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Abstract— The spatial distribution of sensed objects strongly
influences the behavior of mobile robots. Yet, as robots evolve
in complexity to operate in increasingly rich environments, it
becomes much more difficult to specify the underlying relations
between sensed object spatial distributions and robot behaviors.
We aim to address this challenge by leveraging system trace
data to automatically infer relations that help to better char-
acterize these spatial associations. In particular, we introduce
SpRInG, a framework for the unsupervised inference of system
specifications from traces that characterize the spatial relation-
ships under which a robot operates. Our method builds on a
parameterizable notion of reachability to encode relationships
of spatial neighborship, which are used to instantiate a language
of patterns. These patterns provide the structure to infer, from
system traces, the connection between such relationships and
robot behaviors. We show that SpRInG can automatically infer
spatial relations over two distinct domains: autonomous vehicles
in traffic and a surgical robot. Our results demonstrate the
power and expressiveness of SpRInG, in its ability to learn
existing specifications as machine-checkable first-order logic,
uncover previously unstated specifications that are rich and
insightful, and reveal contextual differences between executions.

I. INTRODUCTION

Robot behavior is often guided by the spatial distribution
of sensed objects in its environment. For example, consider
a scenario in which autonomous vehicles (AVs) are tasked
to navigate through highway traffic (see Figure 1). In this
scenario, we expect an AV to change lanes only if it
senses that there are no vehicles blocking its target lane.
Furthermore, we may observe that an AV will decelerate to
allow a nearby vehicle to pass.

As robot systems and their operating environments grow in
complexity, the underlying relation between the spatial dis-
tributions of sensed objects and robot behavior becomes in-
creasingly difficult to specify. This challenge is compounded
by several factors. First, there is a high dimensional input
space, yielding an extensively large quantity of potential
distributions of objects. In the traffic scenario, each AV
contains a wide array of state variables (e.g. pose, velocities,
sensor readings) and potential values, so manually defin-
ing relevant relationships between all entities and variables
quickly becomes infeasible. Second, the increasing number
of learned components in robots tends to obscure such spatial
relationships. In the traffic scenario, the behavior of each AV
may not be explicitly stated in the code, but rather governed
by a black-box DNN that accepts a LiDAR reading as input,
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Fig. 1. Autonomous vehicles operating in a traffic scenario. The boxed
vehicles (bottom lane) are those that are detected by the AV in the top lane,
and the yellow lines represent their sensed distances. If a vehicle is detected
within one of the shaded green regions around the AV, then it is determined
to have direct influence over the AV’s behavior (green box) or negligible
influence (red box). The white arrows indicate the direction of traffic.

detects relevant objects, and outputs control signals. For such
a model, the decision-making process is not always evident
or explainable. Third, complex scenarios introduce highly
unpredictable factors, from humans overseeing the vehicles
to the weather on the road, which are inherently difficult to
specify.

Each of these complexities greatly exacerbates the cost
of specifying the behaviors of robot systems, leading many
to remain unspecified. Yet, since the misbehavior of robots
can lead to catastrophic outcomes, it is important to define
these specifications to enable the verification and validation
of such systems. To address this challenge, we aim to auto-
matically infer relations that help to characterize how sensed
object spatial distributions and robot behaviors are related
by leveraging the increasingly rich sensor data collected by
deployed robots. In the context of the traffic scenario, we
aim to capture relations like:

• If an AV senses that its lead vehicle decelerates, then
the AV will decelerate.

• If an AV senses a nearby vehicle in its left lane, then
the AV would not perform a left lane change.

• When an AV senses a red traffic light ahead, then the
AV will stop.

Such inferred relations have two desirable attributes. First,
they possess a higher level of abstraction than the robot
code implementation, one that explicitly connects object
spatial distributions and the physical behaviors of the robots.
Second, they can be inferred with no prior knowledge of
system specifications, as they are learned solely from system
traces of sensing and actuation data.
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To automatically infer such spatial relations, we introduce
the Spatial Relation Inference Generator (SpRInG). This
framework abstracts a trace of logged data into a sequence of
graphs that encode parameterizable notions of reachability,
and then utilizes a rich language of patterns to instantiate
spatial relations. While existing approaches either lack the
infrastructure to learn spatial parameters [1] or have limited
applicability for the inference of rich spatial relations from
complex robot systems [2], SpRInG generates spatial rela-
tions that consider the inherent complexities and restrictions
underlying such systems.

