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Figure 1: DeepTake uses data from multiple sources (pre-driving survey, vehicle data, non-driving related tasks (NDRTs) in-
formation, and driver biometrics) and feeds the preprocessed extracted features into deep neural network models for the 
prediction of takeover intention, time and quality. 

ABSTRACT 
Automated vehicles promise a future where drivers can engage 
in non-driving tasks without hands on the steering wheels for a 
prolonged period. Nevertheless, automated vehicles may still need 
to occasionally hand the control back to drivers due to technology 
limitations and legal requirements. While some systems determine 
the need for driver takeover using driver context and road condition 
to initiate a takeover request, studies show that the driver may not 
react to it. We present DeepTake, a novel deep neural network-based 
framework that predicts multiple aspects of takeover behavior to 
ensure that the driver is able to safely take over the control when 
engaged in non-driving tasks. Using features from vehicle data, 
driver biometrics, and subjective measurements, DeepTake predicts 
the driver’s intention, time, and quality of takeover. We evaluate 
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DeepTake performance using multiple evaluation metrics. Results 
show that DeepTake reliably predicts the takeover intention, time, 
and quality, with an accuracy of 96%, 93%, and 83%, respectively. 
Results also indicate that DeepTake outperforms previous state-of-
the-art methods on predicting driver takeover time and quality. Our 
fndings have implications for the algorithm development of driver 
monitoring and state detection. 
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1 INTRODUCTION 
The rapid development of autonomous driving technologies promis-
es a future where drivers can take their hands of the steering wheels 
and instead engage in non-driving related tasks (NDRTs) such as 
reading or using mobile devices. Incorporating cameras, sensors, 
global positioning systems (GPS), adaptive cruise control, light 
detection and ranging, and advanced driver assistance systems, 
automated vehicles (AVs) can navigate automatically. In Level 3 
of autonomy (i.e., conditionally automated driving), as defned by 
the Society of Automotive Engineers (SAE international [9]), the 
driver does not need to continuously monitor the driving environ-
ment. Nevertheless, due to current technology limitations and legal 
restrictions, AVs may still need to handover the control back to 
drivers occasionally (e.g., under challenging driving conditions be-
yond the automated systems’ capabilities) [39]. In such cases, AVs 
would initiate takeover requests (TORs) and alert drivers via audi-
tory, visual, or vibrotactile modalities [44, 47, 61] so that the drivers 
can resume manual driving in a timely manner. However, there 
are challenges in making drivers safely take over control. Drivers 
may need a longer time to shift their attention back to driving in 
some situations, such as when they have been involved in NDRTs 
for a prolonged time [68] or when they are stressed or tired [22]. 
Even if TORs are initiated with enough time for a driver to react, 
it does not guarantee that the driver will safely take over [40]. 
Besides, frequent alarms could startle and increase drivers’ stress 
levels leading to detrimental user experience in AVs [33, 34, 48]. 
These challenges denote the need for AVs to constantly monitor 
and predict driver behavior and adapt the systems accordingly to 
ensure a safe takeover. 

The vast majority of prior work on driver takeover behavior 
has focused on the empirical analysis of high-level relationships 
between the factors infuencing takeover time and quality (e.g., 
[16, 18, 43, 69]). More recently, the prediction of driver takeover 
behavior using machine learning approaches has been drawing 
increasing attention. However, only a few studies have focused on 
the prediction of either takeover time [2, 35] or takeover quality [4, 
11, 15, 17]; and their obtained accuracy results (ranging from 61% 
to 79%) are insufcient for the practical implementation of real-
world applications. This is partly due to the fact that takeover 
prediction involves a wide variety of factors (e.g., drivers’ cognitive 
and physical states, vehicle states, and the contextual environment) 
that could infuence drivers’ takeover behavior [66]. 

In this paper on the other hand, we present a novel approach, 
named DeepTake, to address these challenges by providing reliable 
predictions of multiple aspects of takeover behavior. DeepTake is 
a unifed framework for the prediction of driver takeover behavior 
in three aspects: (1) takeover intention – whether the driver would 
respond to a TOR; (2) takeover time – how long it takes for the driver 
to resume manual driving after a TOR; and (3) takeover quality – 
the quality of driver intervention after resuming manual control. As 
illustrated in Figure 1, DeepTake considers multimodal data from 
various sources, including driver’s pre-driving survey response 
(e.g., gender, baseline of cognitive workload and stress levels), ve-
hicle data (e.g., lane position, steering wheel angle, throttle/brake 
pedal angles), engagement in NDRTs, and driver biometrics (e.g., 
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eye movement for detecting visual attention, heart rate and gal-
vanic skin responses for the continuous monitoring of workload 
and stress levels). This data can easily be collected in AVs’ driving 
environment. For instance, all of the driver biometrics utilized in 
DeepTake can be captured by wearable smartwatches and deployed 
eye-tracking systems. The multitude of sensing modalities and 
data sources ofer complementary information for the accurate and 
highly reliable prediction of driver takeover behavior. DeepTake 
extracts meaningful features from the preprocessed multimodal 
data, and feeds them into deep neural network (DNN) models with 
mini-batch stochastic gradient descent. We built and trained difer-
ent DNN models (which have the same input and hidden layers, but 
diferent output layers and weights) for the prediction of takeover 
behavior: intention, time and quality. We validate DeepTake frame-
work feasibility using data collected from a driving simulator study. 
Finally, we evaluate the performance of our DNN-based framework 
with six machine learning-based models on prediction of driver 
takeover behavior. The results show that DeepTake models sig-
nifcantly outperform six machine learning-based models in all 
predictions of takeover intention, time and quality. Specifcally, 
DeepTake achieves an accuracy of 96% for the binary classifcation 
of takeover intention, 93%, and 83% accuracy for multi-class classi-
fcation of takeover time and quality, respectively. These accuracy 
results also outperform results reported in the existing work. 

The main contribution of this work is the development of Deep-
Take framework that predicts driver takeover intention, time and 
quality using vehicle data, driver biometrics and subjective measure-
ments1. The intersection between ubiquitous computing, sensing 
and emerging technologies ofers promising avenues for DeepTake 
to integrate modalities into a novel human-centered framework to 
increase the robustness of drivers’ takeover behavior prediction. 
We envision that DeepTake can be integrated into future AVs, such 
that the automated systems can make optimal decisions based on 
the predicted driver takeover behavior. For example, if the predicted 
takeover time exceeds the duration that the vehicle can detect situ-
ations requiring TORs, or the predicted takeover quality is too low 
to respond to TORs, the automated systems can warn the driver 
to engage less with the NDRT. In other words, DeepTake facili-
tates drivers to be distracted as long as they can properly respond 
and safely maneuver the vehicle. The reliable prediction of driver 
takeover behavior provided by DeepTake framework would not 
only improve the safety of AVs, but also improve drivers’ user ex-
perience and productivity in AVs (e.g., drivers can focus on NDRTs 
without worrying about missing any TORs and potential tragic 
circumstances). We believe that our work makes a step towards 
enabling NDRTs in automated driving, and helps HCI researchers 
and designers to create user interfaces and systems for AVs that 
adapt to the drivers’ context. 

