
Safe POMDP Online Planning via Shielding

Shili Sheng1, David Parker2, and Lu Feng1

Abstract— Partially observable Markov decision processes

(POMDPs) have been widely used in many robotic applications

for sequential decision-making under uncertainty. POMDP

online planning algorithms such as Partially Observable Monte-

Carlo Planning (POMCP) can solve very large POMDPs with

the goal of maximizing the expected return. But the resulting

policies cannot provide safety guarantees which are imperative

for real-world safety-critical tasks (e.g., autonomous driving).

In this work, we consider safety requirements represented

as almost-sure reach-avoid specifications (i.e., the probability

to reach a set of goal states is one and the probability to

reach a set of unsafe states is zero). We compute shields

that restrict unsafe actions which would violate the almost-

sure reach-avoid specifications. We then integrate these shields

into the POMCP algorithm for safe POMDP online planning.

We propose four distinct shielding methods, differing in how

the shields are computed and integrated, including factored

variants designed to improve scalability. Experimental results

on a set of benchmark domains demonstrate that the proposed

shielding methods successfully guarantee safety (unlike the

baseline POMCP without shielding) on large POMDPs, with

negligible impact on the runtime for online planning.

I. INTRODUCTION

Partially observable Markov decision processes

(POMDPs) provide a general framework for sequential
decision-making under uncertainty and have been widely
used in many robotic applications [1], [2]. For example,
POMDP modeling and planning have been applied
to robot localization and navigation [3], autonomous
driving [4], human-robot interaction [5], and multi-robot
coordination [6]. POMDP online planning is a paradigm
where the policy computation and execution are interleaved:
the agent computes an optimal action based on the current
belief state, executes the action, receives an observation,
and continues by computing an action for the resulting new
belief state. Online planning can scale up to solve larger
POMDPs than offline planning where a policy is computed
for all possible belief states before execution [7].

Modern sampling-based algorithms (e.g., POMCP [8],
DESPOT [9]) further improve the scalability of POMDP
online planning by representing belief states as collections
of particles without explicit belief state tracking by Bayes
filtering. The goal of these algorithms is to compute (approx-
imately) optimal policies that maximize the expected return.
But the resulting policies cannot provide safety guarantees

1Shili Sheng and Lu Feng are with the School of Engineering and Applied
Science, University of Virginia, Charlottesville, VA 22904, USA {ss7dr,
lf9u}@virginia.edu

2David Parker is with the Department of Computer Science, Uni-
versity of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom
david.parker@cs.ox.ac.uk

(e.g., never visit unsafe states), which are imperative for real-
world safety-critical robotic tasks (e.g., autonomous driving).

Prior work has proposed various ways to account for
(safety) constraints within POMDP online planning. The
cost-constrained POMCP algorithm [10] seeks to compute
optimal actions that maximize the reward while constraining
the cost. A constant-horizon planning method is developed
in [11] for chance-constrained POMDPs (i.e., maximizing
the cumulative expected reward such that the probability of
ending up in risky states is at most �). An online method
is proposed in [12] for synthesizing partial conditional plans
that satisfy safe-reachability objectives (i.e., reaching a goal
state with probability greater than �1 while keeping the
probability of visiting unsafe states below �2).

In this work, we consider stricter safety requirements
represented as almost-sure reach-avoid specifications [13],
where the probability to reach a set of goal states is one
and the probability to reach a set of unsafe (avoid) states
is zero. We construct shields that restrict unsafe actions
based on pre-computed winning regions (i.e., sets of POMDP
belief support states) that satisfy almost-sure reach-avoid
specifications. Then, we integrate these shields with the
POMCP algorithm for safe POMDP online planning.

We propose four distinct shielding methods, differing in
how the shields are constructed and integrated. In centralized

shielding, we construct a shield based on the maximal
winning region of the entire POMDP model. By contrast,
in factored shielding, we decompose a large POMDP into a
set of smaller models based on the factorization of the state
space and compute winning regions for each factored model
separately. We shield actions for the POMCP algorithm via
either prior pruning (checking if any action of the current
belief state should be shielded) or on-the-fly backtracking

(checking every action encountered during simulation).
We evaluate the proposed methods via experiments on a

set of benchmark domains. The experimental results show
that the proposed shielding methods can guarantee safety,
while policies computed by the baseline (POMCP without
shielding) cannot avoid unsafe states completely. Moreover,
the search time per planning step of our shielding methods
is comparable with the baseline. Factored shielding meth-
ods demonstrate better scalability than centralized shielding
methods. We observe that on-the-fly backtracking generally
yields higher expected return than prior pruning.