The primary contributions of this work are:
• A novel framework (SpRInG) for characterizing the

spatial relationships between sensed object distributions
and physical robot behaviors.

• A publicly available implementation of SpRInG.1

• An assessment of SpRInG over two distinct domains,
to demonstrate its ability to automatically generate
insightful spatial relations over diverse systems.

II. RELATED WORK

The work on automated inference from variable-value
traces can be organized along three dimensions.

First, by the types of relations inferred and the logic by
which they are encoded. Some approaches, such as Daikon
[3], infer stateless linear relations in first-order logic that
reflect the state of a system at a single point in time. Others,
such as DIG [4], can infer stateless non-linear properties.
More sophisticated methods can infer stateful temporal prop-
erties that account for the ordering of events, through the use
of simple pattern matching [5], or genetic algorithms to infer
signal temporal logic (STL) parameters [6].

Second, by the information that the user must provide to
the inference process. For example, while Daikon and DIG
can operate directly on traces by instantiating their entire
set of predefined patterns, they are more efficient if the user
provides a set of target trace variables. In approaches that
infer temporal relations, the user may be required to bound
the analysis by providing their own set of (at times, partially-
instantiated) patterns [7, 8, 1].

Third, by the way in which inferred relations are used.
Software developers have used such relations for testing
[9, 10], verification [11], debugging [12], robot system
monitoring [13], predictive monitoring [14, 15, 16], and to
characterize uncertainty in robot systems [14].

Despite this body of research, there is limited work on
characterizing the relationship between sensed object spatial
distributions and robot behaviors. There have been efforts
to specify and monitor spatial aspects of physical systems
with spatial logics (e.g. SSTL [17], STREL [18], SpaTeL
[19], and SaSTL [20]), but these approaches do not perform
inference. The only existing work that makes inferences over
spatial-temporal data constructs a spatial model as a graph,
and aims to infer time and distance parameters for PSTREL

1Our complete implementation is provided in our GitHub repository:
https://github.com/less-lab-uva/SpRInG.

formulae that are satisfied by all relevant nodes [2]. While
this approach demonstrates its applicability for distributed
stationary systems, the extension of their approach to mobile
robots is limited. First, their inferred relations are limited
by the inexpressiveness of STREL, which has been shown
to only capture a small subset of complex specifications,
relative to modern spatial logics [20]. Even further, our
approach can extract spatial relationships that are much
richer than distance bounds on spatial operators. Second,
their spatial models preserve connectivity between nodes,
an assumption that does not hold for mobile robots. Third,
their approach requires the user to have substantial domain
knowledge to provide patterns and parameter ordering. In
contrast, our approach automatically provides an extensible
library of patterns, thereby balancing automated discovery
with pattern-query specificity.

III. APPROACH

The goal of SpRInG is to leverage rich system traces
to automatically learn the underlying relations between the
spatial distribution of sensed objects and the resulting robot
behaviors. The framework consists of three main components
(see Figure 2). The Spatial Encoder component converts a
raw trace into a sequence of graphs, which encode relevant
spatial information. The Inference Engine component then
infers spatial relations over these graphs, in the form of
predicates, implications, and generalizations. These inferred
relations then pass through a Filter prior to reporting.

A. Spatial Encoder

The objective of the Spatial Encoder is to convert the trace
into a sequence of graphs that succinctly encode relevant
spatial information and align with existing spatial logics
[17, 18, 20] (see Figure 2: “Spatial Encoder”). A trace
contains a time-ordered sequence of observations, where
each observation holds state and perception information for
each entity in the system (e.g. drone, autonomous vehicle,
person). This information is stored as a set of variable-value
pairs. The conversion of trace T into a sequence of graphs
Tr is accomplished through two subcomponents: the Spatial
Model Constructor and the Reachability Encoder.

1) Spatial Model Constructor: The purpose of the Spatial
Model Constructor is to initialize all possible spatial relation-
ships between entities, which will later be used to discern
and encode only those that are deemed the most valuable.

