
Explainable Multi-Agent Reinforcement Learning for Temporal Queries

Kayla Boggess1 , Sarit Kraus2 and Lu Feng1

1University of Virginia
2Bar-Ilan University

{kjb5we, lu.feng}@virginia.edu, sarit@cs.biu.ac.il

Abstract
As multi-agent reinforcement learning (MARL)
systems are increasingly deployed throughout soci-
ety, it is imperative yet challenging for users to un-
derstand the emergent behaviors of MARL agents
in complex environments. This work presents an
approach for generating policy-level contrastive ex-
planations for MARL to answer a temporal user
query, which specifies a sequence of tasks com-
pleted by agents with possible cooperation. The
proposed approach encodes the temporal query as
a PCTL⇤ logic formula and checks if the query is
feasible under a given MARL policy via probabilis-
tic model checking. Such explanations can help
reconcile discrepancies between the actual and an-
ticipated multi-agent behaviors. The proposed ap-
proach also generates correct and complete expla-
nations to pinpoint reasons that make a user query
infeasible. We have successfully applied the pro-
posed approach to four benchmark MARL domains
(up to 9 agents in one domain). Moreover, the re-
sults of a user study show that the generated expla-
nations significantly improve user performance and
satisfaction.

1 Introduction
As multi-agent reinforcement learning (MARL) systems are
increasingly deployed throughout society, it is imperative
yet challenging for users to understand the emergent be-
haviors of MARL agents in complex environments. Recent
work [Boggess et al., 2022] proposes methods for generat-
ing policy summarization to explain agents’ behaviors under
a given MARL policy, as well as language explanations to an-
swer user queries about agents’ decisions such as “Why don’t
[agents] do [actions] in [states]?” However, existing meth-
ods cannot handle temporal queries involving a sequence of
MARL agents’ decisions, for example, “Why don’t [agents]
complete [task 1], followed by [task 2], and eventually [task

3]?” Explanations to answer such a temporal user query can
help reconcile discrepancies between the actual and antici-
pated agent behaviors.

Recently, there has been increasing interest in generating
policy-level contrastive explanations for RL in the single-

agent setting. [Sreedharan et al., 2022] considers a problem
setting where the agent comes up with a plan to achieve a cer-
tain goal, and the user responds by raising a foil (represented
as a sequence of agent states and actions). To show why the
agent’s plan is preferred over the foil (e.g., the foil leads to an
invalid state), explanations are generated by finding missing
preconditions of the failing foil action on a symbolic model
through sample-based trials. [Finkelstein et al., 2022] con-
siders a similar problem setting, where the user queries about
an alternative policy specifying actions that the agent should
take in certain states. Explanations are defined as a sequence
of Markov decision process (MDP) transforms, such that the
RL agent’s optimal policy (i.e., seeking to maximize its accu-
mulated reward) in the transformed environment aligns with
the user queried policy.

There are many challenges and limitations when applying
these approaches in multi-agent environments. First, we need
a better representation of user queries. Asking the user to pro-
vide concrete information about agents’ joint states and joint
actions, which grow exponentially with the increasing num-
ber of agents, is tedious, if not impractical. Further, these ap-
proaches have limited scalability in multi-agent environments
due to computational complexity. [Sreedharan et al., 2022]
requires a large number of samples generated via a random
walk to find missing preconditions. [Finkelstein et al., 2022]
computes a sequence of MDP transforms (e.g., mapping the
entire state/action space) and retrains the agent policy in each
transformed MDP. Moreover, the generated explanations may
not capture agent cooperation requirements that are essential
for understanding multi-agent behaviors.

We address these challenges by developing an approach
to generate policy-level contrastive explanations for MARL.
Our proposed approach takes the input of a temporal user
query specifying which tasks should be completed by which
agents in what order. Any unspecified tasks are allowed to be
completed by the agents at any point in time. The user query
is then encoded as a PCTL⇤ logic formula, which is checked
against a multi-agent Markov decision process (MMDP) rep-
resenting an abstraction of a given MARL policy via prob-

abilistic model checking [Kwiatkowska et al., 2017]. If the
MMDP satisfies the PCTL⇤ formula, then the user query is
feasible under the given policy (i.e., there exists at least one
policy execution that conforms with the user query). Oth-
erwise, our approach deploys a guided rollout procedure to

sample more of the MARL agents’ behaviors and update the
MMDP with new samples. If the updated MMDP still does
not satisfy the PCTL⇤ formula, the proposed approach gen-
erates correct and complete explanations that pinpoint the
causes of all failures in the user query.

Computational experiments on four benchmark MARL do-
mains demonstrate the scalability of our approach (up to
9 agents in one domain). It only took seconds to check
the feasibility of a user query and generate explanations
when needed. Additionally, we conducted a user study to
evaluate the quality of generated explanations, where we
adapted [Sreedharan et al., 2022] to generate baseline ex-
planations. The study results show that, compared with the
baseline, explanations generated using our approach signifi-
cantly improve user performance (measured by the number of
correctly answered questions) and yield higher average user
ratings on explanation goodness metrics (e.g., understanding,
satisfaction) [Hoffman et al., 2018].

2 Related Work
2.1 Explainable Reinforcement Learning
A growing body of research in explainable RL has emerged
in recent years, as surveyed in [Wells and Bednarz, 2021;
Heuillet et al., 2021; Puiutta and Veith, 2020]. Existing works
can be categorized according to different axes (e.g., timing,
scope, form, setting). We position our proposed approach
based on these categorizations as follows.