II. RELATED WORK

Our work is inspired by [13], where winning regions are
computed to enforce almost-sure reach-avoid specifications
in POMDPs. In recent work [14], these are then used



for shielding in safe reinforcement learning. We apply the
methods of [13] to compute winning regions and consider
shielding in the context of POMDP online planning. We
also develop a new algorithm of computing factored winning
regions for solving large POMDPs.

A rule-based shielding of the POMCP algorithm is pre-
sented in [15], where shields are obtained by learning pa-
rameters for a set of rule templates defined by experts. An
example rule template is “the robot should move fast if it
is highly confident that the aisle in which it is moving is
not cluttered”. By analyzing belief-action traces previously
generated by the agent, the rule template is instantiated as
“the robot usually moves fast if the probability of being
in a cluttered segment is lower than 7%”. The learnt rules
are then used as a shield to preemptively prune undesired
actions considering the current belief state, similar to our
prior pruning procedure.

The safe-reachability objectives considered in [12] are
quantitative variants of reach-avoid specifications where the
probability to reach goals or avoid unsafe states should
be bounded within certain thresholds. An online synthesis
method is presented in [12] to compute a partial conditional

plan (which only contains a sampled subset of all possible
events and approximates a full POMDP policy) subject
to safe-reachability objectives. But this method does not
account for the expected return.

There is also a line of related work on online planning for
constrained POMDPs. Online algorithms such as [16], [10]
consider cost constraints to bound the expected cumulative
costs, but they cannot completely prevent actions that violate
the cost constraint. The chance-constrained POMDP problem
that seeks to bound the probability of failure is reduced
to a cost-constrained problem in [11]. The online planning
method expectation optimization with probabilistic guarantee

(EOPG) is considered in [17], where the objective is to
maximize the expected return with respect to all policies that
ensure at least ⌧ payoff with probability at least �. Earlier
work [18] studies a similar problem named guaranteed payoff

optimization (i.e., EOPG with � = 1). These prior approaches
have different objectives from our problem and thus are not
directly comparable with our work.

III. BACKGROUND

We denote by R the set of reals, and Dist(X) the set of
probability distributions over a random variable X .

A. POMDP Model

We denote a POMDP model as a tuple (S,A,O, T,R, Z),
where S, A and O are (finite) sets of states, actions, and
observations, respectively; T : S ⇥ A ! Dist(S) is the
transition function where T (s, a, s0) = Pr(s0|s, a) denotes
the probability of ending in state s

0 when taking action
a in state s; R : S ⇥ A ! R is the reward function;
and Z : S ⇥ A ⇥ O ! [0, 1] is the observation function
where Z(s0, a, o) = Pr(o|s0, a) represents the probability of
observing o after taking action a and ending in state s

0.

Since POMDP states are partially observable, the agent
keeps track of a history of actions and observations, denoted
by ht = {a0, . . . , at�1, ot}, and chooses an action at at
time t following a policy ⇡ that maps ht to Dist(A). A policy
is deterministic if it always picks a Dirac distribution. For
POMDP online planning that seeks to maximize the expected
return, it suffices to only consider deterministic policies [7].

A belief state at time t represents the posterior probability
distribution of being in each state given the history, denoted
by bt(s) = Pr(st = s|ht) for s 2 S. The initial belief state
b0 represents a distribution over initial states of the POMDP.
The belief bt at time t can be obtained via a belief update
function bt = ⌧(bt�1, at�1, ot) following Bayes’ rule. We
denote by Supp(b) := {s 2 S|b(s) > 0} the belief support

of a belief b. Let Pr⇡b (T ) denote the probability to reach a
set T ✓ S of states from belief b under policy ⇡.

B. Almost-Sure Reach-Avoid Specifications

We consider almost-sure reach-avoid specifications [13],
denoted by ' = hREACH,AVOIDi ✓ S ⇥ S with REACH\
AVOID = ;. We say that a POMDP policy ⇡ is winning for
' from belief b iff Pr⇡b (AVOID) = 0 and Pr⇡b (REACH) = 1,
that is, starting from belief b and under policy ⇡, the AVOID
set is reached with probability zero while the REACH set is
reached with probability one (almost surely).