Each graph gi is instantiated from an observation oi ∈
T by abstracting each system entity as a node nj ∈ V =
{n1, n2, ...nn}. Each node is assigned information from oi
regarding its identifying information and state (e.g. ID, class,
velocities, battery level). A directed edge is then constructed
between each pair of entities (nj , nk), as in ejk ∈ E =
{e12, e21, ...emn}. Each edge ejk contains a set of attributes,
wjk ∈ W , that relates the paired entities by their relative
state information and relevant perception information from
nj . After iterating this process for all observations in trace
T , each oi ∈ T has been abstracted into a fully-connected
graph, gi ∈ Tf .
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Fig. 2. The SpRInG framework. Its three main components are shown: Spatial Encoder, Inference Engine, and the Filter. In the Reachability Encoder
subcomponent, neighbor relationships between entities are visualized with highlighted edges.

2) Reachability Encoder: The objective of the Reachabil-
ity Encoder is to prune irrelevant relationships established in
each fully-connected graph, such that the Inference Engine
only learns relations over the most meaningful relationships.
In particular, this subcomponent encodes the reachability
between entities, a special form of spatial relationship in
which one entity can be influenced by another (directly or
indirectly). The conditions that must be met for one entity’s
behavior to be directly influenced by another are provided
through a logical formula, called a neighbor definition.

Definition 1 (Neighbor Definition). Given an entity
nj ∈ {n1, n2, ...nn}, its neighbor definition Φj ∈ Φ =
{Φ1,Φ2, ...Φn} is a propositional formula that must be
satisfied by edge attributes from wjk, for the behavior of
nj to be directly influenced by any other entity nk. Due to
the heterogeneity of sensing equipment and their limitations
(e.g. range, noise), it is reasonable to assign each entity a
unique neighbor definition. To evaluate such a formula, this
component considers the following mapping: z : (Φ×2W ) →
True|False , where W is the set of all edge attributes from
some graph gi ∈ Tf . This mapping is used to determine
whether a set of edge attributes wjk ⊆ W satisfies Φj .
After retrieving relevant values from wjk, the entire neighbor
definition is evaluated as either True (edge is preserved) or
False (edge is removed). More generally, each entity can
have multiple neighbor definitions to accommodate different
types of neighbors (e.g. one for leftNeighbors, another for
rightNeighbors).

Example 1. In the traffic scenario, assume that the user
provides the following neighbor definition as part of the
input: Φcar1 = (distance < 10)∧(detect confidence > 0.8)
This states that the edge between car1 and another entity
cark will only be preserved if cark is less than 10 meters
away and is detected with over 80% confidence.

The preserved relationships between pairs of entities form
the basis for the construction of reachability graphs, where
each graph encodes two abstract relationships for inference:
neighbors and neighborhoods.

Definition 2 (Reachability Graph). A reachability graph
gri ∈ Tr is a subgraph of gi = (V,E,W ), denoted by gri =
(V ′, E′,W ′) with V ′ = V , E′ ⊆ E, and W ′ ⊆ W , where
the set of attributes w′

jk ⊆ W ′ for each edge e′jk ∈ E′

satisfies z(Φj , w
′
jk) = True .

Definition 3 (Neighborship). Let gri ∈ Tr be a reachability
graph. The neighbors of some node nj at timestep i is the
set of all entities that are adjacent to nj in gri (i.e. “directly
reachable”). Intuitively, this is equivalent to the set of entities
that do not violate Φj at timestep i. The neighborhood
of some node nj at timestep i is the set of all entities
that are returned from a graph search starting from nj (i.e.
“directly or indirectly reachable”), in the reachability graph
gri . Both definitions are optionally predicated under the type
of neighbor (e.g. leftNeighbors, rightNeighbors).

B. Inference Engine

The goal of the inference engine component (see Figure
2: “Inference Engine”) is to learn spatial relations from the
sequence of reachability graphs. Since these graphs encode
the reachability between entities through neighborship, the
learned relations are based on the neighbor and neighbor-
hood relationships.

1) Pattern Library: The objective of the Pattern Library
is to automatically generate and compile relation patterns
such that they can be instantiated, evaluated, and refined by
the Predicate Inference subcomponent. While a library of
patterns can be automatically constructed with entity data
from Tr, the user may choose to connect through an API to
provide their own patterns. In either case, each relation must
abide by a grammar.