2 RELATED WORK 
We discuss prior work on the analysis of takeover time and quality, 
and position our work in the context of state-of-the-art takeover 
behavior prediction research. 

1DeepTake framework confgurations, implementation details and code are available 
at https://github.com/erfpak7/DeepTake 

 https://github.com/erfpak7/DeepTake
https://github.com/erfpak7/DeepTake
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Takeover time. In this paper, we consider the takeover time as 
the period of time from the initiation of TOR to the exact moment 
of the driver resuming manual control (see Figure 3), following the 
ISO standard defnition in [30]. Note that the same concept has 
also sometimes been named as takeover reaction time or response 
time in the literature (e.g., [20, 31, 32, 51]). The empirical litera-
ture defnes a large variety of takeover time from a mean of 0.87s 
to brake [63], to an average of 19.8s to response to a countdown 
TOR [52] and 40s to stabilize the vehicle [42]. This range is derived 
from infuential factors impacting perception, cognitive processing, 
decision-making and resuming readiness [25, 66]. A meta-analysis 
of 129 studies by Zhang et al. [69] found that a shorter takeover 
time is associated with the following factors: a higher urgency 
of the driving situation, the driver not performing a non-driving 
related task (NDRT) such as using a handheld device, the driver 
receiving an auditory or vibrotactile TOR rather than no TOR or a 
visual-only TOR. Recent studies by Mok et al. [43] and Eriksson et 
al. [20] both confrmed that drivers occupied by NDRTs have higher 
responses to TORs. Similarly, [21] found a signifcant increase in 
reaction time induced by NDRTs. It is further concluded that the 
visual distraction causes higher reaction time when it is loaded 
with cognitive tasks [56]. Studies have also revealed several driving 
environments, TOR modalities [56, 57], driving expectancy [54], 
age [60] and gender [62] associated with takeover time. The present 
study extend previous fndings by considering various NDRTs, gen-
der, and objective and subjective measurements of mental workload 
into the DeepTake framework. 

Takeover quality. In addition to takeover time, it is essential to 
assess the takeover quality, which is defned as the quality of driver 
intervention after resuming manual control [30]. There are a vari-
ety of takeover quality measures, depending on diferent takeover 
situations (e.g., collision avoidance, lane-keeping), including objec-
tive measures (e.g., mean lateral position deviation, steering wheel 
angle deviation, metrics of distance to other vehicles or objects, 
minimum time to collision, frequency of emergency braking) and 
subjective measures (e.g., expert-based assessment, self-reported 
experience). Prior work has found that takeover quality can be infu-
enced by factors such as drivers’ cognitive load [14, 67], emotions 
and trust [12, 16, 28], and distraction of secondary NDRTs [13, 38]. 
Takeover time to an obstacle[67] has been used widely studies as 
an indicator of takeover performance [20]. However, a study by 
Louw et al. [36] showed that takeover time and quality appear to 
be independent. This lack of consensus could be due to the fact that 
studies apply various time budget for takeover control. 

Takeover prediction. While existing literature mostly focus 
on the empirical analysis of drivers’ takeover time and quality, 
there are a few recent eforts on the predication of drivers’ takeover 
behavior using machine learning (ML) approaches. Lotz and Weis-
senberger [35] applied a linear support vector machine (SVM) 
method to classify takeover time with four classes, using driver 
data collected with a remote eye-tracker and body posture camera; 
the results achieve an accuracy of 61%. Braunagel et al. [4] devel-
oped an automated system that can classify the driver’s takeover 
readiness into two levels of low and high (labeled by objective driv-
ing parameters related to the takeover quality); their best results 
reached an overall accuracy of 79% based on a linear SVM classifer, 
using features including the trafc situation complexity, the driver’s 

gazes on the road and NDRT involvement. Deo and Trivedi [11] 
proposed a Long Short Term Memory (LSTM) model for continuous 
estimation of the driver’s takeover readiness index (defned by sub-
jective ratings of human observers viewing the feed from in-vehicle 
vision sensors), using features representing the driver’s states (e.g., 
gaze, hand, pose, foot activity); their best results achieve a mean 
absolute error (MAE) of 0.449 on a 5 point scale of the takeover 
readiness index. Du et al. [15, 17] developed random forest models 
for classifying drivers’ takeover quality into two categories of good 
and bad (given by subjective self-reported ratings), using drivers’ 
physiological data and environment parameters; their best model 
achieves an accuracy of 70%. 

In summary, the existing works only focus on the prediction of 
either takeover time or takeover quality. By contrast, DeepTake 
provides a unifed framework for the prediction of all three as-
pects of takeover behavior: intention, time and quality together. 
Furthermore, DeepTake achieves better accuracy results: 96% for 
takeover intention (binary classifcation), 93% for takeover time 
(three classes), and 83% for takeover quality (three classes). 

3 DEEPTAKE: A NEW APPROACH FOR 
TAKEOVER BEHAVIOR PREDICTION 

In this section, we present a novel deep neural network (DNN)-
based approach, DeepTake, for the prediction of a driver’s takeover 
behavior (i.e., intention, time, quality). Figure 1 illustrates an overvi-
ew of DeepTake. First, we collect multimodal data such as driver 
biometrics, pre-driving survey, types of engagement in non-driving 
related tasks (NDRTs), and vehicle data. The multitude of sens-
ing modalities and data streams ofers various and complementary 
means to collect data that will help to obtain a more accurate and ro-
bust prediction of drivers’ takeover behavior. Second, the collected 
multimodal data are preprocessed followed by segmentation and 
feature extraction. The extracted features are then labeled based on 
the belonging takeover behavior class. In our framework, we defne 
each aspect of takeover behavior as a classifcation problem (i.e., 
takeover intention as a binary classes whereas takeover time and 
quality as three multi-classes). Finally, we build DNN-based predic-
tive models for each aspect of takeover behavior. DeepTake takeover 
predictions can potentially enable the vehicle autonomy to adjust 
the timely initiation of TORs to match drivers’ needs and ultimately 
improve safety. We describe the details of each step as follows. 

3.1 Multimodal Data Sources 
3.1.1 Driver Biometrics. The prevalence of wearable devices has 
made it easy to collect various biometrics for measuring drivers’ 
cognitive and physiological states. Specifcally, we consider the 
following three types of driver biometrics in DeepTake. 

Eye movement. Drivers are likely to engage in non-driving 
tasks when the vehicle is in the automated driving mode [3, 48, 64]. 
Therefore, it is important to assess the drivers’ visual attention 
and takeover readiness before the initiation of TORs. There is a 
proven high correlation between a driver’s visual attention and 
eye movement [1, 65, 66]. DeepTake uses eye movement data (e.g., 
gaze position, fxation duration on areas of interest) measured by 
eye-tracker devices. We utilize a pair of eye-tracking glasses in our 
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user study (see Section 4). But the aforementioned eye movement 
data can be captured with any eye-tracking device. 

