
Graph Similarity
Defined by Graph Transformation

John L. Pfaltz
Dept. of Computer Science, University of Virginia

jlp@virginia.edu

Abstract

Similarity is an important way of categorizing mathematical objects. In this paper
we consider how similarity between undirected graphs, or networks, can be de-
fined. We do this by reducing any undirected graph, G = (V,E) to its irreducible
spine, I . First we show that the reduction process, ω, is a unique transformation
and thus is a well-defined function. Each irreducible spine, I , thus defines an
equivalence class consisting of all graphs {Gi} such that Gi.ω = I .

Reduction by ω preserves many key properties. Specifically it preserves short-
est path lengths in I , and (under rather general conditions) preserves the location
of distance and betweeness centers. In essence, every member graph of the equiv-
alence class will have much the same path structure.

Next, an algorithm ε is presented which, given any irreducible spine I , will
generate (randomly) a graph Gk in the equivalence class defined by I , that is, we
must have Gk.ω = I . Since I.ε.ω = I , ε = ω−1.

It is of some importance in network analysis to be able to quantify the notion
of network similarity; to be able to say that a networkG1 is “closer” to the network
G2 than to G3. A popular method of comparing similarity between two networks
G1 and G2 is to calculate the Spearman coefficient based on corresponding node
degrees. We do this for 5 random graphs in the equivalence class of our running
example.

Finally, we show that any irreducible spine consists of a system of cycles,
which we show to be a matroid. We then note that every spine, I , is topologically
equivalent to a cubic graph. Thus individual cubic graphs generate a second, and
coarser, equivalence relation on the family of all undirected graphs, which we call
its genus.

Key words: Equivalence, Cubic graph, Closure, Undirected Graph, Irreducible

Preprint submitted to Discrete Mathematics November 20, 2018

1. Introduction

How similar is a graph G1 to a graph G2? This can be an important ques-
tion in many applied fields, including chemical structure analysis, data mining
algorithms, social network investigation and cognitive studies. Consequently,
there is no shortage of methods to measure graph “similarity”; the collection
[12, 19, 30, 31] provides a small representative sample. All are statistical in nature
and yield a “similarity value” in the range [0.0, 1.0]. Many are variations on the
Spearman rank correlation measure which we will explore in more detail in Sec-
tion 3. These similarity measures may have considerable value in applications,
but they are not examples of a mathematical “similarity” relation.

Let G = (V,E) denote a graph on a set V of elements, or vertices, with
an edge set E. For this paper we assume that the graph is undirected, that is
(x, y) ∈ E implies (y, x) ∈ E (or alternatively, E is a collection of 2-element
sets {x, y}).1 Mathematical similarity is an equivalence relation. That is, it is
reflexive (every graph G is similar to itself), symmetric (if G1 is similar to G2,
then G2 must be similar to G1) and transitive (if G1 is similar to G2 and G2 is
similar to G3 then G1 must be similar to G3 as well) [1, 27]. Any equivalence
relation, say ∼, partitions its domain into disjoint equivalence classes and such
a partition defines an equivalence. Two very simple equivalence relations are ∼1

and ∼2, where G ∼1 G
′ if |V | = |V ′| and G ∼2 G

′ if |E| = |E ′|. Equivalence
relations are closed under conjunction, that is ∼1 ∧ ∼2 = ∼3.

We will define a concept of similarity by means of graph transformation.
Readily, any functional transformation induces a similarity relation, by letting
X ∼ Y if f(X) = f(Y). Then the inverse image sets f−1(f(X)) become the
equivalence classes. The problem lies in establishing that the graph transforma-
tion is single-valued, and that its equivalence classes preserve some property of
interest.

1.1. Neighborhoods and Closure
By the neighborhood of a singleton set {x}, denoted {x}.η, we mean the set

of all y ∈ V such that (x, y) ∈ E. We assume that x ∈ {x}.η, so η is a reflexive

1Some of our results here can be formulated when the graphs are directed; but both their
statement and their proof tend to be messy.

2

(or expansive) operator.2 By the neighborhood of a set X , we mean

X.η = ∪x∈X{x}.η (1)

We denote operators such as η, which map sets into sets, using a suffix notation,
X.η, to distinguish them from more common single element valued functions,
such as f(x).

An operator ϕ is said to be a closure operator if for all X, Y ,
C1: X ⊆ X.ϕ (expansive),
C2: X ⊆ Y implies X.ϕ ⊆ Y.ϕ (monotone), and
C3: X.ϕ.ϕ = X.ϕ (idempotent)

Readily, the neighborhood operator, η, is expansive and monotone; but almost
never idempotent. Iterated neighborhood operations just keep getting bigger and
bigger. A set X is closed if X.ϕ = X . A graph G is said to be irreducible if all
its singleton subsets are closed; that is {x}.ϕ = {x}.