We define a winning region W' for an almost-sure reach-
avoid specification ' as a set of belief supports where
every belief support Supp(b) 2 W' is winning (i.e., there
exists a winning policy ⇡ for ' from b). The maximal

winning region for ' is the region containing all winning
belief supports. A winning region W' is called productive

if, from every belief support Supp(b) 2 W', there exists
a (finite) path to stay within the region and reach some
state in REACH set. An agent that stays within a productive
winning region W' is guaranteed to satisfy the almost-sure
reach-avoid specification '. We can apply the SAT-based
iterative approach in [13] to compute productive subsets of
the maximal winning region.

C. Partially Observable Monte-Carlo Planning

In this work, we adopt a widely used POMDP online
planning algorithm named Partially Observable Monte Carlo

Planning (POMCP) [8]. At each time step t, the POMCP
algorithm uses Monte Carlo tree search [19] to explore
a search tree whose root node is denoted by T (ht) =
hN(ht), V (ht),�(ht)i, where N(ht) counts the number of
times that history ht has been visited, V (ht) estimates the
expected return of all simulations starting with ht, and �(ht)
is a set of particles (each of which corresponds to a POMDP
state) as an approximation of belief bt. The algorithm repeats
the following four phases.

1) Selection: Randomly sample a state s from �(ht).
2) Expansion: Once a leaf node T (h) is reached, ex-

pand the search tree with child nodes T (ha) =
hNinit(ha), Vinit(ha), ;i for all actions a 2 A.

3) Simulation: For each history h encountered during
the simulation, choose an action a that maximizes



V (ha) + c

q
logN(h)
N(ha) following the upper confidence

bound (UCB) rule for balancing between exploration
and exploitation if T (h) is a non-leaf node; otherwise,
choose an action a following a rollout policy (e.g.,
uniform random action selection). Then, use a black
box simulator (s0, o, r) ⇠ G(s, a) to generate a succes-
sor state s

0 and add it to the particle set �(hao). The
simulation continues with s

0 as the start state until the
simulated path attains a target depth.

4) Backpropagation: Use the information obtained from
the simulation to update the nodes (i.e., N counts, V
values, � particles) along the path from the root node
to the leaf node in the search tree.

The planning for time step t ends when a target number of
iterations of the above four phases have been completed (or a
timeout elapses). Then, the agent executes the optimal action
at = argmaxa V (hta) and receives an observation ot+1.
The algorithm continues the online planning for the next
time step with a search tree rooted from node T (htatot+1).

The POMCP algorithm scales well because it breaks the
curse of dimensionality (by sampling states from a particle
set) and the curse of history (by sampling histories using a
black box simulator).

IV. MOTIVATING EXAMPLE

Consider an example of a robot navigating in the grid
world environment shown in Figure 1. Let gij denote the grid
location in row i and column j. We model the environment
as a POMDP with the state space S = {gij} for 1  i, j  6.
The robot can take four actions to move east, south, west,
and north, respectively. For each action, the robot moves to
the target location with probability 0.8 or overshoots by one
location with probability 0.2 due to slippery roads. The robot
starts in g11 and aims to reach the flag in g66 for which it
will receive a reward of 1,000. The step cost is 1 and the
cost of colliding with an obstacle is 5. The robot’s location
during the trip is uncertain due to noisy sensors. Thus, we use
POMDP belief states to represent the posterior probability
distribution of the robot being in each grid given the history,
with the initial belief b0(g11) = 1.

Applying the POMCP algorithm to the above exam-
ple yields one possible trajectory of the robot: g11

east��!
g13

east��! g15
east��! g16

south���! g26
south���! g46

south���! g66.
This trajectory exhibits unsafe behavior of the robot colliding
into the obstacle in g15.

In this work, we aim to tackle this problem by developing
novel methods that can guarantee safety during the POMDP
online planning.