Example 2. Consider a subset of the full grammar (the full
version is provided in our GitHub repository):

Productions Supporting Definitions
Pmain := P1 | P2 | P3
P1 := Pmain OP Pmain OP: ≥ | ≤ | == | ∈
P2 := N .Relation.Attribute Relation: Neighbors | Neighborhood
P3 := CONST Attribute: Size

The relation pattern (N .Neighbors.size ≥ CONST ) is
constructed by (Pmain) → (P1) → (Pmain OP Pmain) →
(P2 OP P3 ) → (N .Relation.Attribute ≥ CONST ) →
(N .Neighbors.Size ≥ CONST ). Each (a) → (b) signifies
that string (b) is a direct derivation from string (a), per the
production rules. Each pattern must contain viable tokens
(e.g. CONST and N ), which are filled during inference.
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2) Predicate Inference: The objective of the Predicate
Inference subcomponent is to use the relation patterns, along
with the sequence of reachability graphs Tr and a set of
inference parameters for engine configuration, to produce a
set of relations, R, that are either reported as stand-alone
relations, R⊤ ⊆ R, or used as predicates by the subsequent
Implication Inference subcomponent. High-level pseudocode
for Predicate Inference is provided in Algorithm 1.

Algorithm 1 Predicate Inference
1: procedure INFERENCEENGINE(Tr, patterns, params)
2: R = set()
3: gri−1 = None
4: for gri in Tr do
5: // --- Instantiate new relations ---
6: n = findNewEntities(gri , gri−1)
7: pairs = findPairings(n, gri )
8: Rk = instantiateRels(n, pairs, patterns)
9: R.update(Rk)

10: // --- Evaluation and refinement ---
11: for ri in R do
12: ω = evaluate(ri, gri , params)
13: ri.evals[gri ] = ω
14: if ω == False then
15: r<i = refine(ri, gri )
16: R.add(r<i )
17: r<i .evals = refineEvals(ri.evals)

18: gri−1 = gri
19: R⊤ = extractTruePredicates(R)
20: return (R,R⊤)

For each reachability graph gri ∈ Tr (line 4), the engine
starts by instantiating relation patterns with previously un-
seen permutations of entities from gri (lines 6-9). To do so,
this component retrieves new entities from gri and constructs
all new pairings of nodes. This is necessary to account for
systems in which entity information is occasionally inacces-
sible (e.g. observations are collected by n local observers,
information is only accessible within a subset of a map).

Example 3. In the traffic scenario, consider the first
reachability graph in the sequence, gr0 . Since all per-
mutations of single and paired entities have not been
used to instantiate patterns, every pattern is filled with
a corresponding set of entities. Consider the following
pattern: ENTITY .Neighbors.size ≥ CONST . To in-
stantiate relations from this pattern, the engine first re-
places the ENTITY token with an entity name (e.g.
for car1 : car1 .Neighbors.size ≥ CONST ). Upon evalua-
tion of the new left-hand term (car1 .Neighbors.size), the
CONST token is replaced with the resulting value. For
example, if car2 and car3 are adjacent to car1 in the
reachability graph gr0 , then the component determines that
car1 .Neighbors.size = 2 at timestep 0. Upon replacing the
CONST token with this value, the fully-instantiated relation
is obtained: car1 .Neighbors.size ≥ 2.

After all new instantiations have been made from the
current reachability graph gri , all relations are evaluated
under gri as True,False , or Unknown (line 12). The result
is Unknown when the relation cannot be evaluated, due to
an entity’s absence from the current observation. To enable
the engine to later infer implications between relations,

each relation object contains a dictionary that stores the
evaluation from each timestep. This mapping is of the form
Ω : (R×Gr) → True|False|Unknown , where R is the set of
all generated relations and Gr is the set of all reachability
graphs. Finally, if a relation is evaluated as False , then a
refined version is generated to make it True under gri . This
relaxed relation is then marked as True in its evaluations for
all graphs grk in which its parent was evaluated as True , in
addition to the current graph gri (lines 15-17).

Example 4. In the traffic scenario, assume that the graph
associated with the subsequent timestep, gr1 , shows that
car2 is no longer a neighbor of car1. In this case, since
car3 is now the only entity that is adjacent to car1, the
component finds that car1 .Neighbors.size = 1. There-
fore, the relation that was instantiated at the previous step,
car1 .Neighbors.size ≥ 2, is now False and should be
relaxed. To do so, the left-hand term is re-evaluated and
the right-hand term is updated, thereby generating a newly
refined relation: car1 .Neighbors.size ≥ 1.

