′, respectively, if for all subsets
Y ⊆ N ,

Y.ϕ.τ ⊆ Y.τ.ϕ′. (2.1)

This definition can also be found in [21, 26, 31]. Continuous transformations pre-
serve the closure structure of the network.

The first five propositions are true for all closure operators, ϕ. In Section 2.1
we specifically address ϕη. Here, (N,ϕ) denotes any set N of elements with any
closure operator ϕ. The following proposition is proved in [31].

Proposition 2.1. Given networks N = (N,ϕ),N ′ = (N ′, ϕ′),N ′′ = (N ′′, ϕ′′).

Let N σ−→ N ′, N ′ τ−→ N ′′ be monotone transformations. If both σ and τ are

continuous, then so is N σ.τ−→ N ′′.

Continuous transformations of discrete spaces exhibit many of the properties of
continuous real functions with which we are more familiar. For example, let f be
a function f : R→ R; if f is continuous and X ′ is open/closed in R, then f−1(X ′)
is open/closed in R.

Proposition 2.2. Let (N,ϕ)
τ−→ (N ′, ϕ′) be monotone and continuous with

Y ⊆ N . If Y ′ = Y.τ is closed then Y.ϕ.τ = Y ′.

Proof. Let Y.τ be closed in N ′. Because τ is continuous Y.ϕ.τ ⊆ Y.τ.ϕ′ = Y.τ ,
since Y.τ is closed. By monotonicity, Y.τ ⊆ Y.ϕ.τ , so Y.ϕ.τ = Y.τ . �

One can also consider closure preserving transformations which map closed sets
in N onto closed sets in N ′.6 It is apparent that the composition of closure
preserving transformations is closure preserving. The following two propositions
can be found in [31].

Proposition 2.3. A transformation (N,ϕ)
τ−→ (N ′, ϕ′) is closure preserving

if and only if for all Y ⊆ N , Y.τ.ϕ′ ⊆ Y.ϕ.τ .

Consequently,

Proposition 2.4. A monotone transformation (N,ϕ)
τ−→ (N ′, ϕ′) is closure

preserving and continuous if and only if, for all Y ⊆ N , Y.ϕ.τ = Y.τ.ϕ′.

5This condition is important because although we may want ∅.τ = X′ to be non-empty, we

generally do not want to have X′ ⊆ Y ′ = Y.τ just because for all Y , ∅ ⊆ Y .
6The topological term “closed” is traditional for structure preserving maps, whether expressed

in terms of open sets or closed sets. But, it is most unfortunate in this context, where the multiple
meanings can lead to confusion.
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A common way of defining a network transformation (N, η)
τ−→ (N ′, η′) is to

first define {y}.τ for all singleton sets in N and then extend this to all Y ⊆ N
by Y.τ =

⋃
y∈Y {y}.τ . That is, we can consider extensible transformations, just as

we have extensible operators. We call an extensible transformation, τ , complete if
N.τ = N ′. Any extensible transformation is, by construction, monotone.

Proposition 2.5. If an extensible transformation, (N, η)
τ−→ (N ′, η′) is com-

plete, then for all y′ ∈ Y ′ = Y.τ, there exists y ∈ Y such that y′ ∈ {y}.τ .

Proof. Let y′ ∈ Y ′. By construction Y ′ =
⋃
y∈Y {y}.τ , hence, y′ ∈ {y}.τ for

some y ∈ Y . �

Note that this is quite different from asserting a true inverse existence, that for
all y′ ∈ Y ′, there exists some y ∈ Y such that {y}.τ = {y′}. To get some sense
of the import of this “weak inverse existence” proposition, consider the simple
transformation τ of Figure 2.

x y
x’ y’

z’
τ

Figure 2. A transformation τ with multiple definitions.

If we define τ on N by {x}.τ = {x′} and {y}.τ = {y′}, then by extension
{xy}.τ = {x′y′} and {z′} has no pre-image; so N.τ 6= N ′. However, if we let
{x}.τ = {x′z′}, {y}.τ = {y′z′}, then {xy}.τ = x′y′z′. Now N.τ = N ′, so τ
is a complete transformation. Proposition 2.5 is clearly satisfied. A complete
transformation τ need not be surjective. In the example above, {x′, y′} ∈ 2N

′
has

no preimage in 2N .