V. CENTRALIZED SHIELDING

We consider safety requirements represented as almost-
sure reach-avoid specifications (cf. Section III-B). Given
a POMDP and an almost-sure reach-avoid specification ',
we compute a (large) productive winning region W' of
the POMDP by applying the SAT-based iterative approach
of [13] incrementally to a fixpoint. We define a centralized

shield � : b ! 2A which, for any winning belief state b of

Fig. 1. An example grid world environment where the robot aims to reach
the flag while avoiding obstacles. The robot can move through the doors
(dashed lines) between four rooms that are separated by walls (solid lines).

the POMDP, gives allowed actions �(b), which exclusively
lead to belief support states within the winning region W'. In
practice, we do not compute such a shield explicitly. Instead,
we only store the winning region W', and decide whether to
allow any encountered action on-the-fly by checking if W'

contains the resulting belief support states.
We present two different ways of extending the POMCP

algorithm with centralized shields for safe POMDP online
planning, namely prior pruning and on-the-fly backtracking,
in Sections V-A and V-B, respectively.

A. Prior Pruning

At each time step t, we find all actions disallowed by the
shield �(�(ht)) and prune the corresponding tree branches
from the root node T (ht) before the POMCP algorithm
iterations. Specifically, for each action a 2 A, we loop
through every state s 2 �(ht) and add successor states s

0

generated by a black box simulator (s0, o, r) ⇠ G(s, a) to
the set �(htao). We check if these belief support updates
are contained in the winning region W'.

Following the motivating example, suppose that the history
at time step 1 is h1 = {east , g13}, and the particle set
is �(h1) = {g12, g13}. Consider an almost-sure reach-
avoid specification ' with REACH = {g66} and AVOID =
{g15, g21, g34, g62}. We find that the shield �(�(h1)) disal-
lows action east because it may lead to a set of belief support
states {g13, g14, g15} that are not contained in the winning
region W' (since g15 is not a winning belief support state).
We prune the tree branch of action east at node T (h1). The
unsafe robot trajectory in Section IV would be prevented.

Correctness. At each step t, any unsafe actions leading
to non-winning belief support states are pruned. The agent
selects the optimal action at that is expected to yield winning
beliefs, in an approximate sense, in accordance with the
almost-sure reach-avoid specification '. It is important to
note that, as POMCP is a sampling-based algorithm, there is
a risk that approximate belief states might overlook unsafe
states, leading to false positives. However, with a sufficiently
large particle set, the POMDP policy derived from central-
ized shielding with prior pruning, can offer safety guarantees.



B. On-the-Fly Backtracking

The prior pruning approach can only shield actions at the
root node T (ht), without considering the safety of simulated
paths, which may cause the value of V (hta) to be estimated
based on unsafe simulations. To address this limitation, we
propose the following on-the-fly backtracking procedure.

During the simulation phase of the POMCP algorithm,
when an action a is chosen (by the UCB rule or rollout) for
history h and a successor state s

0 is generated by a black
box simulator (s0, o, r) ⇠ G(s, a), we check if the updated
particle set �(hao)[{s0} is contained in the winning region
W'. If the resulting particle set is not winning, we prune
the tree branch starting from node T (ha); that is, action a

would be shielded at node T (h).
For example, suppose that state s = g13 is sampled from

the particle set �(h1) = {g12, g13} and action east is chosen.
Suppose that the black box simulator yields a successor state
s
0 = g15 2 AVOID. Thus, we would shield action east at

node T (h1) and prevent the robot colliding into the obstacle.

Correctness. At each step t, the selected optimal action at

has been encountered during the simulation and is allowed
by a centralized shield via on-the-fly backtracking. Thus, the
resulting POMDP policy is safe.

VI. FACTORED SHIELDING

The practical applicability of centralized shielding is
limited by the computational effort required to obtain the
winning region, which is correlated with the POMDP model
size. To improve scalability, we develop a factored shielding
method, where we decompose a POMDP model into a
set of smaller submodels (see Section VI-A), compute a
winning region for each submodel (see Section VI-B), and
integrate the set of obtained winning regions into the POMCP
algorithm (see Section VI-C). We show the correctness of the
proposed method in Section VI-D.

A. Decomposing a POMDP Model

Given a POMDP model M = (S,A,O, T,R, Z), we
decompose it into a set of N smaller POMDP models
Mi = (Si

, A
i
, O

i
, T

i
, R

i
, Z

i) for 1  i  N based on the
factorization of the state space such that S =

S
i S

i. We can
leverage problem-specific knowledge to achieve an efficient
decomposition scheme.

