
CS 4501-6501 Topics in Cryptography 16 Feb 2018

Lecture 5, CPA Secure Encryption from PRFs
Lecturer: Mohammad Mahmoody Scribe: J. Fu, D. Anderson, W. Chao, and Y. Yu

1 Review

Ralling: CPA Security and Randomized Encryption. Last time, we discussed CPA
Security and how it allows more power to the adversary compared to the “single-message”
indistinguishability-based definitions. The security goal here is that, as long as the adversary
is computationally bounded (to polynomial time computation), they cannot guess the mes-
sage that is being encrypted. More formally, our goal is to show that for all polynomial-time
adversaries,

| Pr
World 0

[b′ = 1]− Pr
World 1

[b′ = 1]| ≤ negl(n).

where in World b, the challenger always encrypts mb (and m0,m1 are the two messages
proposed by the adversary to be encrypted), and it is crucial that the adversary has access
to an encryption oracle all along the security game. Namely, he can request any message m
to be encrypted for him.

In other word, in different worlds where different message is encrypted and returned to
the adversary, the probability of adversary’s output bit is extremely close (i.e., at most far
by a negligible amount). Also note that, in this way of writing the definition, we no longer
call the output b′ a “correct” or “wrong” guess. In PS1 you proved that the other way of
defining the security in which the message mb is chosen at random, and adversary tires to
guess b is equivalent to the above definition.

However, if we want to prove an encryption algorithm to be secure under the CPA security
definition, we need to use randomness in the encryption. The reason is that, otherwise, the
adversary can request m0,m1 both to be encrypted for him by the encryption oracle and he
can then try to see which one of them matches the challenge given to him in the security
game. So the question is: how do we use randomness pro pertly to achieve CPA security?

Recalling: Usefulness of PRGs for Single-Message Security. Recall how we used
PRGs to encrypt messages that are longer than keys and achieve single-message indistin-
guishability security against computationally bounded adversaries. The idea was to start
from a key k whose length is the security parameter n, and then use the PRG g to expand k
into n2 bits as follows g(k) = K, and then we can use the longer K and do a ”one-time-pad”.

Now, one might ask: how can we use similar ideas to encrypt multiple messages m1,m2, ...
over a period of time securely. Namely, suppose m1 is the message that we want to encrypt
today, m2 is the message we want to encrypt tomorrow, etc.

CPA Secure Encryption from PRFs-1

A cheating idea above is to split the long key K into multiple pieces k1, k2, ... and use
ki to mask mi. There are two problems with this approach: one is that Alice and Bob (the
encrypter and the decrypter) need to have a ”state” and be ”synchronized” because they
have to keep track of the length of the prefix of K that is used so far. Secondly, we might
not know ahead of the time the total length of the messages m1,m2... that will be encrypted
over time (if we knew, we could use the PRG to expand the initial k long enough). The
second idea could be resolved by using the idea of ”stream-ciphers” (see the Katz-Lindell
book for an in depth discussion).

However the synchronization is not ideal, and so for now, we focus on only encrypting a
single message.

The way we proved the security of single-message secure encryption was to show that
g(k) ⊕m is indistinguishable from U` where ` = |m| = |g(k)| is the length of the message
and the output of PRG. But how exactly we prove this? We used a hybrid argument by
using a hybrid world in which the adversary obtains m ⊕ U` where U` is truly randomly.
The idea was that: if an adversary can distinguish m⊕ U` from m⊕ g(k), we can turn this
into an attack against g as follows: given a string z we will give z ⊕m to the attacker who
distinguishes m⊕ U` from m⊕ g(k) and we will also distinguish g(Un) from U` by the same
advantage.

A useful abstract lemma. Here we describe an abstract lemma that was behind our
argument. The good thing about this abstract lemma is that it can be used in broader
settings to prove indistinguishability of two ”efficiently processed” random variables as long
as the original inputs are indistinguishable.

Lemma 1.1 (Indistinguishability of efficiently processed indistinguishable data). Consider
two distributions Xn, Yn (each parameterized by n) that are indistinguishable from each other:
Xn ≈

c
Yn in eyes of any poly(n)-time adversary. Now suppose Z is a polynomial time (even

potentially randomized) algorithm, and suppose X ′n ≡ Z(Xn) be a random variable denoting
the output of Z when it is given an input sampled from the distribution Xn. Similarly,
let Y ′n ≡ Z(Yn) be a random variable denoting the output of Z when it is given an input
sampled from the distribution Yn. Then, it holds that the distributions X ′n and Y ′n are also
computationally indistinguishable. Namely, for any polynomial time adversary A, there is a
negligible function ε(n) such that

|Pr[A(X ′n) = 1]− Pr[A(Y ′n) = 1]| ≤ ε(n).

Proof. For sake of contradiction, suppose there is a polynomial time A for which

|Pr[A(X ′n) = 1]− Pr[A(Y ′n) = 1]| > δ(n)

for some non-negligible function δ(n). Then we can use A and Z to distinguish Xn from Yn
as follows using algorithm B. Given any input w (which we don’t know if it is generated by
Xn or Yn), B does the following: output whatever A(Z(w)) outputs.

