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Abstract—Large-volume scientific data is one of the prominent
driving forces behind next generation networking. In particular,
Software Defined Network (SDN) makes leveraging path-based
network multicast services practically feasible. In our prior work,
we have developed a cross-layer architecture for supporting
reliable file-streams multicasting over SDN-enabled Layer-2 net-
work, and implemented the architecture for a meteorology data
distribution application in atmospheric science. However, it is
challenging to determine an optimal rate for this application
with the varying type, volume, and quality of meteorological
data. In this paper, we propose a Quality of Service (QoS)-driven
rate management pipeline to determine the optimal rate based
on the input traffic characteristics and performance constraints.
Specifically, the pipeline employs a feedtype classifier using Multi-
Layer Perception (MLP) to recognize the type of meteorological
data and a delay prediction regressor using stacked Long Short-
Term Memory (LSTM) to predict per-file delay for the file-
streams. Finally, we determine the optimal rate for the given file-
streams using the trained regressor. We implement this pipeline
to test the real-world file-stream data collected from a trial
deployment, and the results show that our regressor outperforms
all baselines by selecting the optimal rate in the presence of
varying file set sizes.

I. INTRODUCTION

Due to the significant increase of scientific activities, data
transfer among the geographically distributed research com-
munities has become a major bottleneck and attacked much
interest. For example, in the Unidata Internet Data Distribution
(IDD) project, the University Corporation of Atmospheric
Research (UCAR) uses Local Data Manager (LDM) to dis-
tribute 30 different types of meteorological data (e.g., satellite
imagery, lightning data, computer-model output, and radar
data) to almost 240 institutions on a near-real-time basis [1].

The current LDM, LDM6, is an Application-Layer Multicast
(ALM) solution that uses multiple unicast transmissions to
construct a multicast. With the rapid growth of data volume,
ALM requires much more sender computation power and
network bandwidth than the network multicast. Compared
with the complexity of IP multicast, the use of SDN greatly
simplifies the mechanisms for configuring forwarding table
information in network switches to build a multicast tree.

In our prior work [2], [3], we have developed and imple-
mented a cross-layer architecture for supporting reliable file-
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stream multicasting over Layer-2 (L2) path-based services.
The solution adopts a transport layer protocol, called File
Transfer Multicast Protocol (FMTP) [4], and leverages L2
multipoint VLAN/MPLS paths. Compared with the IP-routed
service, a path-based service offers in-sequence delivery and
rate guarantees. With rate guarantees, flow control and con-
gestion control are handled by receivers that receive packets at
a fixed rate of the multipoint VLAN in the path setup phase.

The problem we study in this paper is how to determine the
optimal VLAN/sending rates for this multicast file-stream dis-
tribution system. The silence periods between files within the
file-streams, and the varying rate at which the meteorological
data is generated, make the problem challenging. Different
feedtypes have drastically different characteristics and it is
complicated to optimize the rate when all the feedtyes are
considered together. In particular, the relationship between
delay and rate is not monotonic but depending on various
system parameters include file-stream characteristics (size of
files, inter-arrival time between files within a file-stream), the
number of receivers in the multicast tree, and round-trip times
(RTTs) on the path from the sender to each of the receivers.

In this paper, we propose a QoS-driven rate management
pipeline that centers on a machine learning (ML) engine,
which aims at finding the optimal VLAN/sending rates in
a path-based multicast networking based on the predefined
requirement of QoS. We first design a feedtype classifier using
MLP to identify the feedtype of the meteorological data based
on the statistical features. Then, we train a delay prediction
regressor using stacked LSTM to predict the per-file delay
of the file-streams for the corresponding feedtype. The ML
engine then combines the input traffic characteristics with the
QoS requirement to determine the sending rate for the next
time interval. We validate our method on the real-world file-
stream data collected from a trial deployment, and the results
show that the performance of our LSTM regressor outperforms
all the baselines with respect to various metrics. Although
our approach is proposed based on the meteorology data, the
approach can be extended to other applications.

The rest of this paper is organized as follows. Related works
are reviewed in Section II. The file-stream distribution system
is presented in Section III. In Section IV, we describe the
proposed QoS-driven rate management pipeline, followed by
an experimental evaluation in Section V. Finally Section VI
concludes the paper.