For example, we decompose the POMDP model M of the
motivating example (see Section IV) into four submodels,
corresponding to the four rooms shown in Figure 1. The
state space S

1 of submodel M1 includes 9 grid locations
covered by room I (i.e., {gij} for 1  i, j  3) and 4 outlet
locations {g14, g15, g41, g51} that can be reached by the robot
when it takes an action in room I (e.g., moving east in g13

or moving south in g31). We include these outlet locations
as absorbing states in M1. The action space is A1 = A. The
set O1 ✓ O only captures relevant observations of submodel
states S1. The transition function T

1 : S1⇥A
1 ! Dist(S1),

the reward function R
1 : S1⇥A

1 ! R, and the observation
function Z

1 : S
1 ⇥ A

1 ! Dist(O1) are projections of

the original POMDP model’s transition function T , reward
function R, and observation function Z onto the submodel
M1, respectively. We define submodels M2, M3 and M4

corresponding to rooms II, III and IV in a similar way.

B. Computing Factored Winning Regions

Given a set of factored POMDP models {Mi}Ni=1

and an almost-sure reach-avoid specification ' =
hREACH,AVOIDi, we compute a set of winning regions
{W i

'}Ni=1 to encode factored shields following Algorithm 1.
First, for each model Mi, we determine the set of initial

states S
i
init , reach states S

i
reach , and avoid states S

i
avoid .

Following the previous example, we define the initial states
of M1 as S

1
init = {g11, g12, g13, g31}, including the robot’s

initial location g11 and three inlet locations that can be
reached when the robot enters from an adjacent room. Note
that we exclude the inlet location g21 2 AVOID from S

1
init .

We initialize the set of reach states as Si
reach = REACH^Si

and the set of avoid states as S
i
avoid = AVOID ^ S

i. In this
example, M4 is the only model initialized with a non-empty
reach set S4

reach = {g66}.
We compute a productive winning region W

4
' for the

POMDP model M4 by applying the SAT-based iterative
approach in [13] incrementally to a fixpoint. Since the robot
may enter room IV directly from rooms II or III, we consider
M2 and M3 as adjacent models of M4 and add pairs
h2, 4i, h3, 4i to a queue.

While the queue is non-empty, we remove the first element
hi, ji of the queue and check if the reach set Si

reach should
be updated based on the winning region W

j
'. Suppose that

h2, 4i is removed from the queue and S
2
reach = ;. We

find the winning region W
4
' containing the outlet states

{g46, g56} of model M2 that the robot may encounter when
moving from room II to room IV. We update the reach set
as S

2
reach = {g46, g56} and compute an updated winning

region W
2
'. Once a model’s reach set and winning region

are updated, we add all of its adjacent models to the queue.
Algorithm 1 terminates when the queue is empty and returns
the union of all factored winning regions

SN
i=1 W

i
'.

C. Shielding POMCP with Factored Winning Regions

We integrate the POMCP algorithm with factored winning
regions via prior pruning or on-the-fly backtracking similar
to the centralized shielding method described in Section V.

Factored shielding with prior pruning. At each step t,
before the POMCP algorithm explore the tree with root node
T (ht), we compute �(htao) for each action a 2 A and prune
any action that may lead to belief support states not contained
in factored winning regions

SN
i=1 W

i
'.

Factored shielding with on-the-fly backtracking. During
the POMCP simulation phase, we check if each successor
state s

0 generated by a black box simulator yields winning
belief support updates contained in

SN
i=1 W

i
'. We shield any

action that leads to non-winning simulated beliefs.



Algorithm 1: Computing factored winning regions
Input: A set of factored POMDP models {Mi}Ni=1,

an almost-sure reach-avoid specification '

Output: A set of winning regions {W i
'}Ni=1

1 determine S
i
init , S

i
reach , S

i
avoid of each model Mi

2 queue [ ]
3 foreach model Mj

with a non-empty set S
j
reach do

4 compute winning region W
j
'

5 foreach adjacent model Mk
of Mj

do

6 queue.put(hk, ji)

7 while queue is non-empty do

8 hi, ji = queue.get()
9 check if Si

reach should be updated based on W
j
'

10 if S
i
reach has been updated then

11 compute the updated winning region W
i
'

12 foreach adjacent model Mk
of Mi

do

13 queue.put(hk, ii)

14 return
SN

i=1 W
i
'

D. Correctness

Lemma 1. Given a POMDP model M whose decomposition

yields a set of factored models {Mi}Ni=1, and an almost-sure

reach-avoid specification ', the output of Algorithm 1 forms

a productive winning region of M with respect to '.

