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Abstract
Reinforcement Learning (RL) has shown great
promise in domains like healthcare and robotics but
often struggles with adoption due to its lack of in-
terpretability. Counterfactual explanations, which
address “what if” scenarios, provide a promising
avenue for understanding RL decisions but remain
underexplored for continuous action spaces. We
propose a novel approach for generating counter-
factual explanations in continuous action RL by
computing alternative action sequences that im-
prove outcomes while minimizing deviations from
the original sequence. Our approach leverages a
distance metric for continuous actions and accounts
for constraints such as adhering to predefined poli-
cies in specific states. Evaluations in two RL do-
mains, Diabetes Control and Lunar Lander, demon-
strate the effectiveness, efficiency, and generaliza-
tion of our approach, enabling more interpretable
and trustworthy RL applications.

1 Introduction
Reinforcement Learning (RL) has shown significant poten-
tial in tackling complex decision-making tasks across di-
verse fields, including healthcare [Yu et al., 2021] and
robotics [Tang et al., 2024]. However, its adoption in high-
stakes applications is often hindered by a critical barrier:
the lack of interpretability. Understanding an RL agent’s
decision-making process is essential for fostering trust and
enhancing performance. While there is a growing body of
work on explainable RL [Milani et al., 2023], most methods
focus on summarizing policies or explaining individual ac-
tions using natural language or saliency maps. Counterfactual
explanations, which address “what if” questions to improve
interpretability, remain underexplored in RL.

In contrast, most research on counterfactual explanations
has focused on supervised learning, aiming to identify min-
imal changes to input features that yield a desired classifier
output [Verma et al., 2024]. These approaches often in-
corporate constraints such as validity (ensuring counterfac-
tuals belong to the target class), proximity (minimizing de-
viations from the original instance), actionability (restrict-
ing changes to modifiable features), sparsity (minimizing the

number of changes), data manifold closeness (ensuring real-
ism by adhering to the training data distribution), and causal-
ity (preserving known causal relationships). However, as
noted in [Gajcin and Dusparic, 2024], these methods cannot
be directly applied to RL due to unique challenges, such as
the temporal dependencies in decision-making and outcomes.

Existing research on counterfactual explanations for RL re-
mains limited and often targets discrete action spaces. These
approaches typically rely on heuristics [Amitai et al., 2024]
or structural causal models [Tsirtsis et al., 2021] to generate
counterfactual actions, or they focus narrowly on generating
alternative state features [Olson et al., 2021]. A detailed dis-
cussion of these prior works is provided in Section 2.

To address these gaps, we propose a novel approach for
generating counterfactual explanations in RL tailored for con-
tinuous action spaces. Our method computes an alternative
sequence of actions for a given observed trajectory, aiming
to achieve better outcomes (i.e., higher cumulative rewards)
while minimizing deviations from the original actions. This
is accomplished using a distance metric designed for contin-
uous action sequences. Additionally, we extend the problem
formulation to account for scenarios where actions in specific
constrained states must adhere to a predefined policy.

A compelling example is the application of RL for manag-
ing blood glucose levels in diabetes patients [Tejedor et al.,
2020]. Counterfactual explanations in this scenario can an-
swer questions like: “What alternative insulin dosages could
have resulted in better glycemic control?” These explanations
must ensure minimal deviation from the original treatment
plan while adhering to constraints, such as following a doc-
tor’s prescription (e.g., administering specified insulin doses
when glucose levels are within defined ranges). This exam-
ple highlights the practical relevance of our approach in high-
stakes decision-making tasks.

Instead of generating counterfactuals for individual ob-
served trajectories one at a time, our approach computes a
counterfactual policy that simultaneously generates desired
counterfactuals for a set of observed trajectories (e.g., a pa-
tient’s historical glycemic control trajectories over a specific
period). To enhance interpretability, the counterfactual policy
is deterministic (e.g., ensuring that a specific insulin dosage,
rather than a probabilistic range, is recommended at a time).