2.1. Neighborhood transformations

The preceding assertions are true for all transformations, τ . Now we focus specif-
ically on neighborhood transformations. It is the neighborhood, Y.η, which is
central. In Section 1, extensibility was necessary to ensure that ϕη was a closure
operator; it is equally important here.

Proposition 2.6. If η is extensible, the following three statements are equiva-
lent.

(a) X ⊆ Y.ϕη,
(b) X.η ⊆ Y.η,
(c) X.η − Y ⊆ Y.η − Y .

Proof. By extension, the first equivalence is simply a restatement of the def-
inition of neighborhood closure. Proof of the second equivalence is straightfor-
ward. �

Thus, besides Y itself, the haloes of all elements x comprising Y.ϕη must be
contained in the halo of Y .

By (2.1), continuity is defined in terms of subsets Y . The following proposition,
similar to one in [25], shows that we need only consider singleton subsets.
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Proposition 2.7. Let (N, η)
τ−→ (N ′, η′) be extensible. If τ is not continuous,

there exists Y ⊆ N , and z ∈ Y.η such that either

(1) {z′} 6∈ Y.τ.η′

or

(2) {z}.η ⊆ Y.η and {z′}.η′ 6⊆ Y.τ.η′

where {z′} = {z}.τ .

Proof. Since τ is not continuous, there exists Y such that Y.ϕη.τ 6⊆ Y.τ.ϕη′ .
Thus, ∃z′ ∈ Y.ϕη.τ, z′ 6∈ Y.τ.ϕη′ . By, Prop. 2.5, ∃z ∈ Y.ϕη such that z′ ∈ {z}.τ .
z 6∈ Y else z′ ∈ Y.τ . Consequently, z ∈ Y.η and {z}.η ⊆ Y.η. Now, since
z′ 6∈ Y.τ.ϕη′ we know that either (1) z′ 6∈ Y.τ.η′ or (2) {z′}.η′ 6⊆ Y.τ.η′. �

This proposition establishes that if τ is discontinuous anywhere, then it will be
discontinuous at, or near, a single element. One need not consider all subsets
of 2N . Just as is the case with classical function theory, discontinuity, and thus
continuity, is a local phenomena. Moreover, Proposition 2.7 provides conditions
(1) and (2) which are necessary, but not sufficient to demonstrate discontinuity. If,
for a point z ∈ N, neither condition (1) nor (2) holds, we say that τ is continuous
at y. If either condition holds, other criteria must be used, such as Proposition
2.8 below.

We have said that a transformation N
τ−→ N ′ is monotone if for all non-empty

X,Y , X ⊆ Y implies X.τ ⊆ Y.τ . Let (N, η)
τ−→ (N ′, η′) be a transformation

between two networks. The transformation τ is said to be neighborhood monotone
if X.η ⊆ Y.η implies X.τ.η′ ⊆ Y.τ.η′. A transformation that is monotone need not
be neighborhood monotone, and conversely.

Proposition 2.8. Let (N, η)
τ−→ (N ′, η′) be extensible, then τ is continuous if

and only if τ is neighborhood monotone.

Proof. Let τ be continuous and let X.η ⊆ Y.η. By Proposition 1.3, X ⊆ X.ϕη ⊆
Y.ϕη . Thus, X.τ ⊆ Y.ϕη.τ ⊆ Y.τ.ϕ′η by continuity. So X.τ.η′ ⊆ Y.τ.η′.