Proof. Let W :=
SN

i=1 W
i
' denote the output of Algorithm 1.

We need to show that, from every belief support in W ,
there exists a finite path to stay within the region W and
reach some states in the set REACH of ', according to the
definition of productive winning region (cf. Section III-B).

Consider a belief support Supp(b0) 2 W that belongs
to the winning region W

i
' of model Mi. Since W

i
' is

productive towards the set S
i
reach by construction, there

exists a finite path from Supp(b0) to Supp(bk) ✓ S
i
reach

while staying within W
i
' along the path. If model Mi was

initialized with a non-empty set Si
reach = REACH\Si, then

the path has reached the set REACH. Otherwise, Si
reach was

initialized as an empty set but updated with some winning
belief support of adjacent model Mj . Thus, Supp(bk) 2W

j
'

and there exists a finite path from Supp(bk) to Supp(bn) ✓
S
j
reach while staying within W

j
' along the path. We can prove

by induction that the path would eventually reach some states
in REACH while staying within the region W .

⌅
Based on the above lemma, we can follow the correctness

argument of centralized shielding in Section V to show that
integrating the POMCP algorithm with factored shielding via
prior pruning or on-the-fly backtracking yields safe POMDP
policies that satisfy almost-sure reach-avoid specifications.

Remark. We note that the union of factored winning regions
computed by Algorithm 1 could be a subset of the winning
region used in centralized shielding.

Fig. 2. A grid world example for the comparison between centralized
shielding and factor shielding.

Consider the grid world environment shown in Figure 2,
where the robot navigation model follows the one for the
motivating example (see Section IV). When applying the
centralized shielding method, we find that g14 is a winning
belief support state, since there exists a winning policy
that yields the following trajectory: g14

west���! g13
east��!

g15
south���! g25

east��! g26
south���! g46

south���! g66.
Now we apply Algorithm 1 for the factored shielding. We

start by computing the winning region W
4
' of model M4

corresponding to room IV. We update the reach set of model
M2 for the adjacent room II to S

2
reach = {g46, g56} and

compute the winning region W
2
'. We find that g14 62 W

2
',

because there does not exist a safe path for the robot to reach
S
2
reach from g14 while avoiding obstacles with probability

one. The robot would collide with the obstacle in g16 with
probability 0.2 if it moved east, or collide with the obstacle
in g24 with probability 0.8 if it moved south. Next, we update
the reach set of model M1 for room I to S

1
reach = {g15}

and compute the winning region W
1
'. To make g14 a winning

belief support state, we would want g12 and g13 to be
contained in W

1
' such that the robot can move west from

g14. Unfortunately, starting from g12 or g13, the robot is not
guaranteed to reach S

1
reach = {g15} with probability one.

Thus, g14 is not contained the factored winning regions.

VII. EXPERIMENTS

We built a prototype implementation of our shielding-
enabled POMCP techniques as an extension of the PRISM
model checking tool [20], with shields generated by the
implementation from [13]. We then evaluated it on a set
of benchmark POMDP domains adapted from [13].

• Obstacle: A robot navigates in N ⇥ N grid world
environments, aiming to reach certain target locations
while avoiding static obstacles. The reward function em-
ployed is identical to the one presented in the motivating
example (cf. Section IV).

• Refuel: A robot navigates in N ⇥ N grid world en-
vironments and consumes energy at every movement.
The robot may recharge at refuel stations to the full
battery capacity E. Noisy sensors introduce uncertainty



Case Study No Shield Centralized Shield Factored Shield

Prior On-the-fly Prior On-the-fly

Domain Para. |S| |O| |T | Time(s) Return Unsafe Time(s) Return Unsafe Time(s) Return Unsafe Time(s) Return Unsafe Time(s) Return Unsafe

Obstacle
(N)

6 37 20 204 0.09 978.9 1.0 0.12 929.9 0 0.20 968.1 0 0.12 921.7 0 0.16 968.7 0
8 65 20 396 0.14 972.0 2.0 0.16 977.1 0 0.19 980.1 0 0.16 962.9 0 0.21 979.8 0
9 82 39 464 0.13 974.0 1.9 0.18 944.0 0 0.32 962.0 0 0.18 939.3 0 0.28 964.0 0