First, there are intrinsic and post-hoc methods depending
on the timing when the explanation is generated. The former
(e.g., [Topin et al., 2021; Landajuela et al., 2021]) builds in-
trinsically interpretable policies (e.g., represented as decision
trees) at the time of training, while the latter (e.g., [Sreedha-
ran et al., 2022; Hayes and Shah, 2017]) generates post-hoc
explanations after a policy has been trained. Our proposed
approach belongs to the latter.

Second, existing works can be distinguished by the scope
of explanations. Some methods provide explanations about
policy-level behaviors (e.g., [Topin and Veloso, 2019; Amir
and Amir, 2018]), while others explain specific, local deci-
sions (e.g., [Olson et al., 2021; Madumal et al., 2020]). Our
work focuses on explaining discrepancies between actual and
anticipated policy-level behaviors.

Additionally, current approaches generate explanations in
diverse forms, including natural language [Hayes and Shah,
2017], saliency maps [Atrey et al., 2019], reward decomposi-
tion [Juozapaitis et al., 2019], finite-state machines [Danesh
et al., 2021], and others. Our proposed approach gener-
ates language explanations following [Hayes and Shah, 2017]
and [Boggess et al., 2022], both of which use the Quine-
McCluskey algorithm to compute a minimized Boolean for-
mula and then translate the formula into an explanation using
language templates.

Finally, the majority of existing works on explainable RL
focus on the single-agent setting. There is very little prior
work considering multi-agent environments. [Heuillet et al.,
2022] estimates the contribution of each agent for a group
plan, but only as a general explanation of a model and not for

a specific instance given by a user. [Boggess et al., 2022] de-
velops methods to generate policy summarization and query-
based language explanations for MARL. However, as dis-
cussed in Section 1, existing methods cannot handle temporal
queries considered in this work.

2.2 Contrastive Explanations
[Miller, 2019] identifies being contrastive (“Why A but not
B?”) as one of the key desired properties of an explanation.
The research thread on contrastive explanations for RL has
been drawing increasing attention since then. For example,
[Madumal et al., 2020] generates contrastive explanations for
“why action” and “why not action” queries via counterfac-
tual analysis of a structural causal model; [Lin et al., 2021]
develops a deep RL architecture with an embedded self-
prediction model to explain why a learned agent prefers one
action over another; and [Olson et al., 2021] computes coun-
terfactual state explanations (i.e., minimal changes needed
for an alternative action). These works all focus on gener-
ating contrastive explanations for the RL agent’s local deci-
sions in a state. By contrast, several recent works [Sreedha-
ran et al., 2022; Finkelstein et al., 2022] generate policy-level
contrastive explanations in the single-agent setting. However,
as discussed in Section 1, these methods are not suitable for
MARL. Our proposed approach advances the state of the art
by developing an approach for generating contrastive expla-
nations about MARL agents’ policy-level behaviors.

3 Program Formulation
We consider a problem setting where a MARL policy has
been trained over N agents, denoted by ⇡ : X ! �(A),
which is a function mapping a set of joint states X = {x =
(x1, . . . , xN)} to a distribution over a set of joint actions
A = {a = (a1, . . . , aN)}. Execution of policy ⇡ yields a
sequence of joint states and joint actions x0

a0
�! x1

a1
�! · · ·

where at ⇠ ⇡(·|xt) at each step t. Suppose that the goal of
the agents is to jointly complete a set G of tasks (sub-goals).
Let Ri : X ⇥ A ⇥ X ! R denote the reward function that
determines the immediate reward received by agent i. A posi-
tive reward Ri(xt,at,xt+1) > 0 is only received when a task
g 2 G is completed by agent i at step t. We assume that each
agent can complete at most one task at a step and, if multi-
ple agents cooperate to complete a task, each of them would
receive a positive reward at the same step.

To start with, the user is presented with a high-level plan
that summarizes one possible execution of the given MARL
policy ⇡. For example, consider a MARL domain where
three robotic agents are trained to complete search and res-
cue tasks shown in Figure 1(a). We can compute a high-level
plan by applying the policy summarization method proposed
in [Boggess et al., 2022]. Figure 1(b) illustrates an example
plan, where columns indicate the order of tasks completed by
agents and each row corresponds to an agent’s task sequence.
Agent cooperation is represented by multiple agents sharing
the same task in the same column. In this example, robots II
and III first cooperate to fight the fire, followed by robots I
and II jointly removing the obstacle, and finally robots I and
III rescue the victim together.

Figure 1: Example MARL domain and a high-level plan.

The user may not desire the presented plan and raise an
alternative query. The user query does not have to be a com-
plete plan involving all agents and tasks. Instead, the user can
query about a partial plan such as “Why don’t robots I and

II remove the obstacle before robot II fights the fire alone?”

We define a temporal user query as a list of atomic proposi-
tions specifying an order of tasks completed by some agents,
denoted by ⇢ = h⌧1, ⌧2, · · · i, where each ⌧ specifies a task
g 2 G and designated agents. Tasks not specified in the query
can be completed in any order (e.g., before ⌧1, between ⌧1
and ⌧2, or after ⌧2). The aforementioned example query is
denoted by hobstacle robotI robotII, fire robotIIi.

A temporal user query ⇢ is feasible under a MARL pol-
icy ⇡ if there exists at least one execution of ⇡ that conforms
with the queried plan ⇢. When ⇢ is infeasible under ⇡, expla-
nations are generated to reconcile discrepancies between the
actual and anticipated multi-agent behaviors. We say that an
explanation is correct if it pinpoints the causes of one or more
failures in ⇢ (e.g., unsatisfied task preconditions or agent co-
operation requirements). A correct explanation is complete if
it identifies the reasons behind all failures of a user query ⇢.