An operator that is defined by taking a union of smaller subsets, such as η in
(1), is said to be extensible. Because η is extensible, it can be represented by the
edges in a graph. A closure operator, ϕ, is not, in general, extensible

Using the neighborhood concept η, we can define the neighborhood closure
operator3 ϕη to be

Y.ϕη = {x|{x}.η ⊆ Y.η}. (2)

Effectively, Y.ϕη consists of all elements of Y itself, plus those adjacent elements
x with no larger a relational horizon than that of Y . In a social network, this is
indeed a “closed” group! While there can be many closure operators, such as
transitive closure, on an set of elements, we are solely concerned with ϕη in this
paper. Readily, for all Y ,

Y ⊆ Y.ϕη ⊆ Y.η. (3)

Proposition 1.1. If η is an extensible operator, then ϕη is a closure operator.

Proof: (C1) Readily, Y ⊆ Y.ϕη by definition.
(C2) Let X ⊆ Y and let z ∈ X.ϕη. By (2) {z}.η ⊆ X.η ⊆ Y.η hence z ∈ Y.ϕη.
(C3) Let z ∈ Y.ϕη.ϕη. Then {z}.η ⊆ Y.ϕη.η =

⋃
x∈Y.ϕη{x}.η ⊆ Y.η, hence z ∈ Y.ϕη.

2

2Some authors [1, 11] call this a closed neighborhood. But, we have a very different concept
of closure.

3Neighborhood closure has been called “experiential” and “relational” closure in other papers
[24, 25].

3

To see why extensibility is required to establish (C3), let V = {a, b, c} and
let {a}.η = {ab}, {b}.η = {ab}, {c}.η = {c}, but {ab}.η = {abc}. η is not
extensible and {a}.ϕη.ϕη = {ab}.ϕη = {abc} 6= {ab} = {a}.ϕη, so ϕη as
defined by (2) is not idempotent. (We often elide the commas when denoting a set
by enumeration.)

2. Graph Transformations

There are various ways of defining a transformation, f , between two graphs
G = (V,E) and G′ = (V ′, E ′). We denote a graph by its basic set of elements, or
vertices, V and some relation on these elements such as an edge setE. A common
way is to first define a function, f , that maps V into V ′ and constrain this function
to satisfy certain constraints with respect to the edge sets E and E ′. For example,
the traditional definition of a graph homomorphism requires that if (x, y) ∈ E
then (f(x), f(y)) ∈ E ′, c.f. [1, 11]. We, however, will employ a rather different
transformation concept.

A transformation, G
f−→ G′ between two graphs G = (V,E) and G′ =

(V ′, E ′), is a function f whose domain is 2V (the powerset of V) and whose
codomain is 2V

′ . It may be constrained to satisfy conditions on an operator over
these subsets of V and V ′, such as the edge operator E and E ′, or other operators
such as the neighborhood operator η or a closure operator ϕ. Readily, an operator
is just a transformation in which V ′ = V . A transformation is said to be monotone
if for all X, Y 6= Ø ⊆ V , if X ⊆ Y then X.f ⊆ Y.f .4 A transformation,
G

f−→ G′, is said to be continuous with respect to ϕ if for all Y , Y.ϕ.f ⊆ Y.f.ϕ′

[17, 28].

Proposition 2.1. If G
f−→ G′ and G′

g−→ G′′ are monotone, continuous transfor-
mations, then G

f.g−→ G′′ is monotone and continuous.

Proof: See [20].
We will not make much use of this continuity concept in this paper; but it can be
valuable when modeling dynamic systems.

There are an number of advantages to using this powerset approach. One is
that it supports a clean, functional way of adding and deleting elements in a graph.
To delete a subset X of elements, one can let X.f = Ø. Then by monotonicity,

4Requiring X,Y to be non-empty avoids several awkward problems.

4

for all Y with X ⊂ Y , Y.f ⊆ (Y \X).f . Similarly, one can add a subset X ′ to
the elements of V ′ by the function g in which Ø.g = X ′. Here the condition on
monotonicity is important because we don’t necessarily want Ø.g = X ′ ⊆ Y ′ =
Y.g for all Y ′ just because Ø ⊆ Y for all Y .

2.1. Graph Reduction, ω
Let G be a graph (V,E), with a neighborhood operator η. Suppose z ∈

{y}.ϕη, implying by (2) that {z}.η ⊆ {y}.η. Since {z}.ϕη ⊆ {y}.ϕη, the set
{z} contributes nothing to the closure structure of G; it can be removed from G
with little loss of information. We define the transformation ωz : G → G′ by
{z}.ωz = Ø where ωz is the identity map on V \{z} and {u′, v′} ∈ E ′ if and only
if {u, v} ∈ E, u, v 6= z. We say z belongs to y denoted by z ∈ {y}.β.5 It is not
hard to show that ωz is monotone. and continuous since z ∈ {y}.ϕη.

If ωz is iterated until there are no vertices y such that z ∈ {y}.ϕη then G is
irreducible. We call this irreducible subgraph, I , in which all singleton subsets
{y} are closed, the irreducible spine of G. The following computer procedure,
reduce implements ω.

while there exist reducible nodes
{
for_each y in V

{
get {y}.nbhd
for_each z in {y}.nbhd - {y}

{
if ({z}.nbhd contained_in {y}.nbhd

{ // z belongs to y
remove z from network
add z to {y}.beta
}

}
}

}

(Operators, such as contained in are features of our C++ implementation [18].)
It repeatedly sweeps through all vertices y ∈ V , deleting any vertices zi ∈ {y}.ϕη,
together with all edges incident to zi, until no such z remain in V . That is, ω =

5As with η, we also assume y ∈ {y}.β.