Our approach extends the Twin Delayed Deep Determinis-
tic Policy Gradient (TD3) algorithm [Fujimoto et al., 2018],



introducing novel mechanisms for generating counterfactual
trajectories in continuous action spaces and a sparse reward-
shaping framework to balance reward gains with minimal ac-
tion deviations.

Finally, we evaluated our approach in two RL domains: di-
abetes control using the FDA-approved UVA/PADOVA sim-
ulator [Man et al., 2014] and Lunar Lander from OpenAI
Gym [Brockman, 2016]. Experimental results demonstrate
the effectiveness, efficiency, and generalization of our ap-
proach, paving the way for more interpretable and trustwor-
thy RL applications in high-stakes settings.

2 Related Work
Existing work on counterfactual explanations has predomi-
nantly focused on supervised learning, with early efforts like
[Wachter et al., 2018] framing the problem as an optimiza-
tion task to identify minimal changes to input features that
result in a desired classifier output. Following this founda-
tional work, extensive research has explored incorporating
constraints to ensure counterfactuals are actionable and re-
alistic, as surveyed in [Verma et al., 2024; Guidotti, 2022].
[Chen et al., 2024] employed RL-based methods to generate
optimal counterfactual explanations for classifiers and subse-
quently distilled decision trees to explain the counterfactual
generation process.

Research on counterfactual explanations for RL is rela-
tively limited compared to supervised learning. [Olson et al.,
2021] investigated counterfactual state explanations for deep
RL agents in visual environments like Atari, examining how
minimal changes to game images could alter an agent’s ac-
tion. [Gajcin and Dusparic, 2024] extended counterfactual
explanation concepts from classifiers to RL, defining various
types to address questions such as “Had state features taken
different values, action a′ (or policy π′) would be chosen in-
stead of action a (or policy π)” and “Had the agent followed a
different goal (or preferred a different objective) in state s, ac-
tion a′ (or policy π′) would be chosen instead of action a (or
policy π).” Conversely, our work focuses on computing coun-
terfactual explanations to explore what alternative actions or
policies the agent could take to achieve better outcomes.

Our definition of counterfactual explanations is inspired
by [Tsirtsis et al., 2021], which identifies alternative action
sequences differing in at most k actions to achieve better out-
comes in finite-horizon MDPs. However, their approach is
limited to discrete action spaces and relies on a Gumbel-Max
structural causal model. In contrast, our work targets RL with
continuous actions, introduces a novel distance measure for
action sequences, and avoids dependence on causal models.

More recently, [Amitai et al., 2024] proposed a method for
visually comparing an agent’s chosen action to counterfac-
tual alternatives, conducting user studies in the highway en-
vironment with videos illustrating counterfactual outcomes.
However, their approach is limited to discrete action spaces,
with counterfactual actions selected heuristically. Instead,
our work introduces an optimization-based method to com-
pute counterfactual actions in continuous spaces, ensuring
minimal distance from observed actions.

Additionally, other studies have explored counterfactual

reasoning to enhance RL techniques. [Bica et al., 2021] mod-
eled expert decisions by defining reward functions based on
preferences for “what if” outcomes and incorporating coun-
terfactual reasoning into batch inverse RL. [Frost et al., 2021]
generated counterfactual trajectories by guiding agents to di-
verse, unseen states, enabling users to view rollouts of agent
behavior and gain insights into its actions under test-time con-
ditions. Our work has a different goal and formalizes counter-
factual reasoning in RL through a novel problem formulation
tailored for continuous action spaces.

3 Problem Formulation
We consider a problem setup of an RL agent interacting
with an environment modeled as a Markov decision pro-
cess (MDP), denoted as M = (S,A, P,R), where S rep-
resents the state space, A denotes the (continuous) action
space, P is the (unknown) probabilistic transition function,
and R is the reward function. At each time step t, the
agent selects an action at based on the current state st, re-
ceives a reward R(st, at), and transitions to the next state
st+1 ∼ P (st, at) as governed by the environment dynamics.
The agent’s execution over a finite number of n steps yields
a trajectory τ = {(st+i, at+i)}ni=0 with cumulative reward
G(τ) =

∑n
i=0 R(st+i, at+i).