Fig. 1. Dynamic Reliable File-Stream Multicast (DRFSM) Architecture

II. RELATED WORK

One of the conventional multicast services applied to
file-stream distribution is NACK-Oriented Reliable Multicast
(NORM) [5]. Since it is designed for IP-multicast that does not
offer rate guarantees, NORM adopts a rate-based congestion
control mechanism. A multicast-based replication for Hadoop
HDFS is proposed to save network bandwidth [6], [7], by
developing a congestion-controlled reliable multicast socket
(CCRMSocket) that uses IP-multicast to provide reliable mul-
ticast service. In comparison, our Dynamic Reliable File-
Stream Multicast (DRFSM) service avoids data-plane conges-
tion control by using SDN controllers to configure a rate-
guaranteed multipoint VLAN, whose rate depends on QoS.

Inspired by its significant development, ML-based ap-
proaches for solving complex network problems have attracted
much interest [8]–[10]. Mirza et al. applied support vector
regression to predict network throughput based on file size and
measurements of path properties, e.g., queuing delay [8]. Kong
et al. proposed a packet loss predictor using random forest,
which could predict the probability of packet loss caused by
congestion, lower the frequency of sending rate reduction, and
achieve higher throughput [9]. Both works do not directly
adjust the sending rate, which thus does not solve the multicast
rate selection problem of this paper. In addition, Mei et al.
used LSTM based on a set of collected bandwidth traces for
accurate prediction of mobile bandwidth [10].

III. PROBLEM FORMULATION

We proposed a DRFSM cross-layer architecture, illustrated
in Fig. 1, for supporting scientific file-streams distribution.
It relies on i) Layer-2 (L2) multipoint Virtual LAN (VLAN)
service, and ii) a reliable transport-layer protocol of FMTP.

This architecture requires two types of network services: L2
path-based service for data-plane and L3 IP-routed service for
control-plane. In a multi-receiver context, sequenced delivery
and rate guarantees would simplify the key transport-layer
functions of error control, flow control, and congestion control.
With sequenced delivery, error control is simpler, because
a receiver can assume that a packet is dropped when it
receives an out-of-sequence block, and then sends a Negative
ACKnowledgment (NACK) requesting a block retransmission.
With rate guarantees on the paths from the sender to receivers,
flow control and congestion control are handled by receivers

agreeing to handle packets at the fixed rate of the multipoint
network path in the control-plane path setup phase.

The rate is selected by the sender based on the characteris-
tics of the file-stream and the application delay requirements.
The key point is that active sending rate adjustments in the
data-plane, i.e., during file-stream transmission, are avoided
so that one receiver with insufficient compute or network
resources does not slow down data delivery to other receivers.

A. Latency Requirements

The latency of each file consists of six parts, and we
usually focus on the following four: (i) transmission delay,
(ii) sender-buffer queuing delay, (iii) retransmission delay, and
(iv) propagation delay. The switch/router queuing delay and
processing delay are out of the scope of this work.

Except for propagation delay that is determined by the link
length between the sender and receiver, the other three types of
delay are related to the sending rate. The relation of delay and
rate is not monotonic but depending on various parameters,
which is empirically explained in our previous work [3].

We use file latency as a metric to evaluate the network
performance. It is meaningful to describe the file-stream of
latencies at percentiles. To that end, we first define holding
interval τ as the period during which the assigned sending
rate is unchanged. The kth holding interval is denoted as
(t+(k−1)τ, t+kτ). The file index i is reset to 1 for the first
file arriving in each holding interval. The arrival time of file i
is denoted as ai. Thus, the delay requirement R = (W,α, τ) is
set such that only a fraction α of files would experience delay
greater than the threshold W in holding interval τ at a receiver.
Finally, the delay requirement is defined as |Vk|

Nk
<= α, where

Vk is the set of files that experienced latency greater than W
in the kth holding interval and Nk is the number of files that
arrived in this interval. Note that file i belongs to set Vk if
wi > W and t + (k − 1)τ ≤ ai < t + kτ , where wi denotes
the latency experienced by file i.

B. Feedtype Classification and Delay Prediction Regression

The UCAR Unidata IDD project distributes 30 types of
meteorological data (feedtypes), which are very different in
both distribution and quality. Therefore, it is very challenging
to predict precise latency when considering mixed feedtypes.
Fig. 2 illustrates this challenge by plotting the arrival rates
of three feedtypes: NGRID, CONDUIT, and NEXRAD2, on
a one-hour basis over 166 hours. The traffic characteristics
among them are very distinguished, which means it is feasible
to accurately identify the incoming feedtype. We thus adopt
a cascading pipeline, where we first design a classifier to
recognize the feedtype and then design a regressor to predict
the file latency and find an optimal rate using the output of
the feedtype classifier as input.