Refuel
(N, E)

6, 8 272 74 1,081 0.84 861.4 20.4 0.14 795.9 0 0.53 939.9 0 0.14 912.8 0 0.53 917.8 0
9, 6 470 151 1,848 1.19 741.9 40.0 1.36 -261.6 0 0.81 904.5 0 1.41 -259.6 0 0.81 760.8 0

12, 8 1,081 180 5,003 1.54 -199.0 192.1 - - - - - - 1.15 -248.4 0 0.62 933.6 0

Rocks
(N, R)

6, 3 4,157 596 4.3e4 0.16 1,001.1 0.7 0.33 492.6 0 0.36 1,020.9 0 0.32 840.6 0 0.32 1,062.3 0
8, 4 3.7e4 2,036 4.7e5 0.54 1,013.3 0.5 - - - - - - 0.99 406.6 0 0.73 1,091.5 0
9, 6 1.2e6 3.3e4 1.8e7 0.87 1,008.0 1.9 - - - - - - 1.33 -119.0 0 1.40 540.4 0

about the robot’s location and battery level. The robot’s
goal is to reach destinations while avoiding obstacles or
running out of the battery. The cost structure is: moving
incurs a cost of 1, idling also costs 1 due to the lack
of energy to move, and refueling to full energy is set
at a cost of 3 to discourage unnecessary refueling. The
reward for reaching the target is set at 1000.

• Rocksample: A robot navigates in N ⇥ N grid world
environments with R rocks that are either valuable
or dangerous to collect. To find out the quality of a
rock with certainty, the robot has to sample it from an
adjacent grid. The robot aims to reach target locations
while avoiding sampling any dangerous rock. The cost
structure assigns a value of 1 to each action, whether
moving, rock-sensing, or rock-sampling, and imposes a
higher cost of 20 for encountering a bad rock. Success-
fully reaching the target yields a reward of 1000.

We use the following hyper-parameters for the POMCP
algorithm: the number of simulations in each step’s online
planning is 40,000; the simulation depth is 200; and the
number of particles sampled from the initial state distribution
is 10,000. We set the time-out for computing a winning
region to be one hour. All experiments were run on a
CentOS-7 machine with a 64GB Java memory limit.

Table VII shows the experimental results. For each
POMDP model, we report the model parameters, the number
of states |S|, observations |O|, and transitions |T |. We
compare the performance of the baseline (i.e., POMCP
without shielding) and four variants of the proposed shielding
methods in terms of the following metrics: search time per
planning step, expected return, and occurrences of unsafe
states. The results shown in Table VII are the average over
10 runs of each method. We draw the following key insights
from the results.

The proposed shielding methods can guarantee safety

but the baseline does not. Across all models, the POMCP
algorithm without shielding yields non-zero occurrences of
unsafe states, while all four variants of the proposed shielding
methods avoid unsafe states completely.

The proposed shielding methods have comparable search

time per planning step with the baseline. This means that
imposing shielding adds negligible overhead for the online
planning. In some cases (e.g., Refuel(6,8)), shielding meth-
ods yield faster search than the baseline thanks to the pruning
of tree branches. It only takes a few seconds to pre-compute
winning regions for the shielding in most cases (except those

time-out cases mentioned below).
Factored shielding has better scalability than centralized

shielding. For some cases including Refuel(12,8), Rocksam-
ple(8,4), and Rocksample(9,6), centralized shielding fails
to compute (fixpoint) winning regions before the time-out.
By contrast, factored shielding scales up to large POMDP
models with millions of states, since it only requires us to
compute a set of smaller factored winning regions.

On-the-fly backtracking generally yields higher expected

return than prior pruning. Intuitively, on-the-fly backtracking
chooses optimal actions based on node values estimated from
safe simulated paths, while prior pruning only considers
safety at the root node level and may choose locally optimal
actions that cost more in the long run.

VIII. CONCLUSION

In this work, we developed four distinct shielding methods,
differing in how the shields are computed and integrated with
the POMCP algorithm, for safe POMDP online planning
with respect to almost-sure reach-avoid specifications. Exper-
imental results on a set of benchmark domains demonstrate
that the proposed shielding methods successfully guarantee
safety (unlike the baseline POMCP without shielding), with
negligible impact on the runtime for online planning. In
particular, factored shielding methods can scale up to solve
large POMDP models with millions of states.

