CS 2102 - DMT1 - Fall 2019 - Luther Tychonievich
Practice exercise in class friday november 15, 2019
Practice 10
problem 1 Arithmetic

1. The prime factorization of 18^{2} is $2^{2} \cdot 3^{4}$
2. Re-write $p^{r}=w$ without a exponent function: $\log _{p}(w)=r$
3. Simplify $\frac{\log _{3}(7)}{\log _{3}(5)}: \log _{5}(7)$.
4. Re-write $\log _{2}\left(16 x^{3}\right)$ with no constants or operators in a log's argument: $4+3 \log _{2}(x)$
5. What is $\log _{3}(5) \log _{5}(3) ? 1$
problem 2 Proof by Contradiction
Complete the following proof that $\forall x \in \mathbb{Z}^{+} .\left(\log _{3}(x) \in \mathbb{Q}^{+}\right) \rightarrow\left(\exists n \in \mathbb{N} . x=3^{n}\right)$.
Proof. Assume that the implication does not hold; that is, that $\left(\log _{3}(x) \in \mathbb{Q}^{+}\right) \wedge\left(\nexists n \in \mathbb{N} . x=3^{n}\right)$. Since $\log _{3}(x) \in \mathbb{Q}^{+}$, there are positive integers a and b such that $\log _{3}(x)=\frac{a}{b}$. Re-writing that equation,

$$
\begin{aligned}
\log _{3}(x) & =\frac{a}{b} \\
b \log _{3}(x) & =a \\
\log _{3}\left(x^{b}\right) & =a \\
x^{b} & =3^{a}
\end{aligned}
$$

Since a and b are positive integers, both sides of the last equation above are integers. By the fundamental theorem of arithmetic, both sides must have the same prime factors, meaning that all of x 's factors must be 3. But that contradicts our assumption that $\nexists n \in \mathbb{N} . x=3^{n}$.

Because the assumption led to a contradiction, it must be false; thus,

$$
\left(\log _{3}(x) \in \mathbb{Q}^{+}\right) \rightarrow\left(\exists n \in \mathbb{N} \cdot x=3^{n}\right)
$$

Want additional practice? Try the following:
Simplify (show your work)

- $\log _{3}(5)+\log _{3}(2)$
- $\log _{3}(5)+\log _{9}(0.2)$
- $\log _{3}\left(\frac{5}{27}\right)$
- $7^{\log _{3}(5)} \log _{3}(7)$

Complete

- $\log _{\sqrt{3}}(5)=\log _{3}(\square)$
- $\log _{a}(b) \log _{a}(\quad)=1$
- $\log _{a}(b) \log _{b}(\quad)=1$
- $\log _{3}(13)=\log _{3}(5)+\log _{3}(\square)$
- $3^{\log _{5}(7)}=7^{\log _{\square}(\square)}$

Prove that

- there is no largest prime number. Use contradiction, with $1+$ the product of all primes as part of how you get the contradiction.
- $\left(\log _{a}(b)=\log _{b}(a)\right) \rightarrow(a=b)$. Both direct proof and contradiction should be able to work here.
- " $\forall n \in\{i \mid i \in \mathbb{Z} \wedge 1<i<x\} . \log _{i}(x) \notin \mathbb{Q}$ " is true for all prime numbers x. Use contradiction.
- $3 \log _{2}(10)<10$. Direct proof should be enough.
- $\log _{3}(10)>2$. Direct proof should be enough.