Given an observed trajectory τ = {(st+i, at+i)}ni=0, we
define a (positive) counterfactual trajectory τ ′ as one that
originates from the same initial state st but achieves a higher
cumulative reward, i.e., G(τ ′) > G(τ), by adopting an alter-
native sequence of actions α(τ ′) = {a′t+i}ni=0. We define the
distance between two action sequences α(τ) and α(τ ′) as:

D
(
α(τ), α(τ ′)

)
=

n∑
i=0

|at+i − a′t+i|
|at+i|+ δ

(1)

where δ > 0 is a parameter to ensure numerical stability. For
multi-dimensional action spaces, this equation is generalized
using ℓp norms.

We formulate an optimization problem to compute a coun-
terfactual trajectory with minimal action distance.

Problem 1. Given a trajectory τ = {(st+i, at+i)}ni=0, find a
counterfactual trajectory τ ′ starting from st that satisfies:

argmin
τ ′

D
(
α(τ), α(τ ′)

)
, s.t. G(τ ′) > G(τ).

Next, we consider a variant where actions in certain con-
strained states (denoted by Sc ⊆ S) must follow a predefined
policy πc, while actions in unconstrained states can be freely
optimized to minimize the action distance and satisfy the re-
ward constraint.

Problem 2. Given a trajectory τ = {(st+i, at+i)}ni=0, find a
counterfactual trajectory τ ′ starting from st that satisfies:

argmin
τ ′

D
(
α(τ), α(τ ′)

)
,

s.t. G(τ ′) > G(τ),

∀s′t+i ∈ Sc, a′t+i ∼ πc(s′t+i).



Figure 1: Observed and counterfactual trajectories of glucose levels
(states) and insulin dosages (actions) over one hour.

Motivating example. We illustrate these problems using
the example of blood glucose (BG) control for Type 1 Dia-
betes patients. The state space represents BG levels, influ-
enced by factors such as patient physiology and behaviors
(e.g., eating, exercise). The action space consists of insulin
doses. At each time step (e.g., every three minutes), the agent
computes an insulin dosage to regulate BG levels. The reward
function assigns positive rewards for BG levels within the tar-
get range and penalties for hypoglycemia (BG < 70 mg/dL)
or hyperglycemia (BG > 180 mg/dL). Figure 1 shows an ob-
served trajectory of a patient’s BG level and insulin dosage
over an hour, with a cumulative reward G(τ) = 12.8.

The goal is to find a counterfactual explanation addressing
the question: “What alternative treatment plan (i.e., insulin
dosage sequence) could lead to better glycemic control out-
comes (i.e., higher cumulative reward)?” The counterfactual
explanation should involve minimal changes from the origi-
nal treatment plan (i.e., minimal distance of actions) and may
include constraints (e.g., following clinical prescriptions).

Figure 1 shows three counterfactual trajectories τ1, τ2 and
τ3. Among them, trajectory τ1 achieves the highest cumula-
tive reward G(τ1) = 13.7 with the smallest action distance
D
(
α(τ), α(τ1)

)
= 1.13. We note that trajectory τ1 also ad-

heres to the constraint of “injecting 0.03 units of insulin when
BG levels fall below 100 mg/dL”.

4 Approach
We propose a novel approach to solve the problems described
in Section 3. Our approach extends the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm [Fujimoto et
al., 2018], incorporating mechanisms for counterfactual gen-
eration and sparse reward shaping to account for trajectory
action distance.

4.1 Solving Problem 1
We first relax the hard constraint G(τ ′) > G(τ) in Problem 1
into a soft penalty term, yielding the following optimization
problem:

min
τ ′

D(α(τ), α(τ ′)) + λ−1(G(τ)−G(τ ′)) (2)

where λ is a hyperparameter reflecting the user’s preferred
weight for the penalty term. This is equivalent to

max
τ ′

G(τ ′)− λD(α(τ), α(τ ′)) (3)

Directly searching over all possible trajectories τ ′ is chal-
lenging without knowledge of the transition function. Ob-
serving that trajectories are generated by policies, we approx-
imate the problem by:

max
µ

ess sup [G(τ ′(µ))− λD(α(τ), α(τ ′(µ)))] (4)