5

ωz1 ·ωz2· . . . ·ωzn . Since each ωzi is monotone and continuous, ω is as well, that is
Y.ϕη.ω ⊆ Y.ω.ϕη

′. The process terminates when every singleton subset {y} ⊆ I
is closed.6

Below we show thatG′ = G.ω is unique (up to isomorphism) regardless of the
order in which the vertices y ∈ V are visited by ω or the order in which vertices
z ∈ {y}.ϕη are deleted.

Proposition 2.2. Let I = G.ω and I ′ = G.ω′ be two irreducible subsets of a finite
graph G, then I ∼= I ′.

Proof: Suppose I 6= I ′. Let y0 ∈ I , y0 6∈ I ′, so ∃y1 ∈ I where y0 ∈ {y1}.ϕη, or equiv-
alently, {y0}.η ⊆ {y1}.η. y1 6∈ I because y0 ∈ {y1}.ϕη would contradict the irreducible
nature of I . Since y1 6∈ I , there must exist y2 ∈ I such that y1 ∈ {y2}.ϕη.
We claim y2 = y0, because if not, y0 ∈ {y1}.ϕη implies {y0}.η ⊆ {y1}.η; y1 ∈ {y2}.ϕη
implies {y1}.η ⊆ {y2}.η; so {y0}.η ⊆ {y2}.η and thus y0 ∈ {y2}.ϕη. But this contra-
dicts the assumption that y0, y2 ∈ I which is irreducible. Thus i(y0) = y2 is part of the
desired isometry, i. 2

In Figure 1, the graph G of 18 vertices is reduced to I = G.ω with 10 remain-
ing vertices. InG, the dashed lines denote the vertices that belong to 2′, 3′, 15′ and

ω

G I = G. ω

2

15

1

3

10

18

9

7

8
4

17

12

16

14

11

5

13

6

1’

10’

4’

18’

16’
11’

3’ [2]

2’ [5]

15’ [3]

17’ [2]

Figure 1: Reduction, ω, of a graph G to its spine I .

17′ respectively. For those vertices, |{y}.β| is represented by [n] in the figure. For
all other vertices, |{x}.β| = 1. (These values will be used in Section 2.2.)

6This procedure has been quite effective reducing large graphs |V | ≥ 1, 000, with at worst 6
iterative sweeps of V .

6

Reduction, G.ω, of G to an irreducible graph I has a number of interest-
ing properties. Let σ(x, z) denote a shortest path between x and y, that is
< x, . . . , y > is of minimal length. σ(x, y) need not be unique. By the distance
between x and y, d(x, y), we mean the length of any shortest path σ(x, y).

Proposition 2.3. Let σ(x, y) denote a shortest path between x and y. If z belongs
to y then z 6∈ σ(x, y).

Proof: Suppose not, that σ(x, y) = < x, . . . , xn, z, y >. Since z belongs to y, z ∈
{y}.ϕη, or {z}.η ⊆ {y}.η implying xn ∈ {y}.η yielding a shorter path< x, . . . , xn, y >.

2

In other words, z can be removed from V with the certainty that if there was a
path from some vertex x to y through z, it was not a shortest path. Such vertices
can be iteratively removed from V without changing connectivity, or distances,
between retained vertices. In Figure 2, d(x, y) = 2. Any two of {z0, z1, z2}
may be thought to belong to the remaining vertex yielding 3 possible isomorphic

�
�
�
�

�
�
�
�

��
��
��
��

�������� ��

z
0

z
2

z
1

x y

Figure 2: Shortest paths σ(x, y) between x and y ∈ G.

spines, I0, I1, I2, while retaining a shortest path. Figure 2 also illustrates a config-
uration that can occur in the proof of Proposition 2.2.

A central quest in the analysis of social networks is the identification of its
“important” vertices. In social networks, “importance” is often defined in terms
of the “hubs” of a network (a concept we explore more fully in Section 3, as well
as with respect to the path structure of the network [9].

Those vertices CD = {y ∈ V } for which δ(y) =
∑

s 6=y d(s, y) is minimal
have traditionally been called the center of G; they are “closest” to all other ver-
tices. It is well known that this subset of vertices must be edge connected [11].
One may assume that these vertices, in the “center”, of a graph are “important”
vertices.

Alternatively, one may consider those vertices which “connect” many other
vertices, or clusters of vertices, to be the “important” ones. Let σst(y) denote
the number of shortest paths σ(s, t) containing y; then those vertices y for which
σst(y) is maximal are those vertices that are involved in the most connections.

7

Let CB = {y ∈ V }, for which σst(y) is maximal. This is called betweenness
centrality [6, 9].

It can be shown that vertices with minimal distance and maximal betweenness
measures will almost always be found in, or adjacent to, the irreducible spine I .
This is non-trivial because it need not always be true. One problem is that, we
may have several isomorphic spines, I1, . . . , Ik, so we can only assert that CD∩Ij
and CB ∩ Ij are non-empty for some 1 ≤ j ≤ k. Second, there exist pathological
cases where the centers are completely disjoint from I . However,

Proposition 2.4. Let I be an irreducible spine of a graph G with centers CD and
CB. If for all y ∈ I ,

∑
x∈I,x 6=y |{x}.β| ≥ |{y}.β| and

∑
x∈I,x∈{y}.η |{x}.β| ≥

|{y}.β| then there exist xi ∈ I and yj ∈ I such that xi.η∩CD and yj.η∩CB 6= Ø.