Heart rate. Studies have found that heart rate variability (HRV), 
fuctuation of heart rate in the time intervals between the nearby 
beats, is a key factor associated with drivers’ workload [49], stre-
ss [12], and drowsiness [59]. DeepTake uses features extracted from 
HRV analysis for monitoring drivers’ situational awareness and 
readiness to respond to TORs. Heart rate can be measured in many 
diferent ways, such as checking the pulse or monitoring physio-
logical signals. DeepTake employes photoplethysmographic (PPG) 
signal, which can be collected continuously via PPG sensors com-
monly embedded in smartwatches. PPG sensors monitor heart rate 
by the emission of infrared light into the body and measure the 
refection back to estimate the blood fow. Unlike some heart rate 
monitoring devices that rely on the placement of metal electrodes 
on the chest, PPG sensors provide accurate heart rate measures 
without requiring intrusive body contact. Therefore, a PPG signal 
is preferred for monitoring drivers’ heart rate. 

Galvanic skin response (GSR). Along with HRV, GSR has been 
identifed as another signifcant indicator of drivers’ stress and 
workload [12, 23, 41, 53]. A GSR signal measures the skin con-
duction ability. Drivers’ emotional arousal (e.g., stress) can trigger 
sweating on the hand, which can be detected through distinctive 
GSR patterns. DeepTake incorporates features extracted from the 
GSR signal for monitoring drivers’ stress levels. GSR sensors are 
also embedded in many wearable devices, including smartwatches. 

3.1.2 Pre-Driving Survey. In addition to the objective measure-
ments of driver biometrics, DeepTake exploits subjective pre-
driving survey responses, because drivers’ prior experience and 
background may infuence their takeover behavior [69]. However, 
any subjective rating of factors afecting a driver’s cognitive and 
physical ability as well as driving experience prepare a complete 
specifcation of objective metrics, potentially enhancing the distinc-
tive attributes of an algorithm. DeepTake framework exerts demo-
graphic information, NASA-Task Load Index (NASA-TLX) [27], and 
the 10-item Perceived Stress Scale (PSS-10) [7] to measure drivers’ 
perceived workload and psychological stress. In our user study (see 
Section 4), we asked participants to fll in questionnaires at the 
beginning of each trial. 

3.1.3 Non-Driving Related Tasks (NDRTs). As described in Sec-
tion 2, prior studies have found that engaging in NDRTs can un-
dermine drivers’ takeover performance. Diverse NDRTs require 
diferent levels of visual, cognitive and physical demands; thus, the 
infuence varies when drivers are asked to interrupt the secondary 
task and resume manual control of the vehicle. DeepTake accounts 
for the impact of diferent NDRTs on the prediction of drivers’ 
takeover behavior. In our user study, we considered four NDRTs 
in which drivers are very likely to engage in automated vehicles: 
(1) having a conversation with passengers, (2) using a cellphone, (3) 
reading, and (4) solving problems such as simple arithmetic ques-
tions (more details in Section 4.3). We chose these NDRTs because 
they are commonly used in driving studies [13, 24], and they follow 
the framework of difculty levels in the fow theory [10]. We further 
designed reading and arithmetic problem solving with two difculty 
levels (easy and medium adapted from [46], which reported a strong 
correlation between the questions and the physiological responses). 

Nevertheless, DeepTake framework can be easily adjusted to any 
NDRTs. 

3.1.4 Vehicle Data. DeepTake also considers a wide range of data 
streams captured from the automated vehicles, including lane posi-
tion, distance to hazards, angles of the steering wheel, throttle and 
brake pedal angles, and the vehicle velocity. Such vehicle data can 
help to determine the driving condition, the urgency of a takeover 
situation, and the impact of drivers’ takeover behavior. 

3.2 Data Preparation 
3.2.1 Feature Extraction and Multimodal Data Fusion. The goal 
of DeepTake is to provide a procedure to reliably predict drivers’ 
takeover behavior (i.e., intention, time and quality) before a TOR 
initiation. Hence, the taken procedure for data preparation depends 
on the driving setting, collected data and the context. Herein, we 
incorporate data of drivers’ objective and subjective measurements, 
as well as vehicle dynamic data. We initially apply data prepro-
cessing techniques including outliers elimination, missing value 
imputation using mean substitutions, and smoothing to reduce arti-
facts presented in raw data. It is worth mentioning that we exclude 
any data stream providing insights about the unknown future (e.g., 
type of alarm) or containing more than 50% missing value. The 
preprocessed time series data are then segmented into 10-second 
fxed time windows prior to the occurrences of TORs. In other words, 
if TOR happened at time t, we only used data captured in the fxed 
time window of [t-10s, t] and did not include any data later than t. 
We started with time window values of 2s and 18s, suggested in the 
literature [4, 17, 69], and experimentally settled on 10s, as real-world 
applications require a shorter time window with better prediction. 
We then aggregated the values of all multimodal data over this 
time interval, resulting in 256 (max sampling rate)×10sec = 2560 
observations per takeover event. However, depending on specifc 
applications and contextual requirements, the selected time win-
dow length could vary. Subsequently, the segmented windows from 
modalities are processed to extract meaningful features describing 
the attributes impacting takeover behavior. 

For the eye movement, we acquire interpolated features extracted 
from raw data through iMotion software [29]. The extracted eye 
movement attributes include gaze position, pupil diameters of each 
eye, time to frst fxation, and fxation duration/sequence on the 
detected area of interest (i.e., cellphone, tablet and monitor). 

To compute the heart rate features, we frst apply a min-max 
normalization on the raw PPG signal, and then flter the normal-
ized PPG signal by applying a 2nd order Butterworth high pass 
flter with a cut-of of 0.5Hz followed by a 1st order Butterworth 
low pass flter with a cut-of frequency of 6Hz. We use an open-
source toolkit HeartPy [58] to flter the PPG signals and extract the 
following features from heart rate variability (HRV) analysis: the 
standard deviation of normal beats (SDNN), root mean square of 
successive diferences between normal heartbeats (RMSSD), and 
the proportion of pairs of successive beats that difer by more than 
50ms (pNN50). These metrics are to correlate with driver’s cognitive 
workload and stress [50]. 

Furthermore, we obtain two common and important GSR fea-
tures: the number and amplitude of peaks [37, 46]. A peak occurs 
when there is a quick burst of raised conductance level. The peak 
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Table 1: List of extracted features used in DeepTake 

Data Source Feature Type Values 

Eye movement 

Gaze position 
Pupil size 

Time to frst fxation 
Fixation duration 
Fixation sequence 

foat 
foat 
int 
foat 
int 

(1920×1080) 
(0-7) 
(1-90) 

(100-1500ms) 
(1-2500) 

Heart rate (PPG signal) 
SDNN 
RMSSD 
pNN50 

foat 
foat 
foat 

(45-75ms) 
(25-43ms) 
(18-28%) 

GSR signal Number of peaks 
Amplitude of peaks 

int 
foat 

(1-6) 
(0.01- 1.58µs) 

Pre-driving survey 
Gender 

NASA-TLX 
PSS-10 

binary 
categorical 
categorical 

(M-W) 
(1-21) 
(0-4) 

Secondary tasks NDRTs categorical (C,U,R,S)1 

Vehicle data 

Right lane distance 
Left lane distance 
Distance to hazard 
Steering wheel angle 
Throttle pedal angle 
Brake pedal angle 

Velocity 

foat 
foat 
foat 
foat 
foat 
foat 
foat 

(0.73-2.4m) 
(1.02-2.8m) 
(98-131m) 
(-180-114◦) 
(15-21◦) 
(0-17◦) 

(0-55mph) 
1: C; Conversation, U ; Using cellphone, R; Reading articles on tablet, and S: Solving arithmetic 

questions 

amplitude measures how far above the baseline the peak occurred. 
Thus, peaks are valuable indicator of stress and mental workload. 