Within the holding interval, we use Y = (Y1, Y2, ..., Ym) to
denote the latencies of the m files, where Yi describes the time
interval that file i consumes from the sender to the receiver. We
use X = (X1, X2, ..., Xm) to represent input samples, where
Xi = (x1i , x

2
i , ..., x

n
i ) are n measured features for sample i.



Fig. 2. Average arrival rates of files versus time (hours) of NGRID,
CONDUIT and NEXRAD2 feedtype.

Here we choose n = 5 features. Description of the features
is given in Table I. Our objective is to find the minimum rate
where the predicted latency satisfies the delay requirements.

TABLE I
INPUT AND OUTPUT DESCRIPTION

Feature Description
Input

X1
i Inter-arrival time of file i at sender

X2
i File size of file i at sender

X3
i Transmission rate

X4
i RTT

X5
i Number of receivers

Output
Yi Latency of received file i

IV. METHODOLOGY

This section describes how we develop the ML engine to
determine the optimal rate. We propose a QoS-driven rate
management pipeline, which is composed of two steps in
the training stage as shown in Fig. 3. First, based on the
different characteristics of file-streams, we train a classifier
using MLP to identify its feedtype. Then, combining the
original time-series data, network state, and sending rate with
the corresponding feedtype, a stacked LSTM based regressor
is trained, which predicts the per-file delay. Accordingly, in the
testing stage, the incoming file-stream feedtype is first decided
by the classifier, and then we apply the trained regressor to
predict the delay under various possible rates, and finally we
select the sending rate as one that is the minimum rate whose
predicted delay of the file-stream satisfies the predefined delay
requirement.

A. MLP Classifier

The MLP classifier consists of three parts: feature extrac-
tion, training, and testing. The first step is feature extraction.

Fig. 3. Overview of the proposed QoS-driven rate management. Blue arrows
indicate the process in the training stage, while red dashed arrows indicate
the testing process.

We extract a set of seven statistical features of both inter-
arrival time and file sizes when we set the holding interval
τ = 1 hour. The specific features we use are given in Table
II. All the data is normalized with 0 mean and unit variance.

The training data was collected on Nov. 14-19, 2018.
Overall, the file streams are divided into 7 classes. We train an
MLP model (128*64*16*7) based on the Keras deep learning
framework. The hyperparameters we choose are decided by
the highest validation accuracy, where the validation data is
20% of the total training data. In order to avoid overfit-
ting, we add a 0.2 dropout rate to each layer (except the
output layer). Categorical cross-entropy loss is used as the
target loss function for training with the Adam optimizer.
In addition, we compare the results of other ML baselines
with the MLP model, including Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Logistic Regression (LogReg), Decision Tree (DT),
and Random Forest (RF). In the testing step, we use the data
collected on Nov. 20-21, 2018. Then we put the trained model
to transform the testing data and display the results.

TABLE II
STATISTICAL FEATURE DESCRIPTION

Feature Description
max inter arr The maximum value of inter-arrival time
mean inter arr The average value of inter-arrival time
median inter arr The median value of inter-arrival time
min size The minimum value of file size
max size The maximum value of file size
mean size The average value of file size
median size The median value of file size

B. Stacked LSTM Regressor

The reason we have chosen LSTM-based regressor is to
exploit the potential time correlation among the adjacent files.
Intuitively, if the delay of a file-stream is relatively high, it
means that the files at the sender-side are either queued or to
be retransmitted, and it has a high probability that the delay
of these files will also be high. On the other hand, if the delay
of a file-stream is relatively low, it means that the network
is in low contention, and the file delay is likely to be small
in the next time slot. The LSTM method [11] has a strong



ability to handle the entire sequence of data and keep track of
the long-term dependencies. Thus, in this work, we train an
LSTM network to predict the delay of a file-stream for each
feedtype. The model then combines different rates with the
delay requirements to determine the minimal rate for the next
time interval.