Proof: A tedious proof can be found in [23] 2

The conditions of Proposition 2.4 are sufficient; but are by no means necessary.
In practice, one really only needs that I be sufficiently large, and that its reduced
subsets not be too unbalanced.

It turns out that the irreducible spine, I = G.ω, is a rather good abstraction of
a symmetric graph, G.

2.2. Graph Expansion, ε
It is fairly easy to define the treatment of edges in an operation, such as ω, that

contracts a graph. If Y
f−→ Ø, then all edges {y, z} such that y ∈ Y, z ∈ Y.η

can be deleted. Expanding a graph, Ø
g−→ Y ′, presents more problems. How

is Y ′ to be embedded in G′? One option is to employ an expansion grammar
ε, such as explored in [22]. Expansion grammars are quite different from phrase-
structured grammars in which a non-terminal symbolA is expanded with a rewrite
rule of the form A → σ, c.f. [26]. The problematic aspect of a phase-structured
grammar, explored by Ehrig in [8], is how will the right side σ of the rewrite rule
be embedded in the growing, non-linear structure.

In an expansion grammar, a subset Y of a growing structure is first identified
to be the neighborhood of the new element z′. That is {z′}.η′ = Y ⊆ V in the
rewritten structure. More precisely, εi : (Vi, Ei) → (Vi+1, Ei+1) where Vi+1 =
Vi ∪ {z′i}, Ei+1 = Ei ∪ {{yk, z′i}, yk ∈ Y ⊆ Vi} and εi : Ø = {z′i}.

For our purposes, we use a simple rewrite rule, r, in which Y can be any
subset of an existing neighborhood {y}.η, y ∈ Vi. Such a rewrite operation is
implemented by the following code.

8

for all y in V
{
while (|{y}.beta| > 1)

{
create new node z;
S = choose_random_in ({y}.nbhd);
{z}.nbhd = S;
k = random_int(1, |{y}.beta|-1);
|{y}.beta| = |{y}.beta| - k;
|{z}.beta| = k;
add {z} to N;
}

}

Figure 3 shows one possible application of this expansion grammar ε to the
graph I of Figure 1. Here, the rewrite rule r has been used 8 times, to create

ε

I = G. I.

a

e
g

h
d

b

c

f

ω ε

1

10

18

4

16
11

2

15

1

3

10

18

4

17

11
16

15 [3]

2 [5]

3 [2]

17 [2]

Figure 3: A member of I.ε where I = G.ω in Figure 1.

a, b, . . . h. The vertex d is generated by r using the neighborhood Y = {17} ⊆
{15, 17, 18} = {17}.η. So, {d}.η′ = {17} ⊂ {17}.η. The new vertex c was
attached to Y = {1, 15} ⊂ {1, 2, 3, 15} = {1}.η; and f was later attached to
{1, c} ⊂ {1}.η. Beause |{2}.β| = 5, five vertices {2, a, e, g, h} now belong to
{2} in I.ε.

2.3. The Inverse Set, ω−1

The two procedures ω and ε are intertwined. The requirement that {z′}.η =
Y ⊆ {y}.η ensures that if ω is applied to I.ε, z′ will at some iteration belong to y.
Thus, if I is irreducible, I.ε.ω = I This characteristic is evident in Figure 3 where

9

b will be reduced by 3, etc. It is also true for the graph I.ε of Figure 4 as well.
Consequently, ω is a right-inverse of ε over the subspace of irreducible undirected
graphs. The inverse of ω, that is G.ω.ω−1 is the collection of all undirected graphs
{Gk} such that Gk.ω = I = G.ω. Each invocation of the non-deterministic
procedure ε is single-valued; but ε is not a well defined function. The execution
of ε will yield just one graph, Gk ∈ G.ω.ω−1.

In the expansion operation ε, the choice of y ∈ Vi and the choice of Y ⊆
{yi}.η are completely arbitrary. Given different choices for y and Y yields Figure
4 which seems to be a far more interesting graph. Both Figures 3 and 4 were

ε

I = G. I.

d

c

a

h

e

g

b

f

εω

1

10

18

4

16
11

2

15

1

3

10

18

4

17

11
16

3 [2]

2 [5]

15 [3]

17 [2]

Figure 4: Another graph I.ε in I.ω−1.

generated by a computer version of ε using a random number generator.

3. How Similar are Similar Graphs

In social network analysis there is considerable emphasis on the hubs of the
network [13]. These vertices, which characteristically have high degree, are re-
garded as authorities that are frequently referenced. (In network analysis, it is
customary to call the vertices of the graph structure its “nodes”.) Consequently,
one of the more common similarity measures is a comparison of node degree,
that is the number of related nodes or |{y}.η| − 1. Do the hubs of one network
correspond to the hubs in the other network? All of the similarity measures in
[12, 19, 30] consider node degree.