Conversely, let τ be neighborhood extensible. Since x.η ⊆ Y.η ⇒ x.τ.η′ ⊆ Y.τ.η′
we have

u ∈ Y.ϕη.τ = {x|{x}.η ⊆ Y.η}.τ
⊆ {x|{x}.τ.η′ ⊆ Y.τ.η′}.τ,

thus there exists x such that u ∈ {x}.τ and {x}.τ.η′ ⊆ Y.τ.η′ thus {u}.η′ ⊆
{x}.τ.η′ ⊆ Y.τ.η′. Therefore, u ∈ Y.τ.ϕη′ . �

3. The omega transformation, ω

Because the structure of large networks can be so difficult to comprehend, it is
natural to seek techniques for reducing their size, while still preserving certain
essential properties [1,14], often by selective sampling [19]. Our approach is some-
what different. We view “structure” through the lens of neighborhood closure,
which we then use to find the unique irreducible sub-network T ⊆ N .

A graph, or network, is said to be irreducible if every singleton subset {y} is
closed. A node z is subsumed by a node y if z ∈ {y}.ϕη, or equivalently, because
we are concerned with neighborhood closure, if {z}.η ⊆ {y}.η. Since in this case,
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z contributes very little to our understanding of the closure structure of N , its
removal will result in little loss of information. If a node z is subsumed by y
(z ∈ {y}.ϕη), we say that z belongs to y, and denote the set of all nodes belonging
to y by {y}.β. Readily, y ∈ {y}.β.

The ω transformation, which has been previously described in [24,25,29], maps
any symmetric network N = (N, η) onto an irreducible subgraph. It is iteratively
defined as ω = ω1.ω2. · · · .ωk where, ωi : N i → N i+1. Here N i+1 = (Ni+1, ηi+1) is
a subgraph of (Ni, ηi) consisting of chosen nodes which are not mutually subsumed,
but any other node is subsumed by some of them. The binary relation ηi+1 is the
restriction of ηi on this subset. Thus, the transformation ωi is determined as the
mapping 2Ni → 2Ni+1 given by the full preimage of the embedding Ni+1 → Ni,
i.e. Y.ωi = {x ∈ Y |x ∈ Ni+1} = Y ∩ Ni+1. The composition terminates when
ωi = ωi+1. Since this process is dependent on the choice of elements, single
steps are not uniquely determined. However, as will be further proved, the final
transformation ω is independent of this choice.

This ω transformation is easily programmed as a while loop shown in Figure
3. Operationally, it is easiest to search the halo {y}.η − {y} of each node y, and
test whether {z}.η ⊆ {y}.η as shown in the code fragment. It requires initial
order on elements which determine the order of subsumption and, therefore, the
choice of elements. This iterative reduction process we denote by ω. Since this

while there exist subsumable nodes

{

for_each y in N

{

get {y}.nbhd

for_each z in {y}.nbhd - {y}

{

if ({z}.nbhd contained_in {y}.nbhd

{ // z is subsumed by y

remove z from network

union {z}.beta with {y}.beta

}

}

}

}

Figure 3. Pseudo code for the inner loop of ω.

process must loop over each node in the network, and since one can construct
pathological examples such as Figure 4 in which only one node is subsumed with
each iteration, the theoretical order of complexity is O(ω) = n2, if nodes are
encountered in subscript order. So worst case behavior is O(n2). However, in
practice it is much better. On a variety of networks with n ≥ 1, 000 nodes, the
maximum number of iterations required has been 6, with each succeeding iteration
over many fewer nodes. We do not know its expected order of complexity, but it
appears to be fast and efficient.
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Figure 4. Reduction, ω, has worst case O(n2) behavior.

Readily, the iterative loop in ω terminates when every singleton node {y} is
closed. Therefore, N .ω is irreducible. We call N .ω the irreducible trace of N and
denote it by T .7

The behavior of ω may be more easily understood by an example. Figure 5(a) is
an 18 node network that was presented in [33] to test matrix-oriented eigenvector
algorithms. The dashed lines of Figure 5(b) delimit {y}.β, that is, sets of nodes
that have the same closure properties. For example, node 9 is subsumed by 3,
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Figure 5. Stages in the execution of ω.

because {9}.η = {3, 9, 10} ⊆ {1, 3, 9, 10, 18} = {3}.η. So 9 ∈ {3}.β. Similarly,
5 is subsumed by 2 because {5}.η = {1, 2, 5, 7, 15} ⊆ {1, 2, 4, 5, 6, 7, 8, 15} = {2}.η,
whence 5 ∈ {2}.β.