Here µ : S → A denotes a deterministic policy, and
τ ′(µ) represents the trajectory generated by following µ start-
ing from st, the first state of τ . Specifically, τ ′(µ)

.
={

(s′t+i, a
′
t+i)

}n

i=0
, where s′t

.
= st, a

′
t+i

.
= µ(s′t+i), s

′
t+i+1 ∼

P (s′t+i, a
′
t+i). Notably, while µ is deterministic, τ ′(µ) re-

mains a random variable due to the stochasticity in sampling
s′t+i+1 from the transition function. The essential supremum
(ess sup) is taken over all possible realizations of τ ′(µ). We
use the essential supremum here because Equation 3 requires
finding the single best trajectory generated by µ.

Optimizing the essential supremum directly is difficult,
as no existing methods are designed for this in sequential
decision-making. Instead, leveraging concentration inequali-
ties (e.g., Hoeffding’s inequality) and large deviation theory,
which indicate that deviations from the expectation are typi-
cally well-bounded, we optimize the expectation:

max
µ

E [G(τ ′(µ))− λD(α(τ), α(τ ′(µ)))] (5)

A policy µ that maximizes this expectation will, with high
probability, achieve a large essential supremum. Here,
E [G(τ ′(µ))] corresponds to the expected total rewards of
the deterministic policy µ. Thus, Equation 5 can be framed
as a standard RL problem, where the goal is to maximize
both the total rewards G(τ ′(µ)) and an additional sparse re-
ward−λD(α(τ), α(τ ′(µ))), provided only at the end of each
episode.

Given the deterministic nature of the policy µ and the
proven success of TD3 in optimizing deterministic policies,
we extend TD3 to solve this problem, as outlined in Algo-
rithm 1. The algorithm starts with initializing the critic net-
works Qθ1 and Qθ2 , the actor network πϕ with random pa-
rameters, and target networks as copies of the original net-
works to ensure training stability. A replay buffer B is also
initialized to store counterfactual trajectories. Given a set of
observed trajectories T , the algorithm samples a trajectory
τ = (st+i, at+i)

n
i=0 from T and generates Nc counterfactual

trajectories. Each counterfactual trajectory τk starts from the
same initial state as τ and is rolled out by selecting actions
through the actor network πϕ, with exploration noise added.
To incorporate the action distance objective in Problem 1, the
distance D

(
α(τ), α(τk)

)
is computed using Equation 1, and

the reward is adjusted with a weighted function (line 12) fol-
lowing Equation 5. Each generated counterfactual transition
is stored in the replay buffer B. The algorithm then samples a
batch of transitions from B to compute the target action ã and
target value y. The critic networks are updated by minimiz-
ing the mean squared error between the predicted Q-values



Algorithm 1: Counterfactual Generation
1 Initialize critic networks Qθ1 , Qθ2 , and actor network

πϕ with random parameters θ1, θ2, ϕ
2 Initialize target networks: θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ
3 Initialize replay buffer B
4 for e = 1 to No do
5 Sample a trajectory τ = {(st+i, at+i)}ni=0 from T
6 for k = 1 to Nc do
7 Set initial state s′t ← st
8 for i = 0 to n do
9 Select action with exploration noise:

a′t+i ∼ πϕ(s
′
t+i) + ϵ, ϵ ∼ N (0, σ)

10 Observe reward r′t+i and next state s′t+i+1

11 if i = n then
12 Adjust reward:

r′t+i ← r′t+i − λ ·D
(
α(τ), α(τk)

)
13 Store (s′t+i, a

′
t+i, r

′
t+i, s

′
t+i+1) in B

14 Sample mini-batch of N transitions (s, a, r, s′)
from replay buffer B

15 ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
16 y ← r + γminj=1,2 Qθ′

j
(s′, ã)

17 Update critics:
θj ← argminθj N

−1
∑(

y −Qθj (s, a)
)2

18 if e mod q = 0 then
19 Update actor ϕ using deterministic policy

gradient: ∇ϕJ(ϕ) =
N−1

∑
∇aQθ1(s, a)

∣∣
a=πϕ(s)

∇ϕπϕ(s)

20 Update target networks:
θ′j ← ηθj+(1−η)θ′j , ϕ′ ← ηϕ+(1−η)ϕ′

and the target value. To stabilize training, the actor network
πϕ is updated less frequently, every q iterations, using deter-
ministic policy gradients. Finally, target networks are softly
updated with a weighted average of the current and target pa-
rameters, further enhancing training stability. The algorithm
terminates after sampling and processing No observed trajec-
tories.