The vertex of each network graph are sorted in descending order of their de-
grees. Those vertices common to both networks are then rank ordered with respect
to their degree. Network hubs have the highest (most significant) rank. The Spear-

10

man coefficient, ρ, can then be calculated as usual by:

ρ(G1, G2) = 1−
6 ·

∑
all vertices y(rank1(y)− rank2(y))2

n(n2 − 1)
(4)

where n denotes the number of vertices common to both graphs and the rank
of vertices with the same degree is the average of all ranks of vertices with that
degree.

Table 1 illustrates typical Spearman coefficients, ρ, for various initial network
graphs,G, and some expanded version, that isG.ω.ε. The columns labeled nG and

Graph nG eG hubs nω eω nε eε ρ

Figure 3 18 41 6 10 16 18 30 0.7614
Figure 4 18 41 6 10 16 18 46 0.9324
random 1 200 310 15 119 223 200 327 0.9353
random 2 200 355 14 147 302 200 350 0.9648
random 3 200 396 15 161 356 200 443 0.9687

Table 1: Similarity of original vs. reconstructed graphs based on vertex degrees.

eG denote the number of nodes and edges in the original graph G. The columns
labeled nω , eω , nε and eε denote the number of nodes and edges in G.ω and
G.ω.ε respectively. The final column is the Spearman coeficient, ρ between G
and G.ω.ε based on the rank correlation between the individual vertex degrees.
The first row describes properties of the small undirected graph, G and its spine
I = G.ω, shown in Figure 1, followed by it’s reconstruction G.ω.ε shown in
Figure 3. We consider it to have 6 hubs, that is vertices with |{y}.η| ≥ 6. We think
the low similarity measure is due to the relatively few reconstructed edges and to
the inherent variability of statistical results with small graphs. The second row
compares yet another reconstruction of the graph G in Figure 4. It seems much
more typical. By recording {y}.β, our reconstruction code knows how many
nodes were removed in the reduction process, and roughly where. Consequently,
nε always equals nG and so the reconstructed networks can be rather close.

To further illustrate the similiarity of reconstructed (expanded) graphs in ω−1

with their source, we generated random 200 vertex networks with roughly 300,
350, and 400 links, or edges, in each. The random process was skewed so that 15
vertices received probabilistic preference, and thus would emerge as hubs. These
constitute the final three rows of Table 1.

11

4. Cycle Systems

The irreducible spine in Figures 1, 3 and 4 consisting of 7 cycles of length
< 3, 3, 3, 4, 4, 4, 5 > each. All irreducible spines must be cycle systems such as
this.

Proposition 4.1. If y ∈ I = G.ω then y is an element of a chordless cycle of
length ≥ 4.

Proof: Let y0 = y ∈ I and let y1 ∈ {y0}.η. Since I is irreducible, {y1}.η 6⊆ {y0}.η, so
∃y2 ∈ {y1}.η, y2 6∈ {y0}.η. Again, since I is irreducible, ∃y3 ∈ {y2}.η, y3 6∈ {y1}.η.
else {y2}.η ⊆ {y1}.η contradicting irreducibility. But, possibly, y3 ∈ {y0}.η in which
case < y0, y1, y2, y3, y0 > is the desired chordless cycle.
If y3 6∈ {y0}.η, irreducibility requires that ∃y4 ∈ {y3}.η, y4 6∈ {y2}.η. Again possibly
y4 ∈ {y1}.η or y4 ∈ {y0}.η, yielding a chordless cycle of length 4, or of length 5.
Otherwise ∃y5 ∈ {y4}.η, y5 6∈ {y3}.η, and so on. Since V is finite, this construction must
terminate with the desired chordless cycle. 2

So, essentially, irreducible spines, I , must be cyclic structures. Even though there
are 3 triangles in Figures 1, 3 and 4 one can verify that the proposition is still true.

For any cycle, Ci in a graph G = (V,E), let Ċi = {yj}, yj ∈ V and let
C̄i = {(yj, yj+1}, (yj, yj+1) ∈ E. That is, ċi denotes the edges in the cycle and
C̄i denotes its edges. It is often clearer to describe cycle by enumerating their
constitutent nodes; but unless the cycle are “chordless” this need not be a unique
definition.

We define cycle composition Ci ◦ Ck to be

Ci ◦ Ck = (C̄i ∪ C̄k)∼(C̄i ∩ C̄k) (5)

For example, in the running cycle system I = G.ω of figures 1, 3, 4, 5 and 6,
let Ci =< 2, 4, 18, 10 > and Ck =< 2, 15, 17, 18, 4 > then readily Ci ◦ Ck =<
2, 15, 17, 18, 10 >

The first four propositions are easily derivable from the definition (5).

Proposition 4.2. For all i, k, Ci ◦ Ck = Ck ◦ Ci.

12

Proposition 4.3. For all i, k,m, Ci ◦ (Ck ◦ Cm) = (Ci ◦ Ck) ◦ Cm.

Proposition 4.4. For all i, Ci ◦ Ci = C∅ where Ċ∅ = Ø and C̄∅ = Ø.

Proposition 4.5. For all i, Ci ◦ C∅ = Ci.