This work aims to solve the following problem.
Problem: Given a temporal user query ⇢ and a trained
MARL policy ⇡, check if ⇢ is feasible under policy ⇡.
If ⇢ is infeasible, generate correct and complete explana-
tions to reconcile discrepancies between the actual and
anticipated multi-agent behaviors.

4 Approach
To tackle this problem, we present an approach as illustrated
in Algorithm 1. We describe the construction of a policy ab-
straction (line 1) in Section 4.1, the encoding and checking of

Algorithm 1 Checking the feasibility of a user query
Input: a temporal user query ⇢, a trained MARL policy ⇡
Output: YES, or explanations E
1: construct a policy abstraction MMDP M given ⇡
2: encode the temporal query ⇢ as a PCTL⇤ formula '
3: if M satisfies ' then
4: return YES
5: else
6: M0 update M via guided rollout (Algorithm 2)
7: if M0 satisfies ' then
8: return YES
9: else

10: generate explanations E (Algorithm 3)
11: return E

Figure 2: Fragment of an example MMDP.

the user query (lines 2-5) in Section 4.2, guided rollout (lines
6-9) in Section 4.3, and explanation generation (lines 10-11)
in Section 4.4. Additionally, we analyze the correctness and
complexity of the approach in Section 4.5.

4.1 Policy Abstraction MMDP
Given a trained MARL policy ⇡, we construct a multi-agent
Markov decision process (MMDP) abstraction following the
policy abstraction method described in [Boggess et al., 2022].
We denote an MMDP as a tuple M = (S, s0,A, T ,L) with
a set of joint abstract states S , an initial state s0 2 S , a set of
joint actions A, a transition function T : S⇥A ! �(S), and
a labeling function L : S ! 2AP that assigns a set of atomic
propositions AP to states. A path through M is a sequence
s0

a0
�! s1

a1
�! · · · starting from the initial state s0.

The state space S = {s = (s1, . . . , sN)} is defined
over a set of Boolean predicates indicating whether a task
g 2 G has been completed by agent i. The initial state
s0 represents that none of the tasks has been completed. In
the example MMDP shown in Figure 2, the initial state is
s0 = (000, 000, 000). State s1 = (000, 100, 100) represents
that the fire task has been completed by robotic agents II and
III, which is labeled with L(s1) = {fire robotII robotIII}.
The next state s2 = (010, 110, 100) is labeled with L(s2) =
{obstacle robotI robotII}, which only contains the newly
completed obstacle task.

The MMDP transition function T is built by finding
corresponding abstract transitions (s,a, s0) of each sample
(x,a,x0) observed during the MARL policy evaluation, and
transition probabilities are computed via frequency counting.
Given a joint state x = (x1, . . . , xN), we determine a corre-
sponding joint abstract state s = (s1, . . . , sN) by checking if
agent i receives a reward Ri(x,a,x0) > 0 for completing a
task g 2 G. For each MMDP state s 2 S , we keep track
of a set of corresponding sampled joint states, denoted by
X(s) = {x}, and count the total number of observed MARL
samples, denoted by C(s).

4.2 Query Checking with Temporal Logic
We encode a temporal user query ⇢ = h⌧1, ⌧2, · · · i as a
PCTL⇤ logic [Aziz et al., 1995] formula ' with a “sequenc-
ing” specification template as follows.

' = P>0[⌃(⌧1 ^ ⌃(⌧2 ^ ⌃ · · ·))]

Algorithm 2 Guided rollout
Input: a trained MARL policy ⇡, a policy abstraction MMDP M
Output: an updated MMDP M0

1: unfold M as a search tree and assign a U value to each node
2: N tree nodes ordered by U values and sample counts
3: for (k = 0; k < RolloutNum; k++) do
4: s N .pop(0)
5: x pick a corresponding joint state from X(s)
6: � a rollout execution of ⇡ from x with DepthLimit
7: update the MMDP with samples in �

8: return the updated MMDP M0

where P>0 means that the specification should be satisfied
with non-zero probability, and ⌃ denotes the logical oper-
ator “eventually”. The PCTL⇤ formula ' is satisfied in an
MMDP M if there exists a path through M such that ⌧1
eventually becomes true at some point along the path, and
⌧2 eventually holds at some point afterward. For example,
the MMDP shown in Figure 2 satisfies a PCTL⇤ formula
P>0[⌃(fire robotII robotIII ^ ⌃victim robotI robotIII)].

To check if M satisfies ', we apply probabilistic model

checking [Kwiatkowska et al., 2017] which offers efficient
techniques for the exhaustive exploration of M to determine
if ' holds in any path. If M satisfies ', then Algorithm 1
returns YES, indicating that the user query is feasible under
the given MARL policy. Otherwise, there does not exist any
path through M that conforms with the user query. Since the
MMDP M is constructed based on samples observed during
the MARL policy evaluation, it does not necessarily capture
all possible agent behaviors under the given policy ⇡. Thus,
M not satisfying ' is not a sufficient condition for claiming
that the user query is infeasible under the given MARL policy.
To address this issue, we develop a guided rollout procedure
to update the MMDP M via drawing more samples from the
MARL policy ⇡.

4.3 Guided Rollout
Algorithm 2 illustrates the guided rollout procedure, which
starts by unfolding paths of the MMDP M as a search tree.
The root node of the tree is the initial state s0 of M. As the
search tree unfolds, we assign a U value to each node rep-
resenting the degree to which the path from the root node
to the current node conforms with the user query. Con-
sider an example user query h⌧1 = fire robotII robotIII, ⌧2 =
obstacle robotIIi, unfolding the MMDP in Figure 2 yields
U(s0) = 0, U(s1) = 1 for conforming with ⌧1, and U(s2) =
�1 for violating ⌧2. The search tree stops expanding a node
with U = �1 since the user query is already violated along
the path.