While the variety of a driver’s subjective and objective measure-
ments along with vehicle dynamic data provide complementary 
information to draw better insights into drivers’ takeover behavior, 
we need to fnally fuse these multimodal data into a joint repre-
sentation as input to the DNN model. Beforehand, however, we 
employ the Z-score normalization for most of the features except 
extracted PPG features to accentuate key data and binding rela-
tionships within the same range. To normalize the features asso-
ciated with PPG, we use the min-max normalization, as explained 
above. For any remaining features still containing missing values, 
their missing values are imputed by using their means. Table 1 
summarizes the list of data sources and extracted features used 
in DeepTake. Finally, the generated features from each modality 
concatenated to create a rich vector representing driver takeover 
attributes. The joint representations of all feature vectors with the 
provision of their associated labels are eventually fed into DNN 
models for training. Below, the labeling procedure of these feature 
vectors is explained. 

3.2.2 Data Labeling. The target labels greatly depend on the con-
text in which the labels are presented. Herein, we defne the ground 
truth labeling for an attribute set denoting the feature vector. Each 
label indicates the classifcation outcome of takeover intention, 
time, and quality that is more representative of our user study and 
the three takeover behavior aspects. 

Takeover intention. DeepTake classifes a driver’s takeover 
intention into the binary outcomes, indicating whether or not the 
driver would resume manual control of the vehicle. In our user 
study, if a participant initiated the takeover action by pressing the 

two buttons mounted on the steering wheel (see Figure 2) upon 
receiving a TOR, we label the feature vector as “TK”, showing the 
takeover intention; if no takeover action was initiated between the 
moment of TOR initiation and the incident (e.g., obstacle avoidance), 
we use a “NTK” label displaying the absence of intention. 

Takeover time. Recall from Section 2 that takeover time is 
defned as the time period between a TOR and the exact moment 
of a driver resuming manual control. Prior works have considered 
the starting time of manual control as the frst contact with the 
steering wheel/pedals [66] or the takeover buttons [32]. In our user 
study, we timed the takeover moment once a participant pressed 
the two takeover buttons on the steering wheel simultaneously (see 
Figure 2). We categorize takeover time into three classes, using 
threshold values consistent with the pre-defned ith percentile of 
takeover time in prior driving studies [8]. Let T denote the takeover 
time, thus the labels are defned as “low” when T < 2.6s , “medium” 
when 2.6s ≤ T ≤ 6.1s , or “high” when T > 6.1s . 

Takeover quality. As we alluded to earlier in Section 2, there 
are a wide range of metrics [30] for measuring takeover quality, 
depending on the needs of various takeover scenarios. In our user 
study (see Section 4), we consider a motivating scenario where the 
driver needs to take over control of the vehicle and swerve away 
from an obstacle blocking the same lane; meanwhile, the vehicle 
should not deviate too much from the current lane, risking crashing 
into nearby trafc. Therefore, we measure the takeover quality 
using the lateral deviation from the current lane, denoted by P . 
In our study, we design a 4-lane rural highway with a lane width 
of 3.5m. Therefore, we label the feature vectors into three classes 
of takeover quality: “low” or staying in a lane when P < 3.5m, 
“medium” or maneuver the obstacle but too much deviations when 
7m < P ≤ 10m, or “high” or maneuver safely and one lane deviates 
when 3.5 ≤ P ≤ 7m. 

3.3 DNN Models for Takeover Behavior 
Prediction 

DeepTake utilizes a feed-forward deep neural network (DNN) with 
a mini-batch stochastic gradient descent. The DNN model archi-
tecture begins with an input layer to match the input features, and 
each layer receives the input values from the prior layer and out-
puts to the next one. There are three hidden layers with 23, 14, 
and 8 ReLu units, respectively. The output layer can be customized 
for the multi-class classifcation of takeover intention, takeover 
time and takeover quality. For example, for the classifcation of 
takeover quality, the output layer consists of three Softmax units 
representing three classes (low-, medium-, and high-) of takeover 
quality. DeepTake framework uses Softmax cross-entropy loss with 
an Adam optimizer with a learning rate of 0.001 to update the 
parameters and train the DNN models over 400 epochs. In each 
iteration, DeepTake randomly samples a batch of data in order to 
compute the gradients with a batch size of 30. Once the gradients 
are computed, the initiated parameters get updated. The early stop-
ping method set to 400 epochs prevents overftting. In addition, 
DeepTakes randomly divides the given labeled data into 70% for 
training (necessary for learning the weights for each node), 15% 
for validation (required to stop learning and overtraining), and 15% 
for testing (the fnal phase for evaluating the proposed model’s 
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robustness to work on unseen data). Finally, in order to address im-
balanced data issues where the number of observations per class is 
not equally distributed, DeepTake utilizes Synthetic Minority Over-
sampling Technique (SMOTE) [6] which uses the nearest neighbor’s 
algorithm to generate new and synthetic data. 

In summary, our DeepTake framework employs diferent DNN 
models to predict takeover intention, takeover time and takeover 
quality. All of the DNN models in DeepTake have the same num-
ber of inputs and hidden layers, yet diferent output layers and 
associated weights. 

4 USER STUDY 
To test the feasibility of our proposed DeepTake framework, we 
conducted a user study with 20 participants featuring takeover 
behavior using a driving simulator2. The following section describes 
the experimental setup and design of our user study as follows. 

4.1 Participants 
In this study, 20 subjects (11 female, 9 male) aged 18-30 (mean= 
23.5, SD= 3.1) were recruited. All participants were hired through 
the university and were required to have normal or corrected-to-
normal vision, to not be susceptible to simulator sickness, and 
to have at least one year of driving experience to be eligible for 
participation in this study. Before the experiment, participants were 
questioned as to their age and driving experience. None of them had 
prior experience of interaction with AVs. They were reminded of 
their right to abort their trial at any point with no question asked. 
Three participants’ data were later excluded from the analysis, 
due to biometric data loss and a large amount of missing values. 
Participants received $20 to compensate for the time they spent in 
this study. 

4.2 Apparatus 
Figure 2 shows our low fdelity driving simulator setup, which con-
sists of a Logitech G29 steering wheel, accelerator, brake pedal and 
paddle shifters. The simulator records driver control actions and 
vehicle states with a sampling frequency of 20Hz and sent the cap-
tured data through a custom API using iMotions software [29]. The 
simulated driving environments along with the tasks were created 
using PreScan Simulation Platform. The driving environment was 
displayed on a 30-inch monitor. The distance between the center of 
the Logitech G29 steering wheel and the monitor was set at 91cm. A 
set of stereo speakers was used to generate the driving environment 
sounds along with the auditory alarm of TORs (more details in Sec-
tion 4.3). An Apple iPad Air (10.5-inch) was positioned to the right 
side of the driver and steering wheel to mimic the infotainment 
system and displayed an article for NDRT. 