Figure 5(c) illustrates the trace, T , of Figure 5(a). The figures [n] in brackets
denote those cardinalities with |{y}.β| > 1.

The order in which nodes, or more accurately the singleton subsets, of N are
encountered in the outer loop of Figure 3 arbitrarily determines which points are
subsumed and subsequently deleted. For example, node 9 could also have been
subsumed by 10, instead of 3. Nevertheless, we show below that the reduced trace,
T = N .ω, will be unique, up to isomorphism. Two networks are isomorphic,
denoted N = (N, η) ∼= N ′ = (N ′, η′), if there exists a 1 – 1 function i where
i : N → N ′ and for all x, y ∈ N , x ∈ {y}.η if and only if i(x) ∈ i({y}.η′).

Proposition 3.1. Let T = N .ω and T ′ = N .ω′ be two irreducible subsets of
a finite network N , then T ∼= T ′.

7 In [25], N .ω was called the “irreducible spine” of N .
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Proof. Suppose T 6= T ′. Let y0 ∈ N , y0 6∈ T ′, so ∃y1 ∈ T where y0 ∈ {y1}.ϕη,
or equivalently, {y0}.η ⊆ {y1}.η. y1 6∈ T because y0 ∈ {y1}.ϕη would contradict
the irreducible nature of T . Since y1 6∈ T , there must exist y2 ∈ T such that
y1 ∈ {y2}.ϕη. If y2 = y0 we are done, and i(y0) = y2 is part of the desired
isomorphism, i.

In fact, we must have y2 = y0, because supposing y0 ∈ {y1}.ϕη implies {y0}.η ⊆
{y1}.η; y1 ∈ {y2}.ϕη implies {y1}.η ⊆ {y2}.η; so {y0}.η ⊆ {y2}.η and thus y0 ∈
{y2}.ϕη. But this contradicts the assumption that y0, y2 ∈ T which is irreducible.

�

It is instructive to see just how these isomorphic copies arise. Consider Figure 6.
Here, {y0}.ϕη = {y1}.ϕη independently of what other nodes might be connected to

y
1

0
y

x z

Figure 6. {y0}.ϕη = {y1}.ϕη . Either can subsume the other.

x and z. Thus, either could subsume the other depending on which is encountered
first in the outer loop of Figure 3.

We characterize the nature of the irreducible trace, T = N .ω, of any finite
network, N in the following proposition.

Proposition 3.2. Let y ∈ T = N .ω with N finite. If z ∈ {y}.η, then there
exists a path 〈y, z, . . .〉 terminating in a chordless cycle of length ≥ 4.

Proof. Let z ∈ {y}.η. Let y0 = y, y1 = z. Since T is irreducible, y1 6∈ {y0}.ϕη,
so ∃y2 ∈ {y1}.η, y2 6∈ {y0}.η. Again, since T is irreducible, ∃y3 ∈ {y2}.η, y3 6∈
{y1}.η. else {y2}.η ⊆ {y1}.η contradicting irreducibility. But, possibly, y3 ∈ {y0}.η
in which case 〈y0, y1, y2, y3, y0〉 is the desired chordless cycle.

If y3 6∈ {y0}.η, irreducibility requires that ∃y4 ∈ {y3}.η, y4 6∈ {y2}.η. Again
possibly y4 ∈ {y1}.η or y4 ∈ {y0}.η, yielding a chordless cycle of length 4, or of
length 5.

Otherwise ∃y5 ∈ {y4}.η, y5 6∈ {y3}.η, and so on. Since N is finite, this con-
struction must terminate with the desired chordless cycle. �

We would observe that if T is irreducible and {y}.η = {y}, then y is an isolated
element of T .

Figure 5(c) which illustrates the irreducible trace T of Figure 5(a), is symmetric.
It is easier to visualize closure in symmetric networks. The irreducible trace T of
Figure 1 is shown in Figure 7. Again we denote |{y}.β| in square brackets. Observe
that, after j has been subsumed by h in the first iteration (and g subsumed by d),
h could in turn be subsumed by either d, f or i.