Let N be a queue of tree nodes ordered by decreasing
U values and, for nodes with the same U value, increas-
ing counts of MARL samples C(s). This ordering priori-
tizes the exploration of states with a higher degree of user
query conformance (i.e., U values) and less sampling. Given
a joint abstract state s 2 N , we (randomly) pick a corre-
sponding joint state x 2 X(s) and generate a rollout exe-

cution � = x
a
�! x0 a0

�! · · · of the policy ⇡ starting from
x. The rollout depth |�| is bounded by a predefined param-

Algorithm 3 Generating reconciliation explanations
Input: a user query ⇢ = h⌧1, ⌧2, · · · i, the updated MMDP M0

Output: explanations E
1: E {}
2: while ⇢ is infeasible in M0 do
3: Umax the maximum U value in the search tree of M0

4: find a failure ⌧j where j = Umax + 1
5: V target MMDP states that complete the task in ⌧j
6: V̄ non-target MMDP states
7: if V 6= ; then
8: � Quine-McCluskey(1=binary(V), 0=binary(V̄))
9: ✏ select a minterm in � that is closest to ⇢

10: E insert language explanations
11: update ⇢ to fix the failure ⌧j
12: return E

eter DepthLimit. We update the MMDP with samples ob-
served in �. Then, we consider the next node in N and re-
peat the above process (lines 4-7 of Algorithm 2). When
the number of rollout executions hits a predefined param-
eter RolloutNum, Algorithm 2 terminates with an updated
MMDP, denoted by M

0.
We check if M

0 satisfies a PCTL⇤ formula ' encoding
the user query ⇢ (line 7 of Algorithm 1) as described in Sec-
tion 4.2. If M0 satisfies ', then the user query ⇢ is feasible
under the given MARL policy ⇡. When M

0 does not sat-
isfy ', the user query is infeasible in the MMDP M

0. Given
sufficiently large RolloutNum and DepthLimit, the MMDP
M

0 provides a good approximation of MARL agents’ behav-
iors under the given policy ⇡. Thus, we can claim that the
user query ⇢ is infeasible under ⇡ with high probability. In
this case, we generate explanations to reconcile discrepancies
between the actual and anticipated multi-agent behaviors.

4.4 Explanation Generation
Algorithm 3 shows the explanation generation procedure.
Given the updated MMDP M

0 resulting from Algorithm 2,
we unfold M

0 as a search tree and assign a U value to each
tree node following Section 4.3. Let Umax denote the max-
imum U value in the tree. Then, ⌧j with j = Umax + 1 is
a failed task making the query ⇢ infeasible. For example,
consider a user query h⌧1 = obstacle robotI robotII, ⌧2 =
victim robotI, ⌧3 = fire robotII robotIIIi, which yields
Umax = 0 indicating that ⌧1 fails. To pinpoint the cause of
this failure, we find a set of target MMDP states V where the
failed task is completed by some agents (not necessarily by
the queried agents). All other possible states (including those
not sampled) are placed in a non-target set V .

When V is non-empty, we obtain a minimized Boolean for-
mula � by applying the Quine-McCluskey algorithm [Quine,
1952], which represents the minimal description of the states
in the target set V compared to those in the non-target set V .
We select a minterm ✏ in � that is closest to ⇢ (e.g., involving
queried agents) and convert ✏ into an explanation using lan-
guage templates. For example, the MMDP state s2 in Figure 2
is a target state for ⌧1 based on its state label, which indicates
that the obstacle task is completed by robots I and II in this
state. Applying Quine-McCluskey yields a single-minterm
formula � = fire robotII ^ fire robotIII ^ obstacle robotI ^

obstacle robotII. Recall our assumption in Section 3 that
each agent can complete at most one task at a step. Thus,
the fire task must have been completed by robots II and III in
some previous state. We obtain an explanation: “The robots

cannot remove the obstacle because fighting the fire must be

completed before removing the obstacle.”

To generate correct and complete explanations for all pos-
sible failures in a user query, we update ⇢ based on the
minterm ✏ to fix the failure ⌧j . Since ✏ is the closest minterm
to ⇢, the applied changes are minimal. We check whether the
updated ⇢ is feasible in M

0 via probabilistic model check-
ing as described in Section 4.2. If the model checker yields
YES, then Algorithm 3 terminates because all failures of the
(original) user query have been explained and fixed. Other-
wise, the algorithm repeats lines 3-11 for the updated ⇢. Fol-
lowing the previous example, we update the query as h⌧1 =
fire robotII robotIII, ⌧2 = obstacle robotI robotII, ⌧3 =
victim robotIi, which results in Umax = 2, indicating that
the updated query still has a failure ⌧3 = victim robotI. The
MMDP state s3 in Figure 2 is a target state where the vic-
tim task is completed. Applying Quine-McCluskey yields
� = victim robotI^victim robotIII, which only contains one
minterm and is translated into an explanation: “The robots

cannot rescue the victim because Robot I needs Robot III to

help rescue the victim.” We further update the query as h⌧1 =
fire robotII robotIII, ⌧2 = obstacle robotI robotII, ⌧3 =
victim robotI robotIIIi, which is feasible because the MMDP
path s0 ! s1 ! s2 ! s3 in Figure 2 conforms with this
query. The algorithm terminates and returns the generated
explanations of all failures.

Note that in the special case where the target states set V is
empty, we skip the Quine-McCluskey and generate an expla-
nation to indicate that the queried task has not been completed
in any observed sample. Then, we update the user query by
removing the failed task and continue with Algorithm 3.