After this iterative process of instantiation, evaluation,
and refinement, the set of all relations are passed to the
Implication Inference subcomponent as R, and the set of
relations that were never violated are stored as R⊤ ⊆ R.

3) Implication Inference: The goal of the Implication
Inference subcomponent is to use the evaluations saved
from each relation (at each timestep) to infer implications
between pairs of relations in R. Prior to forming such
implications, this subcomponent reduces the input space by
excluding relations that were evaluated as True or False for
all timesteps. In essence, this step removes predicates that
would weaken the implication and thereby introduce noise
into the subcomponent’s output.

For each eligible pair of predicate relations (rj , rk),
this subcomponent checks the implication between their
evaluations Ω(rj , g

r
i ) ⇒ Ω(rk, g

r
i ) for each timestep i. If a

contradiction (i.e. True ⇒ False) is found at any timestep,
the implication is flagged such that the subsequent Relation
Generalizer will not report its general form. Afterward, all
generated implications are passed to the Relation Generalizer
subcomponent as the set Rimp.

4) Relation Generalizer: The objective of the Relation
Generalizer is to make generalizations about various groups
of entities for the extraction of broader spatial relations. Gen-
eralizations are made across all entities by default, but the
user may provide specific groupings (e.g. by type, behavioral
class, region), given that the associated entity classifications
are provided in the trace (e.g. nj .class = “ambulance”,
nk.class = “bus”). For each relation in R⊤ and Rimp, the
general form is extracted by replacing each entity name with
its group name. Next, these group names are replaced with
every viable permutation of its members. The generalized
relation is only reported if none of its instantiations are
violated at any timestep in the sequence of reachability
graphs. Finally, the set of generalized true predicates (RG

⊤)
and the set of generalized implication relations (RG

imp) are
passed through the filter.
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Fig. 3. SUMO highway (top left) and intersection (bottom left),
JIGSAWS “Suturing” procedure (right).

C. Filter

Prior to reporting, all candidate relations are filtered
by means of a tautological model and through logical
subsumption and exclusion. The tautological model is a
lattice that describes which neighborship distinctions are
contained within another through ancestor/descendant rela-
tionships. By default, to help remove redundant relations,
this lattice informs the filter that ENTITY .Neighbors ⊆
ENTITY .Neighborhood . Additionally, the user may pro-
vide more complex distinctions between sets of neighbors,
which is beneficial to remove even more relations that
would not be caught by standard logical subsumption (e.g.
ENTITY .LeftNeighbors ⊆ ENTITY .AllNeighbors).

After these tautological relations are removed, the filter
checks whether each relation can be logically subsumed by
another. For instance, in the case that an implication (A ⇒
B) and its contrapositive (¬B ⇒ ¬A) are part of the filter’s
input, the latter is removed by logical equivalency. Addition-
ally, greater specificity is favored by the filter through exclu-
sion. For example, if relations ENTITY .Neighbors.size =
3 and ENTITY .Neighbors.size ≤ 3 are passed through
filter, then the latter is removed. After the filtering step, all
remaining relations are reported in the set Rk.

IV. IMPLEMENTATION

The SpRInG framework is implemented as a tool shared
through a GitHub repository: https://github.com/less-lab-
uva/SpRInG. The tool is highly configurable, with param-
eters to adjust the neighbor definitions, tautological model,
and inference settings. The repository also contains addi-
tional documentation and implementation details.

V. STUDY

Through this study, we aim to assess the power and
expressiveness of SpRInG by providing evidence that it
can uncover relevant spatial relations over two distinct and
complex physical systems, with minimal input required from
the user. We seek to answer two research questions:

• RQ1: How effective is SpRInG at discovering new and
existing spatial relation specifications from traces?

• RQ2: How capable is SpRInG in its ability to produce
relations that reflect contextual changes?

We hypothesize that if the collected traces are rich enough
to capture spatial patterns between entities, then both new
and existing spatial relations, along with their underlying
context, will be captured by SpRInG. We answer RQ1

through a study of simulated traffic scenarios and answer
RQ2 through a study of surgical robot trials. We select
the inference parameters and relationships guiding spatial
abstraction based on the system, while the core inference
framework remains unchanged.

A. RQ1: Traffic

To answer our first research question, we target the SUMO
(“Simulation of Urban MObility”) traffic system [21], fre-
quently used to analyze AV behaviors in traffic [22, 23].