4.2 Solving Problem 2
To address Problem 2, we construct an augmented MDP,
transforming Problem 2 into an instance of Problem 1.
Specifically, the augmented MDP has a state space defined
as Ŝ .

= S \ Sc. In this augmented MDP, given a state-action
pair (s, a), the transition proceeds as follows. The successor
state is first determined using the original transition function
P . If the successor state does not belong to the constrained
set Sc, it is presented to the agent immediately; otherwise,
the predefined policy πc is followed until the agent reaches a
state outside Sc.

By constructing this augmented MDP, Problem 2 in the
original MDP is reduced to Problem 1 in the augmented MDP.
Consequently, we can directly apply Algorithm 1 in this aug-
mented MDP to solve Problem 2.

5 Experiments
We implemented the proposed approach and evaluated it
in two RL domains: (i) diabetes control using the FDA-
approved UVA/PADOVA simulator [Man et al., 2014], and
(ii) Lunar Lander from OpenAI Gym [Brockman, 2016]. Our
implementation1 is based on Stable-Baselines3 [Raffin et al.,
2021].

Data Generation. We trained a baseline policy using the
Proximal Policy Optimization (PPO) algorithm [Schulman et
al., 2017] to generate trajectories for training and test datasets
(details specific to each domain are provided later). Our ap-
proach is RL-method agnostic and can generate counterfac-
tuals from trajectories produced by any RL algorithm.

Baseline Method. As no existing methods generate coun-
terfactuals for continuous action RL, we compare our ap-
proach to a naive baseline that generates counterfactuals by
rolling out the trained baseline policy in evaluation mode
without state constraints or additional training.

Metrics. Our evaluation focuses on the effectiveness, effi-
ciency, and generalization of the proposed approach. We de-
fine two metrics to assess the effectiveness.

• Positive Counterfactual Percentage (ρ+): This metric
measures the percentage of test set trajectories for which
at least one positive counterfactual trajectory (i.e., a tra-
jectory with a higher cumulative reward than the ob-
served trajectory) is identified among a fixed number of
generated counterfactuals. This metric applies to both
the baseline and the proposed approaches.

• Advantage Counterfactual Percentage (ρadv): This met-
ric quantifies the percentage of test set trajectories for
which the proposed approach generates a more advanta-
geous counterfactual than the baseline. For an observed
trajectory τ , let τ∗p and τ∗b denote the best positive coun-
terfactual trajectories with minimal action distance pro-
duced by the proposed and baseline approaches, respec-
tively, satisfying G(τ∗p ) > G(τ) and G(τ∗b ) > G(τ).
The proposed approach is considered advantageous if
ϕG > ϕD, where:

ϕG =
G(τ∗p )−G(τ)

G(τ∗b )−G(τ)
, ϕD =

D
(
α(τ), α(τ∗p )

)
D
(
α(τ), α(τ∗b )

) ,
indicating that reward gains outweigh additional action
distance. ρadv is computed as the percentage of advan-
tageous counterfactuals among all test trajectories with
valid positive counterfactuals.

Efficiency is assessed through learning curves of ρ+ and ρadv,
illustrating performance improvements during the training of
the proposed approach. Generalization is evaluated by test-
ing the approach on unseen trajectory datasets across diverse
single- and multi-environment settings.