Data Preprocessing. The original features are of different
scales, which necessitates data preprocessing. However, for the
meteorology data, we note that most of the files have small
delays and only a small portion of files have large delays, as
can be seen from Fig. 4(a). If a common preprocessing method
(e.g., normalization and standardization) is applied to all of the
data, most will become indistinguishable after preprocessing.
In order to avoid this problem, we choose the quantile method
that transforms the original data into a uniform distribution.
The results are shown in Fig. 4.b. In this case, files with similar
delay can be converted to different values to enable a more
effective prediction.

Fig. 4. Delay distribution of training data before and after quantile prepro-
cessing, as shown in (a) and (b), respectively.

LSTM. LSTM is a powerful variant of RNN [12] that
can solve the gradient disappearance problem. The LSTM
controls the addition or deletion of state information of cells
through a module that includes the gating mechanism. In other
words, the gate selectively controls the information whether to
pass or remove. Furthermore, a stacked LSTM architecture
can be defined as an LSTM model comprised of multiple
LSTM layers, which provides a sequence output rather than a
single value output. The stacked LSTM has a more powerful
generalization capability and can solve complex problems.

Taking advantage of the stacked LSTM architecture, we
build our ML model as shown in Figure 5. Specifically, the
first LSTM layer takes time-series features as the input, and
the subsequent LSTM layer takes the output from the earlier
LSTM layer as new input. This variation of LSTM enables the
later layers to capture longer-term dependencies of the input
sequence. In order to provide a mapping of the prediction to
[0, 1], a dense layer with the sigmoid function is placed on
the last LSTM layer to estimate the delay. The optimization
objective is to minimize the MAE loss between the output of
the regressor and the corresponding file-stream delay.

V. EXPERIMENTS AND RESULTS

A. Experimental Setting

Local Data Manager (LDM) has been the de facto software
program for real-time meteorological data distribution since

Fig. 5. Architecture of multilayer LSTM model. The gray rectangle LSTM
represents an LSTM unit.

1994. We use the latest version LDM7 in the experiment,
which has been described in our prior papers [2], [13]. The
data has been collected on Chameleon, a highly reconfigurable,
NSF-supported network testbed [14]. In the experiment, we
set the holding interval τ = 1 hour and deliver 7 types of
meteorological data. Then we collect the timestamps and file
sizes at the sender-side and receiver-side from the log files
measured on Chameleon, respectively. Based on the ground-
truth knowledge about the data, we label feedtypes for all the
samples in the dataset and calculate the delay for each file.

As the data collection results in successful delivery for all
of the files, the retransmission component, which happens
frequently in practice, is missing from the dataset. We address
this issue by running the experiments on trial deployments. In
our previous work, we have deployed LDM7 at eight university
campuses throughout the United States that are connected
via the regional REN (Research-and-Education Network) and
Internet2 [3], as depicted in Fig. 6. Most of the regional
RENs serving the corresponding university are connected to
the nearest Internet2. We only experiment with the NGRID
feedtype in the experiments, which is the most representative
among all the feedtypes. Based on our previous analysis of
the network performance with multiple receivers, we notice
that when the sending rates are not significant, these receivers
tend to have similar throughput as the case of a single
receiver. Therefore, the NGRID distribution is started on the
UCAR LDM7 publisher. Then the UVA LDM7 subscribers
send NGRID subscription requests to the UCAR to receive
the files with RTT = 40 ms. We deliver the files with six
different sending rates and collect ten-hours NGRID data
(approximately three million files) on September 6, 2020.

B. Discrimination Power of Different Feedtypes

We apply the MLP method to the feedtype classification
problem and compare it with the state of the art baselines.
Then we run the trained model to transform the test data and



Fig. 6. Trial deployment of LDM7 across Internet2.

display the results, which indicate that the accuracy of our
MLP model is 97.7%. The other metrics for different types
are shown in Table III, which shows that the MLP model can
recognize the feedtype accurately with respect to these metrics.

TABLE III
CLASSIFICATION RESULTS FOR DIFFERENT FEEDTYPES

Feedtypes Precision Recall F1-score
NGRID 0.971 0.892 0.93

CONDUIT 0.925 1. 0.961
NEXRAD2 1. 1. 1.
NEXRAD3 1. 0.973 0.986

DIFAX 1. 1. 1.
HDS 0.947 0.973 0.96

IDS|DDPLUS 1. 1. 1.
Average 0.978 0.977 0.977

One practical difficulty with the MLP method is that it is
hard to decide how much data to use for training, as the accu-
racy of this model depends on the amounts of data. Figure 7
compares the accuracy with different training dataset sizes. For
a fair comparison, the testing set is fixed in each experiment.
From the results, we see that the accuracy increases with
the training dataset size, which indicates that more training
samples lead to better test accuracy. In comparison, few
examples produce a lower testing accuracy, perhaps because
the chosen model overfits the training set or the training set
is not sufficiently representative of the problem.
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Fig. 7. MLP accuracy with different training dataset sizes.