1) Setup: To capture diverse traffic behaviors, we con-
struct highway and intersection scenarios (see Figure 3). We
used the SUMO Traffic Control Interface (TraCI) to extract
traces of observations that contain the current lane, pose,
velocities, turn signals, brake, etc. for each vehicle.

2) Instantiation of Approach: We, as the user, define
a set of domain-specific notions of neighborship to better
capture the reachability between vehicles. More specifically,
we extract and utilize lane data from SUMO to extract
vehicles from the same lane (i.e. leaderNeighbors and fol-
lowerNeighbors) and vehicles that block adjacent lanes (i.e.
leftNeighbors and rightNeighbors). These distinctions form
each vehicle’s set of neighbor definitions, and were included
in the tautological model for filtering.

3) Evaluation: We seek to show that SpRInG is expressive
enough to generate relations that capture existing system
specifications. In this study, SpRInG has no prior knowledge
of the structure or contents of existing specifications. After
compiling a small sample of real SUMO specifications, we
examined the output of SpRInG applied to traces extracted
from the two traffic scenarios (see Figure 3). A sample of
real and inferred specifications are provided in Table I.

These results demonstrate that SpRInG can reasonably
capture underlying relationships that govern SUMO vehicle
behavior. Since each original English specification is now
paired with a formula in first-order logic, these can be
mathematically checked and monitored. We find that inferred
relations R1A, R1B , and R2 accurately reflect their associ-
ated SUMO specifications, and are unlikely to be violated by
the system. Inferred relation R3, however, is weaker in that a
counterexample is likely to be found under more observations
(e.g. it would be violated if the traffic light changes to red
while a vehicle is yielding within the intersection). To capture
a more robust version of this specification, the user would
need to provide a custom pattern of greater specificity.

Next, we explore the power of SpRInG to uncover useful
system specifications that were previously unstated. We
determine that an inferred specification is useful (i.e. a likely
“true positive”) if it is likely to never be violated by similar
scenarios. To evaluate the usefulness of the specifications
reported by SpRInG, we collect two clusters of traces: C1

includes traces from three highway scenarios (comprised of
3, 4, and 5 lanes, while all other simulation parameters are
held constant), and C2 includes traces from three intersection
scenarios in which the only modified parameter is a seed
to randomize vehicle departures (e.g. timestep, lane) and
behaviors (e.g. maximum acceleration and deceleration) for
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SUMO Specifications Learned Relations
[Reng1]:“A vehicle may only change its lane if there is
enough physical space on the target lane...”

[R1A]: vehicle.LaneChangeLeft ⇒ vehicle.LeftNeighbors.size == 0
[R1B]: vehicle.LaneChangeRight ⇒ vehicle.RightNeighbors.size == 0

[Reng2]: “[When an emergency vehicle has its siren on,]
traffic participants [must let] the emergency vehicle pass.”

[R2]: ambulance.sirenOn ⇒ ambulance.LeaderNeighbors.size == 0

[Reng3]: “[Vehicles] are not permitted to enter the intersec-
tion. . . if there is a red traffic light.”

[R3]: vehicle.inJunction ⇒ vehicle.SensedTLState == ‘green′

TABLE I
SPECIFICATIONS PROVIDED BY SUMO DOCUMENTATION (LEFT), ASSOCIATED RELATIONS INFERRED BY SpRInG (RIGHT).

Relations reported by snovice, violated by sexpert Relations reported by sexpert, violated by snovice

[RA]: (tissue ∈ robot right.Neighbors) ⇒ (robot right.velocity ≤ 0.05) [RE]: (robot right.open) ⇒ (robot right /∈ tissue.Neighbors)
[RB]: (tissue ∈ robot right.Neighbors) ⇒ (robot right.rot velocity ≤ 3.10) [RF]: “Pushing needle through tissue” ⇒ (tissue.Neighbors.size == 2)
[RC]: “Orienting needle” ⇒ (robot left ∈ robot right.aboveNeighbors) [RG]: “Orienting needle” ⇒ (tissue ∈ robot left.belowNeighbors)
[RD]: (robot right.open) ⇒ (robot left ∈ robot right.belowNeighbors) [RH]: (robot left.open) ⇒ (robot left.Neighbors.size == 2)

TABLE II
DIFFERENCE IN REPORTED RELATIONS BETWEEN NOVICE AND EXPERT OPERATORS.

the traffic generator. We then make inferences over each
cluster’s traces with SpRInG, and compute the rate of “likely
true positives”. This rate, TP (Ci), is the proportion of
inferred relations that were never violated by any of the traces
in cluster Ci. We observe that cluster C1 reports a total of
383 generalized relations with TP (C1) = 79.4%, and cluster
C2 reports 574 generalized relations with TP (C2) = 93.6%.