4.5 Correctness and Complexity
Correctness. The correctness of our proposed approach, with
respect to the problem formulated in Section 3, is stated be-
low and the proof is given in the appendix.
Proposition 1. Given a temporal user query ⇢ and a trained

MARL policy ⇡, if Algorithm 1 returns YES, then the query ⇢
must be feasible under the policy ⇡; otherwise, Algorithm 1

generates correct and complete explanations E .

Complexity. We analyze the complexity of the following key
steps in the proposed approach.

• The time complexity of checking an MMDP against a
PCTL⇤ formula ' defined in Section 4.2 via probabilis-
tic model checking is double exponential in |'| (i.e.,
equal to the length of the user query |⇢|) and polynomial
in the size of the MMDP [Baier and Katoen, 2008]. The
MMDP state space size |S| is bounded by O(2|G|N),
depending on the number of agents N and tasks |G|.
However, only a small set of reachable states is usually
induced in practice (as shown in Table 1), given a well-
trained MARL policy.

• The time complexity of guided rollout (Algorithm 2) is
given by O

�
RolloutNum · DepthLimit). As discussed

above, the larger the parameter values of RolloutNum
and DepthLimit, the better approximation of MARL
policy behaviors captured by the updated MMDP M

0.
• The time complexity of explanation generation (Algo-

rithm 3) is given by O
�
� · (3N ·|G|/

p
N · |G|)

�
, where

� is the number of failures in the user query, and
O
�
3N ·|G|/

p
N · |G|

�
is the time complexity of Quine-

McClusky [Chandra and Markowsky, 1978].
Even though the complexity is high, in practice it is pos-

sible to check query feasibility and generate explanations in
reasonable times as shown in the next section.

5 Computational Experiments
To demonstrate the scalability of our approach, we developed
a prototype implementation and applied it to four benchmark
MARL domains 1.
(1) Search and Rescue (SR), where multiple robotic agents

cooperate to complete tasks such as fighting fires and
rescuing victims [Boggess et al., 2022].

(2) Level-Based Foraging (LBF), where agents play a mixed
cooperative-competitive game to collect food scattered
in a gridworld [Papoudakis et al., 2021].

(3) Multi-Robot Warehouse (RWARE), where robots collab-
oratively move and deliver requested goods [Papoudakis
et al., 2021].

(4) PressurePlate (PLATE), where agents are required to co-
operate during the traversal of a gridworld, with some
agents staying on pressure plates to open the doorway
for others to proceed [McInroe and Christianos, 2022].

Our prototype implementation used the Shared Experience
Actor-Critic [Christianos et al., 2020] for MARL policy train-
ing and evaluation. All models were trained and evaluated un-
til converging to the expected reward, or up to 10,000 steps,
whichever occurred first. The PRISM probabilistic model
checker [Kwiatkowska et al., 2011] was applied for check-
ing the feasibility of user queries. We set the guided rollout
parameters as RolloutNum = 10 and DepthLimit = 50.
The experiments were run on a machine with 2.1 GHz Intel
CPU, 132 GB of memory, and CentOS 7 operating system.

Table 1 shows experimental results. For each case study,
we report the number of agents N , the number of tasks |G|,
and the length of user queries |⇢|. Additionally, we report the
size of policy abstraction MMDPs M in terms of the number
of (reachable) states |S| and the number of transitions |T |.
In general, the MMDP size increases with a growing num-
ber of agents and tasks. However, an unequal distribution of
agent actions under the MARL policy ⇡ can lead to a smaller
MMDP M (e.g., LBF-5) as agents take the same trajectories
more often leading to less exploration.

We consider two temporal queries (i.e., a feasible query
and an infeasible query with the same length |⇢|) in each case
study and report the runtime of Algorithm 1. For infeasible
queries, we also report the number of failures �, which were
controlled to grow with the environment size as the longer the

1Code available at github.com/kjboggess/ijcai23

https://github.com/kjboggess/ijcai23

Case Study MMDP M Feasible Infeasible
Domain N |G| |⇢| |S| |T | Time (s) � Time (s)

3 3 3 28 127 0.8 1 2.2
SR 4 4 4 163 674 1.5 2 5.3

5 5 5 445 1,504 24.4 3 89.8

3 3 3 67 344 0.9 1 2.9
LBF 4 4 4 211 781 2.1 2 7.6

5 5 5 152 454 4.5 3 20.5

2 4 3 98 268 0.8 1 15.5
RWARE 3 6 5 442 1,260 3.7 2 42.2

4 8 8 1,089 2,751 21.7 3 85.2

5 3 3 87 181 0.8 1 3.0
PLATE 7 4 4 85 175 0.9 2 25.7

9 5 5 132 266 1.4 3 126.8

Table 1: Experimental results on four benchmark MARL domains.

query length |⇢|, the larger number of task failures it may con-
tain. The size of generated explanations is equal to the num-
ber of failures (i.e., one for each task failure in the user query).
Experimental results show that all queries were solved effi-
ciently within seconds. Checking an infeasible query is gen-
erally slower than checking a feasible query in the same case
study, due to the extra time needed for guided rollout and
generating explanations.

In summary, computational experiments demonstrate that
our approach can be successfully applied to various bench-
mark MARL domains with a large number of agents (e.g.,
up to 9 agents in the PLATE domain), for checking the fea-
sibility of temporal user queries and generating explanations
when needed.

6 User Study
We evaluate the quality of generated reconciliation explana-
tions via a user study. 2 Section 6.1 describes the study design
and Section 6.2 analyzes the results.