1Code is available at: https://github.com/safe-autonomy-lab/
CounterfactualRL

https://github.com/safe-autonomy-lab/CounterfactualRL
https://github.com/safe-autonomy-lab/CounterfactualRL


5.1 Diabetes Control
MDP Environment. The FDA-approved UVA/PADOVA
Simulator [Man et al., 2014] was used to model glucose-
insulin dynamics and simulate the effects of insulin delivery,
carbohydrate intake, and other factors on blood glucose lev-
els in Type 1 Diabetes patients. Virtual patient profiles were
generated with varying parameters (e.g., age, weight, insulin
sensitivity). The MDP state space includes glucose reading,
glucose rate of change, and carbohydrate intake, while the
action space consists of the insulin dosage at each time step.
A reward function from [Zhu et al., 2020] was used, provid-
ing the highest rewards for maintaining glucose levels within
90–140 mg/dL, smaller rewards for near-target ranges, and
penalties for hypo- or hyperglycemic values, with increasing
penalties for larger deviations.

Data Generation. The proposed approach was evaluated in
two settings: single-environment (single patient) and multi-
environment (population model with multiple patients). In
the single-environment setting, a baseline policy was trained
on a chosen patient profile for 100,000 steps, with a learn-
ing rate of 0.0001 and a gradient step size of 50. Observed
trajectories were generated using a sliding window method,
with each trajectory representing a 20-step segment (corre-
sponding to a one-hour patient execution history). In the
multi-environment setting, the baseline policy was trained on
three patient profiles, with 3,000 steps per patient per round,
continuing until stable performance was achieved. Other pa-
rameters were consistent with the single-environment setting.
Both settings included 18 unique trajectories in each training
and test set.

Experimental Setup. We evaluated three variants of the
proposed approach: (P1) directly applying Algorithm 1 to
solve Problem 1; (P2-base) adapting Algorithm 1 for Prob-
lem 2 with constrained states Sc (glucose levels below 100
mg/dL) and the baseline policy as πc; and (P2-fixed) solving
Problem 2 with the same Sc but using a fixed policy πc that
injects 0.03 units of insulin per step. For each variant, Algo-
rithm 1 trained an RL model to generate counterfactual trajec-
tories with a distance reward weight of λ = 1. Counterfactual
trajectories were computed for each training set trajectory and
stored in a buffer. After a warm-up phase, batches of 256
trajectories were sampled for model updates using a learning
rate of 0.0001 and 50 gradient steps. The RL agent was tested
every 400 interaction steps, generating 10 counterfactual tra-
jectories per test trajectory via policy rollout for evaluation.
All three variants were compared to the same baseline method
(rolling out the baseline policy without constrained states).

Results Analysis. We conducted seven independent trials
for each method, and the results are analyzed below.

Effectiveness: Tables 1 and 2 present the ρ+ and ρadv
metrics evaluated on test performance across seven trials af-
ter training. All three methods outperform the baseline in
Positive Counterfactual Percentage (ρ+) across single- and
multi-environment settings. In the single-environment set-
ting, P1 and P2-fixed achieve the highest ρ+, with P2-fixed
slightly surpassing P1 in the multi-environment setting. For
Advantage Counterfactual Percentage (ρadv), P1 consistently

Domain Method Single-Env Multi-Env

Diabetes
P1 0.53 ± 0.01 0.44 ± 0.0
P2-base 0.47 ± 0.01 0.40 ± 0.02
P2-fixed 0.53 ± 0.01 0.48 ± 0.03
Baseline 0.44 ± 0.0 0.39 ± 0.0

Lunar Lander
P1 0.81 ± 0.03 0.82 ± 0.02
P2-base 0.65 ± 0.08 0.54 ± 0.02
P2-fixed 0.31 ± 0.06 0.42 ± 0.03
Baseline 0.61 ± 0.02 0.50 ± 0.0

Table 1: Mean and standard error of Positive Counterfactual Per-
centage (ρ+) in single- and multi-environment settings.

Domain Method Single-Env Multi-Env

Diabetes
P1 0.67 ± 0.0 0.86 ± 0.0
P2-base 0.0 ± 0.0 0.41 ± 0.02
P2-fixed 0.52 ± 0.03 0.65 ± 0.06

Lunar Lander
P1 0.38 ± 0.03 0.94 ± 0.04
P2-base 0.36 ± 0.04 0.72 ± 0.05
P2-fixed 0.32 ± 0.09 0.63 ± 0.04

Table 2: Mean and standard error of Advantage Counterfactual Per-
centage (ρadv) in single- and multi-environment settings.

demonstrates the best performance in both settings. P2-
fixed also performs reliably, while P2-base moderately im-
proves over the baseline in the multi-environment setting but
fails to generate advantageous counterfactuals in the single-
environment setting.