Proposition 3.2 assumes that η might be directed (asymmetric); the following
proposition assumes symmetry.
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Figure 7. Closed sets and the irreducible trace, T , of Figure 1.

Proposition 3.3. If η is a symmetric (undirected) relation on N and T = N .ω,
then for all y ∈ N , either

(a) y is an element in a chordless cycle of length ≥ 4, or
(b) y is an element in a path between two chordless cycles of length ≥ 4.

Proof. A proof similar to Proposition 3.2 can be found in [25]. �

The ω transformation has a number of valuable properties. In particular,

Proposition 3.4. The ω transformation is continuous.

Proof. First, consider any singleton node {z} that is subsumed by another node
{y}. So {z}.η ⊆ {y}.η and z ∈ {y}.ϕη. Call this step ωz. This ωz can be defined
for nodes by {z}.ωz = ∅ and {x}.ωz = {x′} for x 6= z, and for relation η by
{x}.ωz.η′ = {x}.η − {z} and ωz is the identity map for all nodes except those x
that interact with z. So {x}.η.ωz ⊆ {x′}.η′ with equality if z 6∈ {x}.η.

Now consider any set Y ,

Y.ϕη.ωz =
⋃

x∈Y.η
{x|{x}.η ⊆ Y.η}.ωz because ωz is extensible

⊆
⋃

x∈Y.η
{x|{x}.η.ωz ⊆ Y.η.ωz} because ωz is monotone

⊆
⋃

x∈Y.η′

{{x}.η′ ⊆ Y.η′} because {x}.η.ωz ⊆ {x}.η′

= Y.ωz.ϕη
′.

So ωz is continuous. By Proposition 2.1, ω is continuous. �

3.1. Centers and centrality

Concepts of “centrality” seem to be essentially meaningless unless the relationships
are symmetric. Consequently, in this section, and for the rest of the paper we will
assume that η is a symmetric relation.

Let σ(x, z) denote a shortest path (w.r.t. η) between x and z, that is 〈x, . . . , z〉
is of minimal length. σ(x, z) need not be unique, thus by the notation σ(x, y) =
〈x, . . . , z〉 we mean the latter is some shortest path from x to z. By the distance
between x and z, d(x, z), we mean the length of any shortest path σ(x, z).
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Proposition 3.5. Let σ(x, z) denote a shortest path between x and z. If x (or
z) subsumes y, y 6∈ {x, z}, then y 6∈ σ(x, z).

Proof. Suppose that σ(x, z) = 〈x, y, z0, . . . , zn = z〉. Since x subsumes y, y ∈
{x}.ϕη, or {y}.η ⊆ {x}.η implying z0 ∈ {x}.η yielding a shorter path 〈x, z0, . . . , z〉.

�

In other words, y can be removed from N with the certainty that if there
was a path from some node x to z through y, it was not a shortest path. Such
subsumed nodes can be iteratively removed from N without changing connectivity,
or distances, between retained nodes. In Figure 8, d(x, z) = 2. Any two of
{y0, y1, y2} may be subsumed by the remaining node yielding 3 possible isomorphic

�
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�
�

��
��
��
��

�������� ��

y
0

y
2

y
1

x z

Figure 8. Shortest path σ(x, z) where x, z ∈ T .

traces, T 0, T 1, T 2, while retaining a shortest path. Compare this with Figure 6.
A central quest in the analysis of social networks is the identification of its

“important” nodes. In social networks, “importance” may be defined with respect
to the path structure [13].

Those nodes CD = {y ∈ N} for which δ(y) =
∑
s6=y d(s, y) is minimal have

traditionally been called the center of N [15], they are “closest” to all other nodes.
It is well known that this subset of nodes must be edge connected. One may
assume that these nodes, in the “center”, of a network are “important” nodes.

Alternatively, one may consider those nodes which “connect” many other nodes,
or clusters of nodes, to be the “important” ones. Let σst(y) denote the number of
shortest paths σ(s, t) containing y; then those nodes y for which σst(y) is maximal
are those nodes that are involved in the most connections. Let CB = {y ∈ N}, for
which σst(y) is maximal. This is sometimes called betweenness centrality [4, 13].
(Note: traditionally, centrality measures are normalized to range between 0 and
1, but we will not need this for this paper.)