We now provide examples of previously unstated
specifications that were reported by SpRInG as “likely true
positives” over the scenario clusters. First, it is reported
that (∃[vehicle.LeaderNeighbors, v ] : v .in junction) ⇒
(vehicle.SensedTLState == ‘green ′). This relation states
that if an ego vehicle observes one of its lead vehicles
v to be within a traffic junction, then the ego vehicle
should also observe that the traffic light is green. This
follows our intuition for two reasons: we would expect a
vehicle to only enter a junction when the traffic light is
green, and its followers should also observe that the light
is green. It is also reported that (vehicle.in junction) ⇒
(∀[vehicle.LeaderNeighbors, v ] : v .brake == False),
which states that if an ego vehicle is within a junction,
then none of its leaders are braking. This also follows
our intuition, since vehicles will rarely decelerate through
intersections, particularly in cases of light traffic.

These results illustrate how SpRInG can be powerful
enough to uncover known and unknown specifications.

B. Case Study 2: da Vinci Surgical System

To answer our second research question and to demon-
strate the broad applicability of SpRInG, we evaluate its abil-
ity to learn spatial relations from the JHU-ISI Gesture and
Skill Assessment Working Set (JIGSAWS) dataset. JIGSAWS
contains data collected at 30Hz from a da Vinci Surgical
System (dVSS), teleoperated by eight surgeons with varying
levels of experience. Each surgeon performed five separate
trials of three common procedures (needle-passing, suturing,
and knot-tying). Each trial was assigned a Global Rating
Score (GRS) through a manual assessment of demonstrated
skills. Finally, each timestep was manually labeled with the
current gesture (e.g. “Orienting needle”) [24].

1) Setup: To capture a broad range of gestures, we
selected the suturing procedure for this study. As a pre-
processing step, to form a richer trace of reachability graphs,

we modified the dataset to include the approximate position
of the tissue. Our final traces contain information regarding
the position, rotational and linear velocities, and gripper
angle for each of the robot manipulators, the location of
the tissue, and the current gesture.

2) Instantiation of Approach: To infer relations that more
precisely capture the vertical configuration of the manipula-
tors, we utilize entity positions on the z-axis to distinigush
between aboveNeighbors and belowNeighbors. We then in-
clude these distinctions in the set of neighbor definitions for
each robot manipulator and in the tautological model.

3) RQ2: Contextual Changes: We evaluate SpRInG in its
ability to reveal contextual differences between similar trials
through its learned relations. To do so, we compare relations
learned from trials with the lowest and highest GRS scores
(snovice and sexpert, respectively), over the same suturing
procedure. We provide a comparison of the relations reported
by SpRInG over these scenarios in Table II. The left column
provides four spatial relations inferred from snovice, but
violated by sexpert, and the right column contains relations
that were inferred from sexpert, but violated by snovice.
These results reveal that the expert operator exhibits quicker
movements than the novice while the needle is near the tissue
(RA, RB) and that there are differences between operators
in the vertical configuration of the robot manipulators during
the procedure (RC , RD). We also find that, unlike the novice
operator, the expert passes the needle to the right while away
from the tissue (RE) and uses both arms to aid with insertion
(RF ), among other distinctions in their techniques (RG, RH ).

These results demonstrate that SpRInG can capture subtle
contextual differences in its reported relations.

VI. CONCLUSION

We present SpRInG, a framework for the unsupervised
inference of system specifications that characterize the re-
lationship between the sensed distribution of objects and
resulting robot behaviors. Our studies show that SpRInG can
learn existing specifications and uncover previously unstated
specifications in complex systems, both real and simulated.
In the future, we plan to use SpRInG to form hierarchical
rules for motion planning frameworks [25]. We also plan to
extend SpRInG to infer relations from more complex sensor
data types (e.g. images, point clouds) and event sequences.
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