Efficiency: Figures 2 and 3 show the learning curves of ρ+
and ρadv for each method in single- and multi-environment
settings, with solid lines representing the mean and shaded ar-
eas denoting the standard error across seven trials. The base-
line curve in Figure 2 represents counterfactuals generated
by rolling out the baseline policy at each evaluation point,
without additional training. In the single-environment setting
(Figures 2a and 3a), P1 converges quickly and achieves the
highest ρ+ and ρadv. P2-fixed steadily improves, matching P1
in ρ+ and delivering strong ρadv performance. P2-base, how-
ever, converges more slowly and inconsistently, underper-
forming relative to P1 and P2-fixed. In the multi-environment
setting (Figures 2b and 3b), P2-fixed achieves the highest ρ+,
while all three methods converge rapidly and maintain stable
ρadv performance. Among them, P1 achieves the highest ρadv,
followed closely by P2-fixed, with P2-base showing slightly
weaker but reliable results.

Generalization: Performance across settings highlights
each method’s generalization capabilities. P1 generalizes
well, maintaining strong and consistent performance in both
settings. P2-fixed also generalizes effectively, excelling in
the multi-environment setting. P2-base shows limited gener-
alization, struggling in the single-environment but improving
slightly in the multi-environment, with notable variability.

Summary: In the diabetes control experiments, the pro-
posed methods consistently outperform the baseline in effec-
tiveness, efficiency, and generalization. P1 is the most effec-



(a) Single-Environment

(b) Multi-Environment

Figure 2: Learning curves of Positive Counterfactual Percentage
(ρ+) for the Diabetes Control domain.

tive and efficient, while P2-fixed excels in generalization to
multi-environment setting. P2-base, though weaker overall,
demonstrates modest generalization potential.

5.2 Lunar Lander
MDP Environment. The Lunar Lander environment from
OpenAI Gym [Brockman, 2016] simulates a 2D rocket at-
tempting to land safely on a designated pad. The MDP state
space includes eight continuous variables: the lander’s x and
y coordinates, x and y velocities, orientation angle, angular
velocity, and two binary indicators for the left and right legs’
contact with the ground. The action space includes two con-
tinuous variables controlling the throttle of the main engine
and the lateral boosters. The reward function encourages safe
landings, efficient fuel use, and minimal engine overuse.

Data Generation. The proposed approach was evaluated
under single- and multi-environment settings. In the single-
environment setting, a baseline policy was trained for 3,000
steps with a learning rate of 0.0001 and a gradient step size of
20. In the multi-environment setting, the baseline policy was
trained across three gravity values, with 500 steps per envi-
ronment per round, until stable performance was achieved.
As in the Diabetes domain, trajectories were generated using
a sliding window method, with each 20-step segment form-
ing a trajectory. Both settings included 12 randomly sampled
trajectories in each training and test set.

Experimental Setup. The proposed approach was used to
generate counterfactual trajectories with a learning rate of
0.00001 and a gradient step size of 20, following a process

(a) Single-Environment

(b) Multi-Environment

Figure 3: Learning curves of Advantage Counterfactual Percentage
(ρadv) for the Diabetes Control domain.

similar to the diabetes experiments. Three variants were eval-
uated: P1, P2-base, and P2-fixed. In P2-base and P2-fixed,
constrained states Sc were defined as those with x-velocity
in [−0.18, 0.18]. The policy πc was set as the baseline pol-
icy in P2-base, while P2-fixed used a fixed policy with action
vectors set to (0, 0).

Results Analysis. We conducted seven independent trials
for each method and analyzed the results below.

