Practice 11

A cut of a graph is a partition of its vertices into exactly two disjoint sets. An edge crosses a cut if it starts in one set and ends in the other. Prove by contradiction that any cycle crosses a cut an even number of times. Proof.
problem 1 Additional practice
You should be able to prove all of the following
Theorem 1 Removing a vertex (and all its associated edges) from a DAG leaves it a DAG.
Theorem 2 Removing an edge from a $D A G$ leaves it a $D A G$.
Theorem 3 "can walk to" is a transitive relation on any graph.
Theorem 4 "can walk to in $1+$ steps" is a transitive relation on any graph.
Theorem 5 "can walk to" is a reflexive relation on any graph.
Theorem 6 "can walk to in $1+$ steps" is an irreflexive relation on any $D A G$.
Theorem 7 If "can walk to in $1+$ steps" is irreflexive, then the graph is a DAG.
Theorem 8 "can walk to in $1+$ steps" is an asymmetric relation on any DAG.
Theorem 9 If "can walk to in $1+$ steps" is asymmetric, then the graph is a DAG.
See also MCS problems 9.1, 9.3, 9.4, 9.6(c), 9.7(b), 9.8, 9.9, 9.11, 9.18, 9.19, 9.33, 9.36, 9.37 (but ignore linearity), $9.38,9.39,9.41,9.42,9.49$, and 9.50 .