We used Tobii Pro-Glasses 2 with the sample rate of 60Hz to 
collect the eye movement data, and a Shimmer3+ wearable device 
with a sampling rate of 256Hz to measure PPG and GSR signals. 
To maintain consistency across all participants, we positioned the 
Shimmer3+ to the left of all subjects. This consistency helps reduce 
the motion artifact where the subjects needed to frequently interact 
with the tablet on the right-hand side. Although we designed our 

2This study complies with the American Psychological Association Code of Ethics and 
was approved by the Institutional Review Board at University of Virginia. 

Figure 2: User study setup. This custom driving simulator 
consists of a 30-inch monitor, a Logitech G29 steering wheel, 
and 10.5-inch Apple iPad Air on which the non-driving tasks 
are displayed. For switching between the automated and 
manual control of the vehicle, the participant needs to press 
the two blue buttons on the steering wheel simultaneously. 
The participant wears a pair of eye-tracking glasses, and a 
wearable device with GSR and PPG sensors for the biomet-
rics acquisition. 

Table 2: Non-driving related tasks (NDRTs) used in our study 
Task Type Defnition 

Conversation with passenger Interacting with the experimenter who sits close to the participants 
Using cellphone Interacting with their cellphones for texting and browsing 
Reading articles Reading three types of articles (i.e.easy,mid,hard) on the tablet 
Solving questions Answering 2-level arithmetic questions (i.e. easy and medium) 

scenarios in a way to minimize the inevitable motion artifacts, we 
performed necessary signal processing on the PPG and GSR signals 
to remove potentially corrupted data, as discussed in Section 3.1. 

4.3 Experimental design 
A within-subjects design with independent variables of stress and 
cognitive load manipulated by NDRTs and the TOR types was 
conducted with three trials in a controlled environment as shown 
in Figure 2. We designed driving scenarios in which the simulated 
vehicle has enough functionality similar to AVs, such that the full 
attention of the driver was not required at all times. 

Non-Driving Related Tasks. We used four common NDRTs 
with various difculty levels and cognitive demand as shown in 
Table 2. Participants used the tablet to read the designated articles 
and answer the arithmetic questions. Additionally, they were asked 
to use their own hand-held phones, needed for the browsing tasks. 
Each participant performed all NDRTs with the frequency of four 
times in each trial (except for solving the arithmetic questions which 
occurred three times;15 × 3 in total). The conditions and the three 
driving scenarios were counterbalanced among all participants to 
reduce order and learning efects. To have natural behavior to the 
greatest extent possible, participants were allowed to depart from 
NDRTs to resume control of the vehicle at any given time. During 
manual driving, participants controlled all aspects of the vehicle, 
including lateral and longitudinal velocity control. 
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Figure 3:A schematic viewof an example of a takeover situationused in our study, consisting of: 1) takeover timeline associated
with participants’ course of action; 2) system status; and 3) takeover situation. The vehicle was driven in the automated mode
to the point after the TOR initiation and transitioning preparation period. The ego vehicle is shown in red and the lead car is
white. When the Ego vehicle reaches its limits, the systemmay initiate (true alarm) or fail (no alarm) to initiate the TOR, and
the driver takes the control back from the automated system.

Driving Scenarios. The driving scenarios comprised a 4-lane
rural highway, with various trees and houses placed alongside the
roadway. We designed five representative situations where the
AVs may need to prompt a TOR to the driver, including novel and
unfamiliar incidents that appear on the same lane. Figure 3 shows
an example of a takeover situation used in our study. The designed
unplanned takeovers let participants react more naturally to what
they would normally do in AVs [39] or as introduced by Kim and
Yang [32], participants’ reaction times are in detectable categories.
In other words, participants have no previous knowledge of incident
appearance, which might happen among other incidents requiring
situational awareness and decision-making.

Takeover Requests. In order to incorporate DeepTake in the
design of adaptive in-vehicle alert systems in a way that not only
monitors driver capability of takeover, but also to enhance takeover
performance of automated driving, various types of TOR were re-
quired. An auditory alarm was used to inform participants about
an upcoming hazard that required takeover from the automated
system. The warning was a single auditory tone (350Hz, duration:
75ms) presented at the time of hazard detection (≈140m or ≈13sec
before the incidents, depending the speed of the vehicle). In a precar-
ious world, AVs should be expected to fail to always provide correct
TORs. Herein, the scenarios were constructed conservatively to
include flawed TORs by which subjects would not over-trust the
system’s ability. In other words, the scenario demands that the
participant be partially attentive and frequently perceive the envi-
ronment. In order to cover the scenarios that one might encounter
while driving an AV, we designed multiple critical types of TORs,
including an explicit alarm (true alarm), silent failure (no alarm),
and nuisance alarm (false alarm). True alarm indicates the situation
in which the system correctly detects the hazard and triggers a TOR,
no alarm represents the system’s failure to identify the existing haz-
ard, and false alarm presents misclassification of a non-hazardous
situation as an on-road danger requiring takeover. We randomized

the 15 TOR occurrences in each trial (45 in total for each partici-
pant) with 6, 3, 6 repetitions for true alarm, no alarm, false alarm,
respectively. In addition, we also designed an information panel
where the participants could see the status of the vehicle along with
the cause of TOR (see Figure 2).

4.4 Procedure
Upon arrival in the lab, participants were asked to sign a consent
form and fill out a short demographic and driving history ques-
tionnaires. Subsequently, they were briefed on how the automated
system functions, how to enable the system by simultaneously
pressing two blue buttons on the steering wheel, and what they
would experience during NDRTs. They were further instructed that
if the system detected a situation beyond its own capabilities to
handle, it would ask (true alarm) or fail to ask (no alarm) to take
over control. Afterward, participants completed a short training
drive along a highway for a minimum of 5 minutes to get familiar
with the driving and assure a common level of familiarity with the
setup, NDRTs, and auditory signals pitch.

Once the subjects felt comfortable with the driving tasks and
NDRTs, they proceeded to the main driving scenario. Prior to
beginning the main experiment, we calibrated the eye-tracking
glasses (repeated at the beginning of each trial) and set participants
up with the Shimmer3+ wearable device. Then, participants were re-
quired to complete the baseline NASA-TLX questionnaire followed
by the PSS-10 questionnaire. The participants were also instructed
to follow the lead car, stay on the current route, and follow traffic
rules as they normally do. The participants were cautioned that
they were responsible for the safety of the vehicle regardless of
its mode (manual or automated). Therefore, they were required
to be attentive and to safely resume control of the vehicle in case
of failures and TORs. Since the scenarios were designed to have
three types of TORs, they needed to adhere to the given instruction
whenever they felt the necessity. The given instruction enabled the
drivers to respond meticulously whenever it was required and to
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reinforce the idea that they were in charge of the safe operation 
of the vehicle. Due to the system’s limitations, participants were 
told to maintain the speed within the acceptable range (< 47mph). 
The experiment was conducted utilizing scenarios consisting of 
sunny weather conditions without considering the ambient trafc. 
The order of NDRT engagement was balanced for participants (see 
Figure 3). 