In the following sequence, we consider how reduction by ω affects the paths in
N , and especially the shortest paths on which notions of centrality are based.

Lemma 3.6. Let y ∈ T with z ∈ {y}.β and let σ(x, z) be a shortest path (in
N ) where x 6∈ {y}.β. There exists a path σ(x, y) such that |σ(x, y)| ≤ |σ(x, z)|.

Proof. We may assume σ(x, z) = 〈x, . . . , u, yi, . . . , z〉, where yi ∈ {y}.β. Since η
is symmetric, u ∈ {yi}.η, and we have σ(x, y) = 〈x, . . . , u, y〉, |σ(x, y)| ≤ |σ(x, z)|
with equality if and only if σ(x, z) = 〈x, . . . , u, z〉 and z ∈ {y}.η. �

Lemma 3.7. Let σ(x, z) be a path where x ∈ {w}.β, z ∈ {y}.β, w 6= y. There
exists u ∈ σ(x, z), u ∈ T .
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Proof. Suppose that σ(x, z) = 〈x = x0, x1, . . . , xk, z0, z1, . . . , zm = z〉, where
xi ∈ {w}.β, 0 ≤ i ≤ k and zj ∈ {y}.β, 0 ≤ j ≤ m. z0 ∈ {xk}.η implies
{z0}.η ⊆ {xk}.η, and repeating this observation indicates zj ∈ {w}.β, 0 ≤ j ≤ m.
Similarly xi ∈ {y}.β, 0 ≤ i ≤ k, contradicting the assumption that w 6= y.

So we have σ(x, z) = 〈x = x0, . . . , xk, u, z0, . . . , zm = z〉. If u 6∈ T , u ∈ {v}.β
for some v 6= w, y ∈ T and the same argument is repeated. �

Proposition 3.8. Let σ(x, z) be a shortest path in N , and let σ(x′, z′) ∈ T ,
where x′ = {x}.ω and z′ = {z}.ω. Then, |σ(x′, z′)| ≤ |σ(x, z)|.

Proof. If x, z ∈ T , the result is trivial.
If either x or z 6∈ T , then the result follows from Lemma 3.6.
If both x and z 6∈ T , then by Lemma 3.7 ∃u ∈ T , u ∈ σ(x, z) and by Lemma 3.6,

|σ(x′, z′)| = |σ(x′, u)|+ |σ(u, z′)| ≤ |σ(x, u)|+ |σ(u, z)| = |σ(x, z)|. �

Thus, paths of shortest length in N are preserved as paths that have no longer
length in T ; even though they may no longer be “shortest”. One would expect,
therefore, that nodes with minimal distance and maximal betweenness measures
will almost always be found in the irreducible trace T . This is non-trivial because
it need not always be true. One problem is that we may have several isomorphic
traces, T 1, . . . , T k, so we can only assert that CD ∩ T j and CB ∩ T j are non-
empty for some 1 ≤ j ≤ k. Second, there exist pathological cases where the
centers are disjoint from T . The network of Figure 4 is an example. If n = 8,
then CD = CB = y4 because 18 = δ(y4) < δ(y3) = δ(y5) = 19, and 24 = σst(y4) >
σst(y3) = σst(y5) = 23. But, y4 6∈ T . Still, for most networks, N , we have:

Proposition 3.9. The centers CD and CB of a network N are retained in
T = N .ω provided that N is reasonably large and balanced.

Proof. An unwieldy, sufficient condition for N to be balanced can be found in
[25]; but this condition is not at all necessary, and not worth repeating. �

The irreducible trace, T = N .ω, is a rather good abstraction of a symmetric
network, N .