Proposition 4.6.] If Cm = Ci ◦ Ck then Ck = Ci ◦ Cm.

Proof: Let Cm = Ci ◦ Ck, then Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck = Ci ◦ (Ci ◦ Ck) =
Ci ◦ Cm. 2

Proposition 4.7. If Ci 6= Ck then Ci ◦ Ck 6= C∅ for i 6= k.

Proof: Suppose Ci ◦ Ck = C∅, where i 6= k, then Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck =

Ci ◦ (Ci ◦ Ck) = Ci ◦ C∅ = Ci, or Ci = Ck contradicting the condition. 2

4.1. Cycle Systems as Matroids
Let C denote the collection of all cycles in a graph. A set S = {Ci} ⊆ C

of non-empty cycles is said to be dependent if there exists Cm ∈ S such that
Cm = Ci ◦ . . . ◦ Ck, where Ci . . . , Ck ∈ S. If S is not dependent, it is said to be
independent. Any cycle can be a member of an independent set.

Let Y = {C1, . . . , Ck} be a set of cycles. By the span of Y , denoted Y.σ,
we mean the set of all cycles {Cm} such that Cm = Ci ◦ . . . ◦ Cj ◦ . . . ◦ Ck,
where Cj ∈ Y .7 It is convenient to introduce a bit of new notation. Let Y ⊆ C be
some collection of cycles. We let Y ◦ denote the composition of all the cycles in
Y . Using this notation, we define Y.σ to be Y ∪ {X◦, X ⊆ Y, |X| > 1} Readily,
Y ⊆ Y.σ.

Proposition 4.8. Let Y ⊆ C be an independent collection of cycles. If Ci = X◦,
X ⊆ Y , then X is unique (in Y).

Proof: Let Ci = Y ◦. Suppose there exists Z ⊆ Y,Z 6= X such that Ci = Z◦.
|Z| ≥ 2 else Z = Ci contradicting assumed independence of Y . Let Ck ∈ Z, then
Ci = Ck ◦ (Z∼Ck)◦. By Prop. 4.6, Ck = Ci ◦ (Z∼Ck)◦, and Ck = (X◦) ◦ (Z∼Ck)◦
again contradicting the independence of Y . 2

7In graph theory, the term “span” usually refers to a tree whose nodes include all y ∈ N . Since
a tree has no cycles, it has no connection to our usage which is taken from the notion of spanning
vector spaces.

13

If an independent collection Y of cycles also spans C, we say Y is a basis for
C and normally denote such a set by B. There can be many bases B1,B2 . . . for C

Let B, where |B| = n, be a basis for C. So B spans C. By Prop. 4.8, every
subset Y ⊆ B is unique, so the cardinality of the cycle system, |C| = |{Y ⊆ B} =∑

1≤k≤nC(n, k) = 2n. In effect, Prop. 4.8 assures that the cardinality of every
basis must be the same. That all bases have the same cardinality is a principal
result in matroid theory. Here it follows from Proposition 4.8 before we establish
that a cycle system C actually is a matroid.8 We show that now.

Proposition 4.9. The spanning operator, σ is a closure operator over sets Y of
cycles.

Proof: Readily, σ is expansive and monotone.
Let Y be a set of cycles {Ci}. Suppose Cm ∈ Y.σ.σ implying that there exists some
sequence 1 ≤ i ≤ k such that Cm = C1 ◦ . . . ◦ Ci ◦ . . . ◦ Ck, where Ci ∈ Y.σ,
1 ≤ i ≤ k. Hence Ci = Ci1 ◦ . . . ◦ Cin where Cij ∈ Y .
Thus, substituting for each i in the sequence above forCm, we getCm = (C11 ◦ . . . ◦ C1n)

◦ (C21 ◦ . . . ◦ C2n) ◦ . . . ◦ (Ck1 ◦ . . . ◦ Ckn) implying Cm ∈ Y.σ. 2

A closure system is said to be a matroid if it satisfies the Steinitz-MacLane
exchange axiom [10, 14, 29], that is:

if x, y 6∈ Y.ϕ and y ∈ (Y ∪ x).ϕ then x ∈ (Y ∪ y).ϕ.
If ϕ satisfies the anti-exchange axiom [21], that is:

if x, y 6∈ Y.ϕ and y ∈ (Y ∪ x).ϕ then x 6∈ (Y ∪ y).ϕ
then the system is called an antimatroid.

Proposition 4.10. Let C be a normal cycle system and let σ be the spanning op-
erator. The system (C, σ) satisfies the Steinitz-Maclane exchange axioms and is
thus a matroid.

Proof: By Prop. 4.9, σ is a closure operator.
Let Ci, Ck 6⊆ Y.σ where Y = {. . . , Cj , . . .}. Suppose Ck ∈ (Y ∪ Ci).σ implying that
Ck = Ci ◦ (. . . Cj . . .) = Ci ◦ Cm where Cm ∈ Y.σ. Consequently, by Prop. 4.6,
Ci = Ck ◦ Cm or Ci ∈ (Y ∪ Ck).ϕ. 2

8Welsh [29] defines the “cycle matroid” of a graph in which any cycle is a dependent set of
edges, while trees are independent. Any maximal subtree is a basis. Our “cycle matroid” is quite
different.