6.1 Study Design
User interface. The study was conducted via the Qualtrics
survey platform. Instead of allowing participants to raise
queries in real-time, we generated explanations for a selected
set of temporal queries a priori, which enables us to present
the same set of explanations to different participants. Fig-
ure 3 shows an example of the user interface. Participants
were shown the agents’ original plan (Plan A) and an alter-
nate plan representing a temporal query (Plan B). An expla-
nation was presented to explain why Plan B was infeasible.
Participants were then asked to use the provided explanation
to decide if a new query (Plan C) was feasible. Participants
were incentivized with bonus payments to answer the ques-
tion correctly.
Participants. We recruited 88 participants (i.e., fluent En-
glish speakers over the age of 18) through university mailing
lists (52% male, 45.5% female, 2.3% non-binary). They had
an average age of 23.9 (SD = 6.1). To ensure data quality, a
demonstration was given, attention checks were injected, and
the time to complete the survey was tracked.

2This study was approved by University of Virginia Institutional
Review Boards IRB-SBS #5226.

Figure 3: Example of the user study interface displaying explana-
tions generated by the proposed approach.

Baseline. We adapted the explanation generation method
in [Sreedharan et al., 2022], which was initially proposed for
the single-agent setting, as a baseline for comparison. We
extended the method for joint states and actions and limited
its sampling to the given policy instead of the larger environ-
ment. Furthermore, we use the same user interface as shown
in Figure 3 to avoid any confounding variables regarding pre-
sentation in the study. The baseline method takes the input of
a user query expressed as a sequence of agent states and ac-
tions, for which we converted a high-level plan (e.g., Plan B
in Figure 3) into a low-level execution of joint states and joint
actions. Explanations generated using the baseline method
could fail to capture agent cooperation requirements in multi-
agent environments. Moreover, the baseline method only pro-
vides explanations for the first point of failure rather than all
failures in a user query. For example, the baseline explana-
tions for Plan B in Figure 3 changes the second sentence in
the explanation to “The first failed task would be: remove ob-
stacle.” and only contains E1. Participants would not be able
to answer the bonus question correctly without knowing E2.
Independent variables. We employed a within-subject study
design where participants were asked to complete two tri-
als for evaluating explanations generated using the baseline
method and our proposed approach, respectively. There were
4 sets of temporal queries (i.e., two single-failure queries and
two with multiple failures) and bonus questions in each trial.
The queried plans and questions used in the two trials were
different but had a similar difficulty level. Participants were
presented with the same set of plans and questions and were
randomly assigned to two groups (i.e., evaluating the base-
line explanations before or after the proposed explanations)
to counterbalance the ordering confound effect.
Dependent measures. We counted the number of questions
correctly answered by participants as a performance measure.
Additionally, at the end of each trial, participants were in-
structed to rate on a 5-point Likert scale (1 - strongly disagree,
5 - strongly agree) the following statements regarding expla-

nations good metrics adapted from [Hoffman et al., 2018].

• The explanations help me understand how the robots
complete the mission.

• The explanations are satisfying.

Figure 4: Mean and SD of participant ratings on explanation good-
ness metrics (“*” indicates statistically significant difference with
the significant level set as ↵ = 0.05).

• The explanations are sufficiently detailed.
• The explanations are sufficiently complete, that is, they

provide me with all the needed information to answer
the questions.

• The explanations are actionable, that is, they help me
know how to answer the questions.

• The explanations let me know how reliable the robots
are for completing the mission.

• The explanations let me know how trustworthy the
robots are for completing the mission.

Hypotheses. We tested two hypotheses stated below.
• H1: Explanations generated by our proposed approach

enable participants to answer more questions correctly

than the baseline explanations.
• H2: Explanations generated by our proposed approach

lead to higher ratings on explanation goodness metrics

than the baseline explanations.

6.2 Results Analysis
Question-answering performance. Participants were able
to answer more questions correctly based on explanations
generated by our proposed approach (M=3.1 out of 4,
SD=1.0) than those generated with the baseline method
(M=0.6 out of 4, SD=0.8). A paired t-test (↵ = 0.05) shows
a statistically significant difference (t(87)=-17.0, p 0.01,
d=1.8). Thus, the data supports H1.

Recall that the baseline method only provides explanations
for the first point of failure in a user query and could not al-
ways correctly identify agent cooperation requirements. By
contrast, our approach generates correct and complete expla-
nations for all failures in a user query, which help participants
to better understand agent behaviors under a given policy, and
thus, leads to better question-answering performance.
Explanation goodness ratings. Figure 4 shows that partici-
pants gave higher subjective ratings to the proposed explana-
tions than the baseline explanations on average, with respect
to all explanation goodness metrics.

We used the Wilcoxon signed-rank test (↵ = 0.05)
to evaluate hypothesis H2. Statistically significant differ-
ences were found for the following four metrics: under-

standing (W=315.0, Z=-1.6, p 0.05, r=-0.1), satisfaction

(W=236.0, Z=-2.2, p 0.01, r=-0.2), detail (W=255.0, Z=-
1.6, p 0.01, r=-0.1), and actionability (W=105.5, Z=-2.0,
p 0.02, r=-0.1). But no significant difference was found
on other metrics: completeness (W=389.5, Z=-1.2, p 0.1,
r=-0.1), reliability (W=255.5, Z=-0.5, p 0.4, r=-0.04), and
trust (W=181.5, Z=-1.0, p 0.07, r=-0.1). Thus, the data

partially supports H2.