4. The expansion transformation, ε

A phrase-structured grammar, G, is a system of transformations of the form A→ γ,
in which a non-terminal symbol A is rewritten as a substring γ. These have been
widely studied as a mechanism for generating linear strings, especially computer
code [7,17,37]. There have also been efforts to employ grammars as a mechanism
for generating/describing multi-dimensional structures [30,32,34,35]. These latter
efforts have been far less successful because of the difficulty of embedding the
re-written structure γ within the structure surrounding A. Readily, we expect
γ.η = A.η, but this still leaves the actual embedding of γ under-defined.

Another approach, called a neighborhood expansion grammar was explored in
[23]. Here, a subset Y of a growing structure is identified to be the neighborhood
of a new element p′. That is {p′}.η′ = Y ′ in the rewritten structure. It was felt
that this kind of grammar better explained how we naturally express ourselves by
adding thoughts incrementally rather than rewriting “placeholder” thoughts, i.e.
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non-terminal thoughts. Using this mechanism, one can functionally define various
network structures, such as the class of all chordal graphs [23].

We will use an expansion grammar to define T .ω−1 for any irreducible trace
T . We expand T by one node p at a time, where we choose an arbitrary element
y ∈ N , then choose and arbitrary subset Y ⊆ {y}.η and let {p}.η = Y ∪ {p}. We
denote this non-determinisitic expansion transformation by ε.

More formally, let N i = (Ni, ηi) be any network and let yi ∈ Ni. N i+1 =
(Ni+1, ηi+1) = N i.ε where Ni+1 = Ni ∪ {pi+1} and ηi+1|Ni

= ηi, {pi+1}.η ⊆
{yi}.η.

Proposition 4.1. Let T be irreducible and let T = N 0,N 1, . . . ,N i, . . . be any
sequence of networks such that Ni+1 = Ni.ε. For all i, k, N i.ω = N k.ω = T .

Proof. By Proposition 3.1, the order in which nodes are subsumed during reduc-
tion by ω is irrelevant. Consequently, we may assume that, since {p}i+1.η ⊆ {yi}.η,
pi+1 will be subsumed by yi in the first step of the reduction by ω, yielding N i.
The result follows by finite induction. �

This ε expansion transformation has been implemented using the following pseu-
docode in Figure 9. This implementation code is a bit more constrained than that

for all y in N

{

while (|{y}.beta| > 1)

{

create new node p;

Y = choose_random_in ({y}.nbhd);

{p}.nbhd = Y;

k = random_int(1, |{y}.beta|-1);

|{y}.beta| = |{y}.beta| - k;

|{p}.beta| = k;

add p to N;

}

}

Figure 9. Pseudocode implementing ε expansion.

described above where y can be any element in N . Since the reduction code of
Figure 3 records{y}.β, this code constrains y to be one in which |{y}.β| > 1. It
then decrements this “β-count” and randomly distributes part of the remainder
(if any) to the new node p.

Figure 10 shows three randomly generated networks, N a,N b,N c produced by
the code operating on the irreducible trace, T , of Figure 5(c). In each case, 8 new
nodes {a, b, . . . , g, h} were added. Observe that only nodes 2, 3, 15, and 17 serve
as yi in these expansions. In each network |Na| = |Nb| = |Nc| = 18, the size of
Figure 5(a); but the numbers of edges are 42, 48, and 55 respectively.

The reduction operator, ω, is continuous (Proposition 3.4), but the expansion
operator need not be.

Proposition 4.2. An expansion transformation (N,ϕη)
ε−→ (N ′, ϕη′) with

{p}.η′ = Y ∪ {p},
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Figure 10. Three expansions of the trace T of Figure 5(c).

for given p 6∈ N , N ′ = N{p}, Y ⊆ N , is discontinuous if and only if there exists
x 6∈ Y such that {x}.ϕη ∩ Y 6= ∅.

Proof. Suppose ε is discontinuous. Then, ∃X such that X.ϕη.ε 6⊆ X.ε.ϕη′ .

Because ε is an extensible transformation, ∃x ∈ X such that {x}.ϕη.ε 6⊆ {x}.ε.ϕη′ .

x 6∈ Y because if so {x}.η′ = {x}.η.ε ∪ {p} and so {x}.ϕη ⊆ {x}.ϕη′ .