The remainder of the experiment consisted of three trials, each 
containing 15 TORs, followed by a 5-minute break between trials. 
At the end of each trial, participants were requested to fll out the 
NASA-TLX. After completion of the last trial, participants flled out 
the last NASA-TLX followed by a debrief and a $20 compensation. 
The experiment took about one hour for each participant. 

5 PERFORMANCE EVALUATION 
We evaluate the performance of DeepTake framework using the 
multimodal data collected from our user study. We describe the 
baseline methods, metrics, results, and analysis as follows. 

5.1 Baseline Methods 
Overall, we obtained about 2 million observations to train, test, and 
validate DeepTake with; 2560 observations per TOR × 15 TORs per 
trial × 3 trials × 17 subjects. We evaluate the performance of Deep-
Take DNN-based models with six other ML-based predictive models, 
including Logistic Regression, Gradient Boosting, Random Forest, 
Bayesian Network, Adaptive Boosting (Adaboost), and Regularized 
Greedy Forest (RGF). Our process of choosing the ML models is 
an exploratory task with trials and tests of multiple of-the-shelf 
algorithms and choosing those that perform the best. To evaluate 
the prediction performance of DeepTake framework with other 
ML models, we were obligated to utilize some feature importance 
techniques. The reasons to apply feature importance techniques for 
an ML algorithm are: to train the predictive model faster, reduce 
the complexity and increase the interpretability and accuracy of 
the model. In order to do so, after splitting the labeled data into 
training, testing, and validation sets (see Section 3.3), we employ 
the following feature importance methods on each training set: 
Absolute Shrinkage and Selection Operator (LASSO), and random 
forest. LASSO helps us with not only selecting a stable subset of 
features that are nearly independent and relevant to the drivers’ 
takeover behavior, but also with dimensionality reduction. The 
random forest method, on the other hand, ranks all of the features 
based on their importance levels with the drivers’ takeover behav-
ior. The overlapped features chosen by the two methods were used 
to train the ML-based classifcation models of takeover behavior. 

5.2 Metrics 
We apply 10-fold cross-validation on training data to evaluate the 
performance of selected features in the prediction of driver takeover 
intention, time and quality. Cross-validation provides an overall 
performance of the classifcation and presents how a classifer al-
gorithm may perform once the distribution of training data gets 
changed in each iteration. In cross-validation, we utilize the training 
fold to tune model hyper-parameters (e.g., regularization strength, 
learning rate, and the number of estimators), which maximizes 
prediction performance. Therefore, we train predictive models with 

E. Pakdamanian et al. 

the best hyper-parameters. Cross-validation randomly partitions 
the training data into n subsets without considering the distribution 
of data from a subject in each set. A possible scenario is that data 
from one subject could be unevenly distributed in some subsets, 
causing overestimation of the prediction performance of a model. 
To avoid this situation, we check the subjects’ identifers in both 
the training and testing sets to ensure that they belong to just one 
group. We achieve this by forcing the subject to be in one group. 
To determine the accuracy of the binary classifcation of takeover 
intention performed by predictive models, accuracy was defned as 

T P +T N Acc = (TP, TN, FP, and FN represent True Positive, T P +T N +F P +FN 
True Negative, False Positive, and False Negative, respectively). For 
the multi-class classifcation of takeover time and quality, we used 
the average accuracy per class. We also used the metric of weighted 
F1 scores given by Õl 2 × Pri × Rci

WF1 = × Wi , (1)
Pri + Rcin=1 Íl T Pi Íl T Pi 

i=1 T Pi +FPi i =1 T Pi +F Niwhere Pri = is the precision, Rci = is the l l 
recall, andWi is the weight of the ith class depending on the number 
of positive examples in that class. It is worth mentioning that to deal 
with our imbalanced data, where the number of observations per 
class is not equally distributed, DeepTake framework along with 
ML-based predictive models use SMOTE to have a well-balanced 
distribution within class (see Section 3.3). 

Given multiple classifers, we use the Receiver Operating Char-
acteristic (ROC) curve to compare the performance of DeepTake 
alongside other ML-based models. The ROC curve is a widely-
accepted method that mainly shows the trade-of between TP and 
FP rates. A steep slope at the beginning of the curve shows a higher 
true positive (correct) classifcation of the algorithm, whereas in-
creasing the FP rate causes the curve to fatten. The ROC curve 
provides an efective way to summarize the overall performance of 
classifcation algorithms by its only metric, AUC. The AUC values 
provided in Figure 4 can be interpreted as the probability of cor-
rectly classifying the driver takeover behavior into the candidate 
category compared to a random selection (black line in Figure 4). 

In addition, we use the confusion matrix to further illustrate the 
summary of DeepTake’s performance on the distinction of takeover 
intention, time, and quality per class. 

5.3 Results and Analysis 
Multiple classifcation algorithms were employed to compare the 
performance of DeepTake on obtaining a reliable discriminator of 
driving takeover behavior, including intention, time, and quality. 
As the prediction of driver takeover time and quality are contingent 
upon the driver’s intention to take over from the autonomous 
systems after receiving TOR, the classifcation algorithms were 
initially carried out on this frst stage of driver takeover prediction, 
followed by takeover time and quality. 

Takeover intention. Analysis of the binary classifcation of dri-
vers’ takeover intention is shown in Table 3. The results show that 
DeepTake outperforms other ML-based models. However, among 
the ML-based algorithms, RGF attains the highest accuracy and 
weighted F1 score (92% and 89%) followed by AdaBoost (88% and 



                

                  
                   

                  
              

          
            

             
         
      

         
          

          
          

          
         

            
           

      

     

      

    
    

   
      

    
   

   
    
    

   
      

    
   

   
    
    

   
      

    
   

   

        

       
         
           

         
         

          
          

          
       

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan 

Figure 4: The ROC curve comparison of our DeepTake and six ML classifcation algorithms for classifcation of takeover 
behavior: (a) takeover intention, (b) takeover time, and (c) takeover quality. The ROC curve shows the average performance of 
each classifer and the shadowed areas represent the 95% confdence interval. The macro AUC associated with each classifer 
is shown where AUC value of 0.5 refers to a chance.[Best viewed in color] 

88%) and Logistic Regression (77% and 88%). Moreover, ROC was 
applied in order to better evaluate each of the classifers. Figure 4.a 
shows ROC curves and AUC values for all six ML models along with 
DeepTake to infer the binary classifcation of takeover intention. 
Although DeepTake shows outperformance on correctly classify-
ing a driver’s intention (AUC=0.96) using the multimodal features, 
RGF shows promising performance with an AUC of 0.94. Similar 
to the accuracy level, AdaBoost had a slightly lower performance 
with an AUC= 0.91. Furthermore, we obtained the confusion matrix 
for takeover intention (Figure 6.a) showing that the percentage of 
misclassifcations is insignifcant. Table 3, together with the results 
obtained from the AUC in Figure 4.a and the confusion matrix in 
Figure 6.a, ensure that our multimodal features with the right DNN 
classifer surpass the takeover intention prediction. 