Participants’ superior question-answering performance is
consistent with their statistically significant higher subjective
ratings on understanding, detail, and actionability (i.e., the
proposed explanations provide detailed and actionable infor-
mation for answering questions). Furthermore, the baseline
explanations were rated significantly less satisfying, because
they may miss essential information (e.g., agent cooperation)
for answering questions. Participants may misjudge the ex-
planations’ completeness as they were unaware of the total
number of failures in a queried plan. Finally, the generated
explanations are mostly about missing task preconditions,
which are less useful for participants to judge how reliable
and trustworthy the robots are for completing the mission.
Summary. Results of the user study show that, compared
with the baseline, explanations generated by our proposed
approach significantly improve participants’ performance in
correctly answering questions, and lead to higher average rat-
ings on explanation goodness metrics such as understanding
and satisfaction.

7 Conclusion
This work presents an approach for generating policy-level
contrastive explanations for MARL to answer a temporal user
query, which specifies a sequence of tasks to be completed
by agents with possible cooperation. The proposed approach
checks if the user query is feasible under the given MARL
policy and, if not, generates correct and complete explana-
tions to pinpoint reasons that make a user query infeasible. A
prototype implementation of the proposed approach was suc-
cessfully applied to four benchmark MARL domains with a
large number of agents (e.g., up to 9 agents in one domain).
In all the experiments, it only took seconds to check the feasi-
bility of a user query and generate explanations when needed.
Additionally, a user study was conducted to evaluate the qual-
ity of generated explanations. The study results show that ex-
planations generated using the proposed approach can help
improve user performance, understanding, and satisfaction.

There are several directions to explore for possible future
work. First, we will evaluate the proposed approach with
different MARL methods. While the prototype implementa-
tion only uses one MARL algorithm, the proposed approach
should be compatible with any MARL method because it only
relies on sampling possible MARL executions. Second, we
will leverage the expressiveness of PCTL⇤ logic and investi-
gate a richer set of user queries. For example, a “coverage”
query which specifies a set of tasks to be covered in any or-
der, and a “sequencing with avoidance” query which asks for
the completion of a sequence of tasks while avoiding some
other tasks to be completed by specific agents. Lastly, we
would like to apply the proposed approach to a wide range of
MARL environments in real-world scenarios.

Acknowledgments
This work was supported in part by U.S. National Science
Foundation under grant CCF-1942836, U.S. Office of Naval
Research under grant N00014-18-1-2829, U.S. Air Force Of-
fice of Scientific Research under grant FA9550-21-1-0164,
Israel Science Foundation under grant 1958/20, and the EU
Project TAILOR under grant 952215. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the grant sponsors.

A Appendix
Proposition 1. Given a temporal user query ⇢ and a trained

MARL policy ⇡, if Algorithm 1 returns YES, then the query ⇢
must be feasible under the policy ⇡; otherwise, Algorithm 1

generates correct and complete explanations E .

Proof. We prove the following two cases.
Case 1: When Algorithm 1 returns YES, the policy ab-
straction MMDP M or the updated MMDP M

0 satisfies the
PCTL⇤ formula ' encoding the user query ⇢, indicating that
there must exist a path through M or M0 that conforms with
⇢. By construction, every abstract MMDP transition (s,a, s0)
in M or M0 with non-zero probability maps to at least one
sampled decision (x,a,x0) of the given MARL policy ⇡.
Thus, there must exist an execution of policy ⇡ that conforms
with the user query ⇢. By definition, the user query ⇢ is fea-
sible under the given MARL policy ⇡.
Case 2: Algorithm 1 returns explanations E generated via
Algorithm 3. As described in Section 4.4, Algorithm 3 termi-
nates when all failures in the user query ⇢ have been explained
and fixed. Given a finite-length temporal query ⇢, there is a fi-
nite number of failures. For any failure in the query, if the tar-
get states set V is non-empty, then the failure must be fixable
using a Quine-McCluskey minterm that represents a target
state where the failed task is completed. If V is empty, then
the failure is removed from the query. Thus, the termination
of Algorithm 3 is guaranteed. By definition, the generated
explanations are correct (i.e., identifying the causes of one
or more failures in ⇢) and complete (i.e., finding the reasons
behind all failures in ⇢).

References
[Amir and Amir, 2018] Dan Amir and Ofra Amir. High-

lights: Summarizing agent behavior to people. In Proceed-

ings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, pages 1168–1176, 2018.
[Atrey et al., 2019] Akanksha Atrey, Kaleigh Clary, and

David Jensen. Exploratory not explanatory: Counter-
factual analysis of saliency maps for deep reinforcement
learning. In International Conference on Learning Repre-

sentations, 2019.
[Aziz et al., 1995] Adnan Aziz, Vigyan Singhal, Felice

Balarin, Robert K Brayton, and Alberto L Sangiovanni-
Vincentelli. It usually works: The temporal logic of
stochastic systems. In International Conference on Com-

puter Aided Verification, pages 155–165. Springer, 1995.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter
Katoen. Principles of model checking. MIT press, 2008.

[Boggess et al., 2022] K Boggess, S Kraus, and L Feng. To-
ward policy explanations for multi-agent reinforcement
learning. In International Joint Conference on Artificial

Intelligence (IJCAI), 2022.
[Chandra and Markowsky, 1978] Ashok K Chandra and

George Markowsky. On the number of prime implicants.
Discrete Mathematics, 24(1):7–11, 1978.

[Christianos et al., 2020] Filippos Christianos, Lukas
Schäfer, and Stefano V Albrecht. Shared experience
actor-critic for multi-agent reinforcement learning. In
Thirty-fourth Conference on Neural Information Process-

ing Systems, pages 10707–10717. Curran Associates Inc,
2020.

[Danesh et al., 2021] Mohamad H Danesh, Anurag Koul,
Alan Fern, and Saeed Khorram. Re-understanding finite-
state representations of recurrent policy networks. In Inter-

national Conference on Machine Learning, pages 2388–
2397. PMLR, 2021.