There are several directions to explore for possible future
work. First, we will evaluate the proposed methods on a
wider range of POMDP domains, beyond those benchmark
domains considered in our experiments. Second, we will
explore a principled way to achieve efficient POMDP model
decomposition schemes for factored shielding. Finally, we
would like to apply the proposed methods to robotic tasks
in real-world scenarios (e.g., autonomous driving).

ACKNOWLEDGMENTS

This work was supported in part by U.S. National Science
Foundation under grant CCF-1942836, U.S. Office of Naval
Research under grant N00014-18-1-2829, U.S. Air Force
Office of Scientific Research under grant FA9550-21-1-
0164 and the ERC under the European Union’s Horizon
2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the grant sponsors.



REFERENCES

[1] S. Thrun, Probabilistic robotics. MIT Press, 2006.
[2] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov

decision processes in robotics: A survey,” IEEE Transactions on

Robotics, 2022.
[3] S. Koenig, R. Simmons, et al., “Xavier: A robot navigation architecture

based on partially observable markov decision process models,” Arti-

ficial Intelligence Based Mobile Robotics: Case Studies of Successful

Robot Systems, no. partially, pp. 91–122, 1998.
[4] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online

POMDP planning for autonomous driving in a crowd,” in 2015 Ieee

International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 454–460.

[5] S. Sheng, E. Pakdamanian, K. Han, Z. Wang, J. Lenneman, D. Parker,
and L. Feng, “Planning for automated vehicles with human trust,”
ACM Transactions on Cyber-Physical Systems, vol. 6, no. 4, pp. 1–
21, 2022.

[6] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Searching
and tracking people with cooperative mobile robots,” Autonomous

Robots, vol. 42, no. 4, pp. 739–759, 2018.
[7] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning

algorithms for POMDPs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

[8] D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,”
Advances in neural information processing systems, vol. 23, 2010.

[9] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online POMDP
planning with regularization,” Advances in neural information process-

ing systems, vol. 26, 2013.
[10] J. Lee, G.-H. Kim, P. Poupart, and K.-E. Kim, “Monte-carlo tree search

for constrained POMDPs,” Advances in Neural Information Processing

Systems, vol. 31, 2018.
[11] M. Khonji, A. Jasour, and B. C. Williams, “Approximability of

constant-horizon constrained POMDP,” in IJCAI, 2019, pp. 5583–
5590.

[12] Y. Wang, A. A. R. Newaz, J. D. Hernández, S. Chaudhuri, and
L. E. Kavraki, “Online partial conditional plan synthesis for POMDPs
with safe-reachability objectives: Methods and experiments,” IEEE

Transactions on Automation Science and Engineering, vol. 18, no. 3,
pp. 932–945, 2021.

[13] S. Junges, N. Jansen, and S. A. Seshia, “Enforcing almost-sure
reachability in POMDPs,” in International Conference on Computer

Aided Verification. Springer, 2021, pp. 602–625.
[14] S. Carr, N. Jansen, S. Junges, and U. Topcu, “Safe reinforcement

learning via shielding under partial observability,” in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 37, no. 12, 2023,
pp. 14 748–14 756.

[15] G. Mazzi, A. Castellini, and A. Farinelli, “Risk-aware shielding of par-
tially observable monte carlo planning policies,” Artificial Intelligence,
vol. 324, p. 103987, 2023.

[16] A. Undurti and J. P. How, “An online algorithm for constrained
POMDPs,” in 2010 IEEE International Conference on Robotics and

Automation. IEEE, 2010, pp. 3966–3973.
[17] K. Chatterjee, A. Elgyütt, P. Novotny, and O. Rouillé, “Expecta-

tion optimization with probabilistic guarantees in POMDPs with
discounted-sum objectives,” in Proceedings of the 27th International

Joint Conference on Artificial Intelligence, 2018, pp. 4692–4699.
[18] K. Chatterjee, P. Novotnỳ, G. Pérez, J.-F. Raskin, and Ð. Žikelić,

“Optimizing expectation with guarantees in POMDPs,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
[19] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on

Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[20] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifi-
cation of probabilistic real-time systems,” in Proc. 23rd International

Conference on Computer Aided Verification (CAV’11), ser. LNCS, vol.
6806. Springer, 2011, pp. 585–591.