14

Since C is a matroid, the cardinality of every maximal independent set is fixed
and this number, r, is the rank of the system. This was established earlier by
Proposition 4.8. Since any cycle system C constitutes a matroid, it satisfies the
following fundamental basis exchange theorem.

Proposition 4.11. Let B1 and B2 be any two bases of C, and let Ci ∈ B1. Then
there exists Ck ∈ B2 such that (B1∼Ci) ∪ Ck is a basis of C.

Matroids and vector spaces are more often characterized by this ability to arbitrar-
ily exchange basis elements. Proposition 4.6 effectively provides this ability.

Cycle systems derived from arbitrary undireced graphs by the reduction oper-
ator ω are most interesting mathematical objects. But, we will not develop these
matroid properties further in this paper, except use the concept of rank, r, in the
next section.

4.2. Normal and Cubic Cycle Systems
Every cycle system can be transformed into a normal form in which every node

is either binary or triadic (has degree 2 or 3). See Figure 5 for the normal form
of Figures 1, 3, 4. It is now easy to see that every cycle system in normal form is

I I in normal form

1’

10’

4’

18’

16’
11’

3’

15’

17’

2’

1’

10’

4’

18’

16’
11’

3’

15’

17’

2’

Figure 5: The normal form of Figure 1(b) and 3(a).

homeomorphic (topologically equivalent) to a cubic graph, where all nodes have
degree 3, by just eliminating the binary nodes. We should note that some cycle
systems will give rise to multi-edges in the cubic graph. Figure 6 is the cubic
graph corresponding to Figure 5.

There is a considerable literature devoted to cubic graphs, of which [2, 3, 15,
16] is just a sample. Of most relevance here is an enumeration of cubic graphs in
Table II. based on rank, and found in [7]. The details in their description of the
generation process provides an excellent primer on the anatomy of cubic graphs.

15

17’

18’b

18’a

18’c

2’b

1’
3’

10’

15’a

15’b

2’a

11’

normal form cubic graph

1’

10’

4’

18’

16’
11’

3’

15’

17’

2’

Figure 6: The cubic graph equivalent to I in Figure 1(b).

r n connected cubic graphs
3 4 1
4 6 2
5 8 5
6 10 19
7 12 85
8 14 509
9 16 4,060

10 18 41,301
11 20 510,489
12 22 7,319,447
13 24 117,940,535
14 26 2,094,480,864
15 28 40,497,138,011
16 30 845,480,228,069
17 32 18,941,522,184,590

Table 2: Number of connected cubic graphs of rank r.

The irreducible spine I in Figures 1, 3, and 4 has rank 7. So Figure 1(b) is repre-
sentative of one of 85 distinct equivalence classes having irreducible spines with
7 independent cycles.

We say a cubic graph, such as Figure 6 defines a genus consisting of those
graphs whose irreducible spines have the same cycle structure. Readily, genus
also defines an equivalence relation on the space of all undirected graphs. It is a
coarser equivalence than that created by irreducible spines, I , because if G1 and
G2 have the same spine I , they must be topologically equivalent the same cubic
graph, and thus belong to the same genus of graphs.

16

The concept of “genus” already exists in graph theory. It denotes the minimal
number of “handles” on an orientable sphere needed to embed the graph without
edge crossing [4, 5]. Graphs of genus 0 are planar. Readily, this notion of a nu-
merical genus is an equivalence as well; one that is still coarser than our cubic
graph genus. However, calculating the numerical genus of a graph involves deter-
mining an orientable embedding which is computationally most difficult, even for
relatively small graphs. Both the calculations for irreducible similarity and cubic
graph similarity are local, fast, and easily parallalizable. They are practical.

5. Discussion

Crude measures of graph similarity can be valuable. But, unless one is very fa-
miliar with the statistical process generating the measure, one doesn’t really know
what makes the two graphs similar. Is it that they have similar profiles of vertex
degree distribution? or of average path length distributions? Any measure of sim-
ilarity based on path structure, or path length, will be computationally expensive.

The concept of irreducible similarity developed in this paper tells you a great
deal about “similar” graphs. They have essentially the same path structure, the
same “centers” which must be located on the common irreducible spine (or one
link away), and vertex degree distributions that are very close. Similarity within
a cubic graph genus encompasses a much broader collection of “similar” graphs,
but tells much less about them. They have the same rank (maximal number of
independent cycles) and they are connected in the same fashion.

But, both similarities are equivalence relations. Two graphs G1, G2 are either
similar, or not.

If not, no information whatever is conveyed regarding either their similarity
or their differences. It is possible that by reducing both graphs and comparing
their spines, I1 = G1.ω and I2 = G2.ω, one could broadly estimate the simi-
larity between members of the two distinct equivalence classes in the unbounded
collection of all undirected graphs. We have not yet done this.

References

[1] Geir Agnarsson and Raymond Greenlaw. Graph Theory: Modeling, Applications
and Algorithms. Prentice Hall, Upper Saddle River, NJ, 2007.

[2] R.E.L. Alfred, S. Bau, D.A. Holton, and Brendan D. Mckay. NonHamiltonian 3-
connected cubic planar graphs. SIAM J. Discrete Math., 13(1):25–32, 2000.