In addition, we compare the results of other ML baselines
with the MLP model. Figure 8 reveals that RF outperforms
other methods while LDA has the lowest accuracy. Although
MLP does not have the best testing accuracy, we see that
it is competitive with other methods. We also note that the
performance of MLP can continue to improve as more data
becomes available to the model, but the hyperparameters of
the model must be adjusted to support the increases in data.
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Fig. 8. Accuracy compared with baselines.

C. Performance of Delay Prediction Regressor

After recognizing the feedtype, we train an LSTM regressor
with the original time-series data, network state, and sending
rate, which predicts the delay of each file in a file-stream. Here
we train the regressor with respect to the NGRID feedtype,
which is representative among all the feedtypes.

To investigate the impact of the LSTM method, we conduct
experiments on different dataset sizes for delay prediction
with both LSTM and MLP algorithms. Table IV reports the
MAE performance with different datasets. We can see that
LSTM outperforms MLP in terms fo all the dataset sizes,
which indicates that LSTM can keep track of the long-term
dependencies across the delay of files. To further visualize
the effect of prediction, Figure 9 shows the normalized delay
distribution of prediction when the dataset size equals 200.
It can be observed that the prediction has almost the same
distribution as the original delay.

For our final set of results of finding the optimal rate, we
set the QoS requirement as W = 0.2 seconds and α = 8%,
which means the delay of no more than 8% of files can exceed
the threshold of 0.2 seconds. Figure 10 compares the original
and predicted α with six different rates, respectively. Blue
bars indicate the α of the original delay, where the optimal
rate is 100 Mbps. Since the file-stream with rates greater than
100 Mbps (including 100 Mbps) meet the requirements, the
smallest value (100 Mbps) should be chosen as the optimal
rate in order to save bandwidth. In addition, it is not true that
the higher the rate, the smaller α is (i.e., most of the delay
of files are smaller than the threshold W ), which indicates
the relationship of delay and rate is not monotonic. For
example, when the rate increases to 400 Mbps, α is greater
than 200 Mbps according to the blue bar in Figure 10. The



plausible reason is that packet loss occurs, which increases
the delay of most files. We conduct the experiments to verify
the performance of our LSTM model in terms of correctly
predicting the optimal rate. For the same file-stream, we adjust
the rate and have different delay predictions through the LSTM
regressor. Based on our selection rules, we end up choosing
100 Mbps as the optimal rate, which is consistent with the
true result. To have a deeper understanding, we further notice
that the predicted values of α for each rate are similar to the
true α. The results suggest that the proposed delay prediction
regressor using stacked LSTM has a strong ability for rate
selection based on the predefined requirement of QoS. We
have comprehensive results considering other settings, e.g.
RTT=100ms. Due to the space limit, we will report them in
our future work.

TABLE IV
MAE RESULTS FOR LSTM MODEL COMPARED WITH MLP

Set Size MLP LSTM
50 0.0534 0.0469

100 0.074 0.0679
150 0.0678 0.0591
200 0.0691 0.0596

Fig. 9. Normalized delay distribution of prediction.
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Fig. 10. The α value when threshold W = 0.2s. Blue bars indicate the α
of original delay, while orange bars represent the predicted α.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a QoS-driven rate man-
agement pipeline to determine the optimal sending rate for
a reliable network-multicast application for scientific data
transfer. Based on a set of seven features (for the specific
meteorological data) such as inter-arrival time and file size,
we successfully reached 97.7% accuracy of feedtype classifi-
cation among the six most popular feedtypes. We then trained
the delay prediction regressor with the meteorological data
collected from the trial deployment, which achieved MAE
with 0.0469 when the dataset size is 50. More importantly,
the LSTM model outperformed the MLP method in terms
of the MAE, and demonstrated strong potential to select an
optimal rate in real-world networks. In the future, we plan
to investigate incorporating more features of the architecture,
e.g., more various RTTs, the different sets of receivers, and
more feedtypes, to train and evaluate the proposed method for
a wide range of scientific data use cases.
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