Table 3: Classifcation performance comparison. 
Target value Classifer Accuracy W-F11 score 

Logistic Regression 0.77 0.81 
Gradient Boosting 0.76 0.75 
RF2 0.75 0.72 

Takeover Intention Naive Bayes 0.71 0.66 
Ada Boost 0.88 0.87 
RGF3 0.92 0.89 
DeepTake 0.96 0.93 
Logistic Regression 0.47 0.45 
Gradient Boosting 0.47 0.46 
RF 0.44 0.45 

Takeover Time Naive Bayes 0.36 0.38 
Ada Boost 0.64 0.58 
RGF 0.73 0.71 
DeepTake 0.93 0.87 
Logistic Regression 0.65 0.63 
Gradient Boosting 0.60 0.59 
RF 0.53 0.52 

Takeover Quality Naive Bayes 0.41 0.39 
Ada Boost 0.42 0.39 
RGF 0.82 0.77 
DeepTake 0.83 0.78 

1: Weighted F1-score; 2:Random Forest; 3:Regularized Greedy Forests 

Takeover time. DeepTake’s promising performance in takeover 
intention estimation leads us to a more challenging multi-class 
prediction of driver takeover time. As some of the ML-based models 
attained reasonably high accuracy in the binary classifcation of 
takeover, their performances, along with our DeepTake DNN based 
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Figure 5: The top graph shows the prediction accuracy of 
training and test sets for 400 epochs, whereas the bottom 
graph indicates the loss for DeepTake on prediction of three 
classes of low-, mid-, and high- takeover time. 
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Figure 6: Confusion matrix for the prediction of takeover behavior.The results are averaged over 10 fold cross validation splits. 
(a) Binary class takeover intention takeover(TK) vs. Not Takeover(NTK), (b) 3-Class classifcation results of takeover time, (c) 
3-class classifcation of takeover quality. 

in classifying multi-class classifcation of takeover time could assess 
the robustness of the DeepTake. 

Figure4.b shows a comparison amongst the models explored in 
this paper along with DeepTake for prediction of takeover time. It 
displays that DeepTake produces the best overall result with an AUC 
value of 0.96 ± 0.02 for each takeover low-, mid-, and high- time. We 
next consider the accuracy comparison of our DeepTake model with 
other classifer algorithms, reported in Table 3. It is evident that 
DeepTake outperforms all of the classic algorithms. In the three-
class classifcation of takeover time (low, mid, high), DeepTake 
achieves a weighted-F1 score of 0.87, thereby achieving the best 
performance on this task by a substantially better accuracy result 
of 92.8%. Among the classifers, RGF and AdaBoost still performed 
better (73.4% and 64.1%). As shown in Figure 5, DeepTake gained 
a high accuracy for both the training and testing sets. However, 
the model did not signifcantly improve and stayed at around 92% 
accuracy after the epoch 250. 

To capture a better view of the performance of DeepTake on 
the prediction of each class of takeover time, we also computed 
the confusion matrix. Figure 6 displays the performance of Deep-
Take DNN model as the best classifer of three-class takeover time. 
As the diagonal values represent the percentage of elements for 
which the predicted label is equal to the true label, it can be seen 
that the misclassifcation in medium takeover time is the highest. 
Also, marginal misclassifcations are found in the 2%-5% of the 
high and low takeover time classes, respectively. Overall, all three 
evaluation metrics of AUC, accuracy, and confusion matrix indicate 
that DeepTake robustness and promising performances in correctly 
classifying the three-class takeover time. 

Takeover quality. The test accuracy results of the 3-class classi-
fcation of all classifers are presented in Table 3. DeepTake achieves 
the highest accuracy with an average takeover quality of 83.4%. 
While the value of RGF was close to DeepTake, the rest of the al-
gorithms were not reliable enough to discriminate each class of 
takeover. However, we should note that RGF training time is very 
slow and it takes about two times longer than DeepTake to perform 
prediction. 

In addition, Figure 4.c presents the multi-class classifcation of 
takeover quality. Analysis of the discriminatory properties of Deep-
Take achieve the highest AUC of 0.92 ± 0.01 scores among the 
other models for each individual class. RGF model yields an im-
pressive average macro AUC of 0.91. Such a model indicates a 
high-performance achievement with informative features. 

We further investigated DeepTake robustness in correctly classi-
fying each class of takeover quality and the results achieved by the 
method are shown in Figure 6.c. For the 3-class quality estimation, 
DeepTake achieved an average accuracy of 87.2%. 

6 DISCUSSION 

6.1 Summary of major fndings 
In the current design of takeover requests, AVs do not account 
for human cognitive and physical variability, as well as their pos-
sibly frequent state changes. In addition, most previous studies 
emphasize the high-level relationships between certain factors and 
their impacts on takeover time or quality. However, a safe takeover 
behavior consists of a driver’s willingness and readiness together. 
The focus of this paper is to utilize multimodal data into a robust 
framework to reliably predict the three main aspects of drivers’ 
takeover behavior: takeover intention, time and quality. To the best 
of our knowledge, the DeepTake framework is the frst method for 
the estimation of all three components of safe takeover behavior 
together within the context of AVs and it has also achieved the high-
est accuracy compared to previous studies predicting each aspect 
individually. To ensure the reliability of DeepTake’s performance, 
we applied multiple evaluation metrics and compared the results 
with six well-known classifers. Despite the promising accuracy 
of some of the classifers, namely the RGF classifer, the accuracy 
of DeepTake surpassed in its prediction of takeover behavior. In 
general, our model performed better in classifying driver takeover 
intention, time and quality with an average accuracy of 96%, 93%, 
and 83%, respectively. 

In order to further assess the robustness of DeepTake, we in-
crease the number of classes to the more challenging fve-class 
classifcation of takeover time where the classes defned as “lowest” 
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Figure 7: Confusion matrix for the prediction of fve classes 
of driver takeover time. 

when T < 1.5s , “low” when 1.5s ≤ T < 2.6s , “medium” when 
2.6s ≤ T < 4.7s , “high” when 4.7s ≤ T ≤ 6.1s , or “highest” when 
T > 6.1s . Figure 7 represents the performance of DeepTake on clas-
sifying the fve-class takeover time. Although DeepTake was not 
as distinctive in fve-class classifcation as in the three-class, it still 
achieved promising results. Lowest, high, and medium takeover 
times are the top three pairs that were the most frequently misclas-
sifed by the DNN model. The reason might be that the selected 
features do not have the required distinctive characteristics to per-
fectly divide the low and medium takeover time. In each class, it 
could still distinguish between fve other classes with an average 
accuracy of 77%. With a future larger amount of data collection 
satisfying each class need, DeepTake could further improve its 
distinctive aspect of each feature for more precise classifcation. 