Readily, if the second condition holds, then since {x}.ϕη ∩ Y 6= ∅, ∃y ∈ Y such
that y ∈ {x}.η, but p 6∈ {x}.η. Hence, y 6∈ {x}.ϕη′ . So ε is discontinuous. �

The following Figure 11 illustrates such a discontinuity. Here the expansion

y
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y’
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y’
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x

z

w. . . . . .

ε

Figure 11. A discontinuous ε transformation.

neighborhood is Y = {y, y1}; but y1 ∈ {x}.ϕη, so by Proposition 4.2, ε should
be discontinuous. In fact, {x}.ϕη.ε = {x′, y′} 6⊆ {x′} = {x}.ε.ϕη′ violating (2.1).
This example also illustrates Proposition 2.8, because ε is not neighborhood mono-
tone. {y1}.η = {x, y, y1} ⊆ {w, x, y, y1} = {x}.η, but {y1}.η.ε = {x′, y′, y′1, p′} 6⊆
{w′, x′, y′, y′1} = {x}.η.ε.

Two networks N 1, N 2 are said to be structurally similar if N 1.ω = N 2.ω, that
is, they have the same irreducible trace, T . Readily, structural similarity is an
equivalence relation. If, in addition, |N1| = |N2|, we say that they are strongly
similar. The three networks, N a,N b,N c of Figure 10 are strongly similar.

By Proposition 4.1, for all networks, N , we have N .ω.ε.ω = N .ω, or more
simply ω.ε.ω = ω. Thus, over the subspace of irreducible networks, T , we have
T .ε.ω = T , so ε functions as a left inverse of ω.
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5. Discussion and Possible Application

It is not unusual to write computer codes that analyze, or otherwise manipulate,
collections of related elements such as those of graphs, or networks. But, to the
author’s knowledge, the code of Figure 3 is the first to implement a well-defined,
network-valued function, ω, over the space of all networks. Real-valued functions
of a real variable can also be defined by computable expressions. In some cases,
particularly if the expression involves an infinite sum, such as the Riemann zeta
function

ζ(x) =

∞∑
k=1

k−x,

it may be difficult to determine whether the computation converges to a unique
value. Establishing that the computation of Figure 3 yields a unique network
(up to isomorphism) and is, therefore, a true function for all argument networks is
fundamental; as is establishing that it is continuous. Moreover, we have shown that
it is, by means of an expansion grammar, invertible over the space of symmetric
networks.

This ω transformation has several attractive properties. Even though it is
defined and implemented locally (the computer process need never access elements
more than two steps away), it nevertheless preserves global properties such as path
connectedness, and global centers with respect to distance and betweenness.

We have tried to be quite general in framing our definitions, such as the neigh-
borhood operator, η, which defines the relationships between the elements of the
network. However, to obtain many results we have explicitly acknowledged the
need for all operators to be monotone and extensible. Moreover, the centrality
properties of ω assume symmetric (undirected) neighborhoods, even though ω is
well-defined for both directed and undirected networks.

Networks are widely used to model the relationships found in many situations.
Closure concepts are thought to be an important mathematical tool for dealing
with these relational networks. The results of this paper would seem to support
this contention. For example, closure is thought to be relevant to cognitive pro-
cessing [9, 27, 28]. It is accepted that human cognition is realized by means of
neural circuitry, or neural networks, of some form. It has been proposed that
such cognitive events are preserved in long-term memory by chordless cycles such
as those that characterize the irreducible trace. It may well be that ω models
what psychologists call consolidation, a period when thoughts and experiences are
processed for long-term storage [18].

Psychologists also recognize that memories are not a mere recapitulation of some
stored structure, but rather an active neural process that embellishes whatever
was initially stored [2, 8]. The ε process feels very much like that. Neither it,
nor a memory of an event, may precisely duplicate the event (or neural network
representing it), but they will be very similar.

Finally, there is a growing thought that long-term memories may need to be
repeatedly recalled and rewritten. The observation that ω·ε·ω = ω seems quite
congruent to this idea.
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There is, as yet, no firm evidence that human memory can actually be modeled
by these abstract mathematical transformations; but the parallels are striking.
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