[Finkelstein et al., 2022] Mira Finkelstein, Lucy Liu, Yoav
Kolumbus, David C Parkes, Jeffrey Rosenschein, Sarah
Keren, et al. Explainable reinforcement learning via model
transforms. In Advances in Neural Information Processing

Systems, 2022.
[Hayes and Shah, 2017] Bradley Hayes and Julie A Shah.

Improving robot controller transparency through au-
tonomous policy explanation. In 2017 12th ACM/IEEE

International Conference on Human-Robot Interaction

(HRI), pages 303–312. IEEE, 2017.
[Heuillet et al., 2021] Alexandre Heuillet, Fabien

Couthouis, and Natalia Dı́az-Rodrı́guez. Explain-
ability in deep reinforcement learning. Knowledge-Based

Systems, 214:106685, 2021.
[Heuillet et al., 2022] Alexandre Heuillet, Fabien

Couthouis, and Natalia Dı́az-Rodrı́guez. Collective
explainable ai: Explaining cooperative strategies and
agent contribution in multiagent reinforcement learning
with shapley values. IEEE Computational Intelligence

Magazine, 17(1):59–71, 2022.
[Hoffman et al., 2018] Robert R Hoffman, Shane T Mueller,

Gary Klein, and Jordan Litman. Metrics for explain-
able ai: Challenges and prospects. arXiv preprint

arXiv:1812.04608, 2018.
[Juozapaitis et al., 2019] Zoe Juozapaitis, Anurag Koul,

Alan Fern, Martin Erwig, and Finale Doshi-Velez. Ex-
plainable reinforcement learning via reward decomposi-
tion. In IJCAI/ECAI Workshop on explainable artificial

intelligence, 2019.
[Kwiatkowska et al., 2011] M. Kwiatkowska, G. Norman,

and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Proc. 23rd International Conference on Computer

Aided Verification (CAV’11), volume 6806 of LNCS, pages
585–591. Springer, 2011.

[Kwiatkowska et al., 2017] M. Kwiatkowska, G. Norman,
and D. Parker. Probabilistic model checking: Advances
and applications. In Formal System Verification, pages 73–
121. Springer, 2017.

[Landajuela et al., 2021] Mikel Landajuela, Brenden K Pe-
tersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt,
Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Dis-
covering symbolic policies with deep reinforcement learn-
ing. In International Conference on Machine Learning,
pages 5979–5989. PMLR, 2021.

[Lin et al., 2021] Zhengxian Lin, Kin-Ho Lam, and Alan
Fern. Contrastive explanations for reinforcement learning
via embedded self predictions. In International Confer-

ence on Learning Representations, 2021.
[Madumal et al., 2020] Prashan Madumal, Tim Miller, Liz

Sonenberg, and Frank Vetere. Explainable reinforcement
learning through a causal lens. In Proceedings of the AAAI

conference on artificial intelligence, volume 34, pages
2493–2500, 2020.

[McInroe and Christianos, 2022] Trevor McInroe and Filip-
pos Christianos. Repo for the multi-agent pressureplate
environment. https://github.com/uoe-agents/pressureplate,
2022.

[Miller, 2019] Tim Miller. Explanation in artificial intelli-
gence: Insights from the social sciences. Artificial intelli-

gence, 267:1–38, 2019.
[Olson et al., 2021] Matthew L Olson, Roli Khanna,

Lawrence Neal, Fuxin Li, and Weng-Keen Wong. Coun-
terfactual state explanations for reinforcement learning
agents via generative deep learning. Artificial Intelligence,
295:103455, 2021.

[Papoudakis et al., 2021] Georgios Papoudakis, Filippos
Christianos, Lukas Schäfer, and Stefano V Albrecht.
Benchmarking multi-agent deep reinforcement learning
algorithms in cooperative tasks. In Thirty-fifth Conference

on Neural Information Processing Systems Datasets and

Benchmarks Track (Round 1), 2021.
[Puiutta and Veith, 2020] Erika Puiutta and Eric Veith. Ex-

plainable reinforcement learning: A survey. In Interna-

tional cross-domain conference for machine learning and

knowledge extraction, pages 77–95. Springer, 2020.
[Quine, 1952] Willard V Quine. The problem of simplify-

ing truth functions. The American mathematical monthly,
59(8):521–531, 1952.

[Sreedharan et al., 2022] Sarath Sreedharan, Utkarsh Soni,
Mudit Verma, Siddharth Srivastava, and Subbarao Kamb-
hampati. Bridging the gap: Providing post-hoc sym-
bolic explanations for sequential decision-making prob-
lems with inscrutable representations. In International

Conference on Learning Representations, 2022.
[Topin and Veloso, 2019] Nicholay Topin and Manuela

Veloso. Generation of policy-level explanations for
reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages
2514–2521, 2019.

[Topin et al., 2021] Nicholay Topin, Stephanie Milani, Fei
Fang, and Manuela Veloso. Iterative bounding mdps:
Learning interpretable policies via non-interpretable meth-
ods. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 35, pages 9923–9931, 2021.
[Wells and Bednarz, 2021] Lindsay Wells and Tomasz Bed-

narz. Explainable ai and reinforcement learning—a sys-
tematic review of current approaches and trends. Frontiers

in artificial intelligence, 4:48, 2021.

https://github.com/uoe-agents/pressureplate

	Introduction
	Related Work
	Explainable Reinforcement Learning
	Contrastive Explanations

	Program Formulation
	Approach
	Policy Abstraction MMDP
	Query Checking with Temporal Logic
	Guided Rollout
	Explanation Generation
	Correctness and Complexity

	Computational Experiments
	User Study
	Study Design
	Results Analysis

	Conclusion
	Appendix