Effectiveness: As shown in Tables 1 and 2, P1 achieves
the highest Positive Counterfactual Percentage (ρ+) and Ad-
vantage Counterfactual Percentage (ρadv) in both single- and
multi-environment settings, surpassing all other methods and
the baseline. While P2-base falls short of P1 in both met-
rics, it outperforms the baseline. P2-fixed shows the weakest
performance, slightly below the baseline in ρ+.

Efficiency: The learning curves in Figures 4 and 5 de-
pict the efficiency of each method in terms of Positive
Counterfactual Percentage (ρ+) and Advantage Counterfac-
tual Percentage (ρadv) for the Lunar Lander domain. In
the single-environment setting (Figures 4a and 5a), P1 con-
verges quickly and achieves the highest ρ+ and ρadv. P2-
base steadily improves, surpassing the baseline, while P2-
fixed converges slowly and lags behind other methods. In
the multi-environment setting (Figures 4b and 5b), P1 con-
sistently outperforms others in both ρ+ and ρadv, with rapid
convergence and strong results. P2-base and P2-fixed demon-
strate less consistent progress in ρ+ but maintain competitive
performance in ρadv.

Generalization: All three methods generalize effectively
from single- to multi-environment settings. Notably, Advan-



(a) Single-Environment

(b) Multi-Environment

Figure 4: Learning curves of Positive Counterfactual Percentage
(ρ+) for the Lunar Lander domain.

tage Counterfactual Percentage (ρadv) improves significantly
in the multi-environment setting, while the learning curves
remain comparable across both settings.

Summary: In the lunar landing experiments, P1 consis-
tently outperforms other methods across both settings. P2-
base demonstrates moderate effectiveness and generalization,
with gradual improvements and variability in performance.
P2-fixed, while initially competitive, lags behind and per-
forms worse than the baseline in some cases.

5.3 Discussion
Comparing Single- and Multi-Environment. The ρadv re-
sults in multi-environment settings show marked improve-
ment over single-environment settings across all methods and
domains (Table 2). This suggests that training in diverse en-
vironments enhances model performance by exposing it to
a wider range of scenarios, enabling better generalization
and the integration of more varied information. These find-
ings highlight the value of tailoring counterfactual generation
methods to the unique characteristics of each environment
and leveraging diverse training conditions to achieve superior
outcomes.

Comparing Results of Two Domains. The results from
the Diabetes Control and Lunar Lander experiments highlight
the influence of domain-specific characteristics on the perfor-
mance of counterfactual generation methods. While P1 con-
sistently performs best in both domains, P2-fixed outperforms
P2-base in Diabetes Control, whereas P2-base surpasses P2-
fixed in Lunar Lander. These differences arise from the nature
of state transitions and action impacts in each environment.

(a) Single-Environment

(b) Multi-Environment

Figure 5: Learning curves of Advantage Counterfactual Percentage
(ρadv) for the Lunar Lander domain.

In Lunar Lander, actions produce immediate and short-lived
effects—adjusting the engine throttle instantly changes the
rocket’s velocity, with the effects quickly dissipating. Con-
versely, Diabetes Control involves delayed and prolonged ef-
fects, as an insulin dose takes time to affect blood glucose
levels and its influence persists for an extended period. This
delay likely contributes to the more stable learning curves in
the Diabetes Control domain compared to the more variable
curves observed in Lunar Lander.

6 Conclusion
This work presents a novel approach for generating coun-
terfactual explanations in continuous action RL. By extend-
ing the TD3 algorithm with mechanisms for constraint han-
dling and reward shaping, our approach efficiently generates
counterfactual trajectories that improve outcomes while min-
imizing deviations from observed actions. Experiments in
the Diabetes Control and Lunar Lander domains demonstrate
our approach’s effectiveness, efficiency, and generalization
across diverse environments. Notably, the P1 variant (with-
out constrained states) achieves the best overall performance,
while the P2 variants (with constrained states) offer flexibility
for incorporating user-defined constraints and preferences.

Future directions include enhancing the interpretability of
counterfactuals through real-time feedback and visualization
tools, further improving user trust and understanding. Addi-
tionally, we plan to apply the approach in other high-stakes
domains, such as autonomous driving, to assess its broader
applicability and potential impact.
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