6.2 Descriptive analysis of takeover time and 
quality 

Although DeepTake takes advantage of a DNN-based model inte-
grated into its framework, understanding the reasons behind its 
predictions is still a black-box and a challenging problem which 
will be tackled in our future works. However, to comprehend the 
efects of multimodal variables on takeover time and quality, a 
repeated measure Generalized Linear Mixed (GLM) model with a 
signifcance level of α = 0.05 to assess the correlation of subopti-
mal features was used to predict takeover time and quality. The 
analysis of the results shows the signifcant main efect of NDRTs 
on takeover time and quality (F3,28 = 13.58, p < 0.001) followed 
by fxation sequence (F1,28 = 35.87, p < 0.001) and vehicle ve-
locity (F1,28 = 13.06, p < 0.001). Post-hoc tests using Bonferroni 
demonstrated a higher impact of interaction with the tablet and 
reading articles (p < 0.001) as opposed to a conversation with pas-
sengers. This result could be based on the amount of time spent 
and the level of cognitive load on the takeover task. This fnding 
is aligned with the previous results of [20, 21]. Additionally, there 
was no signifcant efect of brake and throttle pedal angle on the 
takeover time(F1,28 = 3.05, p = 0.085) and quality (F1,28 = 1.27 
p = 0.256). This could be because our scenarios did not take place 
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on crowded roads and participants were not forced to adopt a spe-
cifc behavior after the TOR. Therefore, they could maneuver the 
vehicle without signifcant adjustment to either pedal. 

On the other hand, takeover quality tied into drivers’ lane keep-
ing control and was impacted by the alarm type and the category 
of takeover time shown in Figure 8. Although we did not consider 
the type of alarm and category of takeover time for prediction of 
takeover behavior as they could simply manipulate DeepTake out-
comes by providing insights about the future, it is worth additional 
investigation of their impacts on the takeover quality. Since partici-
pants’ takeover times and the speed of the vehicle on the manual 
driving were diferent, Figure 8 shows the average time of TOR. 
The top graph in Figure 8 depicts the average lateral position of 
the vehicle with respect to no alarm and true alarm. These two 
types of the alarm were considered due to the necessity of taking 
over. Under the impact of the true alarm, the vehicle deviates less 
than when there is no alarm, yet not signifcantly (F2,28 = 7.07, 
p = 0.78). Moreover, the drivers performed more abrupt steering 
wheel maneuvers to change lanes on true alarm. Similarly, the bot-
tom graph in Figure 8 shows the lateral position with respect to 
diferent takeover times (low, mid, and high). It can be seen that the 
longer the takeover time is, the farther the vehicle deviates from 
the departure lane. Diferences in takeover time were also analyzed 
to investigate the takeover quality. The main efect of the type of 
takeover time was not signifcant (F2,19 = 0.44). Although prior 
research has revealed various timing eforts to fully stabilize the 
vehicle [42], our observations are comparable to [45] and [5]. 

6.3 Implications on the design of future 
interactive systems 

We believe that our human-centered framework makes a step to-
wards enabling a longer interaction with NDRTs for automated 
driving. DeepTake helps the system to constantly monitor and pre-
dict the driver’s mental and physical status by which the automated 
system can make optimal decisions and improve the safety and 
user experience in AVs. Specifcally, by integrating the DeepTake 
framework into the monitoring systems of AVs, the automated sys-
tem infers when the driver has the intention to takeover through 
multiple sensor streams. Once the system confrms a strong pos-
sibility of takeover intention, it can adapt its driving behavior to 
match the driver’s needs for acceptable and safe takeover time and 
quality. Therefore, a receiver of TOR can be ascertained as having 
the capability to take over properly, otherwise, the system would 
have allowed the continued engagement in NDRT or warned about 
it. Thus, integration of DeepTake into the future design of AVs facili-
tates the human and system interaction to be more natural, efcient 
and safe. Since DeepTake should be used in safety-critical appli-
cations, we further validated it to ensure that it meets important 
safety requirements [26]. We analyzed DeepTake sensitivity and 
robustness with several techniques using the Marabou verifcation 
tool. The sensitivity analysis provides insight into the importance of 
input features, in addition to providing formal guarantees with re-
spect to the regions in the input space where the DeepTake behaves 
as expected. 

DeepTake framework provides a promising new direction for 
modeling driver takeover behavior to lessen the efect of the general 
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TOR

TOR

Figure 8: Average trajectories when drivers took over control from automated system after receiving TORs. Top graph shows 
the lateral position of the vehicle with respect to no alarm (silent failure) and true alarm (explicit alarm). Bottom graph shows 
the lateral position of the vehicle for three categories of takeover time (low, mid, and high). The light shaded area representing 
standard deviation at each time point. 

and fxed design of TORs which generally considers homogeneous 
takeover time for all drivers. This is grounded in the design of 
higher user acceptance of AVs and dynamic feedback [19, 55]. The 
information obtained by DeepTake can be conveyed to passengers 
as well as other vehicles letting their movement decisions have a 
higher degree of situational awareness. We envision that DeepTake 
would help HCI researchers and designers to create user interfaces 
and systems for AVs that adapt to the drivers’ state. 

6.4 Limitations and future work 
The following limitations should be taken into consideration for 
future research and development of DeepTake. 
First, it is acknowledged that the DeepTake dataset is vulnerable 
to the low fdelity driving simulator used for data collection. It is 
possible that the takeover behavior of subjects were infuenced by 
the simplicity of driving setup and activities. To apply DeepTake on 
the road, we will need more emphasis on various user’s activities 
and safety, and exclude subjective surveys causing biases. Second, 
while we increased the number of classes, future development 
of DeepTake should predict takeover time numerically. For this 
purpose, a larger dataset will be needed which accounts for a high 
variation of individual takeover time and probabilistic nature of 

DNNs by which the DeepTake framework can still learn and reliably 
predicts takeover time. 

Third, although we tried to avoid overftting, it is possible that 
DeepTake emphasized more on few features that frequently ap-
peared in TORs, and the performance may not be the same if more 
scenarios are being tested. Thus, DeepTake decision boundaries 
need to be experimented with diferent adversarial training tech-
niques. Forth, DeepTake lacks using real-world data which often 
signifcantly diferent and could potentially impact the results of 
DeepTake framework. Testing the framework on real-world data 
helps users to gain confdence in DeepTake’s performance. Deep-
Take was developed and assessed ofine using a driving simulator 
in a controlled environment. Future work should explore the deploy-
ment of DeepTake online and in the wild for real-world applications 
in future AVs. We plan to integrate the DeepTake and its verifcation 
results [26] into the safety controller, which will be then evaluated 
using the on-road vehicle. In our future work we also plan to try 
to reduce the number of features in the model by using the results 
from the sensitivity analysis along with feature importance analysis 
techniques (i.e. LIME and SHAP) to discover features that may be 
able to be dropped from the model. 
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7 CONCLUSION 
In this work, we present DeepTake, a novel method that predicts 
driver takeover intention, time and quality using data obtained 
from the vehicle, wearable sensors, and a self-administered survey 
taken before driving. By using DNN-based models, DeepTake en-
ables prediction of driver takeover intention, time and quality, all 
of which are crucial in ensuring the safe takeover of an automated 
vehicle. Our evaluation showed that DeepTake outperforms the 
best accuracy results of prior work on takeover prediction with an 
accuracy of 96 %, 93 %, and 83% for the multi-class classifcation of 
takeover intention, time and quality, respectively. As prior studies 
demonstrated, alarming drivers when the system detects a situa-
tion requiring takeover does not guarantee safe driver takeover 
behavior [33, 34, 40]. We believe that accurate takeover prediction 
aforded by DeepTake would allow drivers to work on non-driving 
related tasks while ensuring that they safely take over the control 
when needed. DeepTake opens up new perspectives for HCI re-
searchers and designers to create user interfaces and systems for 
AVs that adapt to the drivers’ context. 
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