17

[3] Pouya Baniasadi, Vladimir Ejov, Jerzy A. Filar, and Michael Haythorp. Genetic
theory for cubic graphs. arXiv, 1, May 2018. arXiv:1209.5514v1.

[4] Mehdi Behzad and Gary Chartrand. Introduction to the Theory of Graphs. Allyn
and Bacon, Boston, 1971.

[5] Béla Bollobás. Modern Graph Theory. Springer, New York, 1998.

[6] Ulrik Brandes. A Faster Algorithm for Betweeness Centrality. J.Mathematical So-
ciology, 25(2):163–177, 2001.

[7] Gunnar Brinkmann, Jan Goedgebeur, and Brendan D. Mckay. Generation of Cubic
Graphs. Discrete Math. and Theoretical Comp. Sci., DMTCS, 13(2):69–79, 2011.

[8] H. Ehrig, M. Pfender, and H. J. Schneider. Graph Grammars: An Algebraic Ap-
proach. IEEE Conf. SWAT, 1973.

[9] Linton C. Freeman. Centrality in Social Networks, Conceptual Clarification. Social
Networks, 1:215–239, 1978/79.

[10] George Gratzer. General Lattice Theory. Academic Press, 1978.

[11] Frank Harary. Graph Theory. Addison-Wesley, 1969.

[12] G. Jeh and J. Widom. SimRank: A measure of structural context similarity. In Proc.
8th Intern. Conf. on Knowledge Discovery and Data Mining (KDD), pages 538–543,
Edmonton, 2002.

[13] Jon M. Kleinberg. Hubs, authorities and communities. ACM Computing Surveys,
31(4), Dec. 1999. Doi.acm.org/10.1145/345966.345982.

[14] Bernhard Korte and László Lovász. Intersections of Matroids and Antimatroids.
Discrete Math., 73:143–157, 1988/89.

[15] Charles H. C. Little. A characterization of planar cubic graphs. J. Comb. Theory,
Series B, 29(2):185–194, Oct. 1980.

[16] Brendan D. Mckay and Nick. C. Wormald. Automorphisms of random graphs with
specified degrees. Ars Combinatoria, 4:325–338, 1984.

[17] Oystein Ore. Mappings of Closure Relations. Annals of Math., 47(1):56–72, Jan.
1946.

18

[18] Ratko Orlandic, John L. Pfaltz, and Christopher Takylor. A Functional Database
Representation of Large Sets of Objects. In Hua Wang and Mohamed A. Saraf, edi-
tors, 25th Australasian Database Conference, ADC 2014, pages 189–196, Brisbane,
QLD, 2014.

[19] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web graph sim-
ilarity for anomaly detection. J. Internet Serv. Appl., pages 19–30, 2010. Doi:
10.1007/s13174-010-0003-x.

[20] John Pfaltz and Josef Šlapal. Transformations of discrete closure systems. Acta
Math. Hungar., 138(4):386–405, 2013.

[21] John L. Pfaltz. Closure Lattices. Discrete Mathematics, 154:217–236, 1996.

[22] John L. Pfaltz. Neighborhood Expansion Grammars. In Intern’l Workshop on The-
ory and Application of Graph Transformation, TAGT’98, Lecture Notes in Computer
Science, #1764, pages 30–44, Paderborn, Germany, Nov. 1998. Springer-Verlag.

[23] John L. Pfaltz. The Irreducible Spine(s) of Discrete Networks. In Xuemin Li, Yannis
Manolopoulos, Divesh Srivastava, and Guangyan Huang, editors, Web Information
Systems Engineering - WISE 2013, volume LNCS # 6984, Part 2, pages 104–117),
Nanjing, PRC, Oct. 2013.

[24] John L. Pfaltz. The Role of Continuous Processes in Cognitive Development. Math-
ematics for Applications, 4(4):129–152, 2015. doi:10.13164/ma.2015.11.

[25] John L. Pfaltz. Using Closed Sets to Model Cognitive Behavior. In Tapabrata Ray,
Ruhul Sarker, and Xiaodong Li, editors, Proc. Australian Conf. on Artificial Life
and Computational Intelligence (ACALCI 2016), volume LNCS 9592, pages 13–26,
Canberra, ACT, 2016.

[26] Gregorz Rozenberg, editor. The Handbook of Graph Grammars. World Scientific,
1997.

[27] Harold S. Stone. Discrete Mathematical Structures and Their Applications. SRA,
Palo Alto, 1973.

[28] Josef Šlapal. A Galois Correspondence for Digital Topology . In K. Denecke,
M. Erné, and S. L. Wismath, editors, Galois Connections and Applications, pages
413–424. Kluwer Academic, Dordrecht, 2004.

[29] D.J.A. Welsh. Matroid Theory. Academic Press, 1976.

19

[30] Laura A. Zager and George C. Verghese. Graph similarity scoring and matching.
App. Math. Letters, 21:86–94, 2008. Doi: 10.1016/j.aml.2007.01.006.

[31] Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, and Hong Cheng. Finding Top-K Similar
Graphs in Graph Databases. EDBT 2011, March 2012.

20