CPA Secure Encryption from PRFs-2

Note that if w ← Xn is generated from Xn, then the input u = Z(w) that we give to A is
distributed according to X ′n, and if w ← Yn is generated from Yn, then the input u = Z(w)
that we give to A is distributed according to Y ′n, therefore the polynomial time algorithm
B(·) = A(Z(·)) will achieve:

|Pr[B(Xn) = 1]− Pr[B(Yn) = 1]| > δ(n)

as well for the same non-negligible δ(n) which is a contradiction, because it shows that Xn

and Yn are indeed distinguishable by a polynomial time adversary.
Note that in the above proof it was crucial that Z was polynomial time.

2 Pseudorandom Functions

Pseudorandom function is like a very strong pseudorandom generator with a super long
output (formalized as below) so long that it is not even possible to read it in polynomial
time! But we can read chunks of it by giving an ”input” to the ”function” that computes
the ”specified block” in the output.

Informally, consider the following levels of ”good” PRGs (the last one is informal).

PRGs: From Worst to Best

• Good: A PRG that has input kn with length n and outputs a K2n with length of 2n
that is indistinguishable from truly random U2n. In short, K2n ≈

c
U2n.

• Better: A PRG that has input length n and outputs a larger length, e.g. n100.
Then there is Kn100 ≈

c
Un100 in poly(n).

• Best: A PRG that has input length n and outputs a length of ≈ n × 2n, namely 2n

”blocks” of length n.

Problem. The third item above is unrealistic. The problem here is that the algorithm
does not have time to read the entire input in polynomial time. Thus, we must find a way to
compute each segment separately. So we can think of the ”original” input k as a privately
kept key, and the ”new” input i that indicates the block that we want to read from the
output as the ”new/actual” input.

The idea is to have a keyed function that is indistinguishable from a truly random function
(just like the output of PRG is indistinguishable from truly random output). We will then
use PRFs to achieve CPA secure encryption. More formally, consider the set of all functions
f : {0, 1}n → {0, 1}n, then we know that there are (2n)2

n
such functions. In order to describe

a random function in this set, we would need n×2n bits. Informally, a pseudorandom function
cannot be distinguished by a random function that has even exponentially man random bits.

CPA Secure Encryption from PRFs-3

The actual definition of PRF is quite simple. Below, we define a version in which the
output is of length `.

Definition 2.1 (Pseudorandom Function (PRF)). A PRF F : {0, 1}n × {0, 1}∗ 7→ {0, 1}` is
a function that takes in a key of length n and an arbitrary length input x, and outputs an
output of length `. The output length ` could be a constant, or parameterized by n (e.g., to
be equal to n).

The security definition of F requires that no polynomial time algorithm can distinguish
between the following two worlds:

• oracle access to F (k, ·) where k is chosen at random.

• oracle access to a randomly chosen function f that maps strings to ` bits.

More formally, for all polynomial time algorithm D there is is a negligible function negl(n)
such that:

|Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ negl(n).

Some texts define other variants of PRFs by default, e.g., by asking the output to be of
the same length of the key k, or even restricting the input length x to be also n = |k| as the
length of the output.

Do it yourself: Try to show that all variants discussed above are equivalent (one can be
used to derive the other one). Problem 3.10 from the book which is part of the PS2 can be
an inspiring technique.

Note that the security of a PRG is different than the security of a PRF, but they are
similar in many ways. You can compare the secretly kept input of the PRG to the secret
key of a PRF and the long output of PRF (on all inputs) could be compared to (relatively
long) output of PRG.

How do we Obtain Pseudorandom Functions?

• (1) Using Length-Doubling PRGs.

PRG : n− bit −→ 2n− bit can be used to =⇒ PRF

See the book for more details. We sketch the ideas here for completeness. It shows
that PRF, as a computational assumption, is not stronger than PRGs, as PRGs can
be used to obtain PRFs. Given key k and input x ∈ {0, 1}n, use a tree-based idea
with PRGs at every node in the tree until a leaf node is reached. With the tree-based
idea, we start at the root node, which contains a PRG that either tells us to go left
or right down the tree until we get to a leaf node, which determines the segment. We
will now formally construct a pseudorandom function from a pseudorandom generator.
The following construction will produce a binary tree, where n is the depth of the tree.

CPA Secure Encryption from PRFs-4

Assume there exists a pseudorandom generator G that doubles the size of the in-
put (i.e. G : {0, 1}n → {0, 1}2n). We let G0(x) be the first n bits of G(x), and G1(x)
be the last n bits of G(x). The length-preserving pseudorandom function F will be
constructed such that Fi : {0, 1}n → {0, 1}n:

Fk(x) = Fk(x1x2...xn) := Gxn(Gxn−1(...(Gx1(k))...)).

This construction can be proved to be secure and the proof makes a very interesting
use of the hybrid-argument technique. You can find the proof in the book.

However, the more efficient and practical way of obtaining PRFs is to use secure hash
functions in a heuristic way. So, here we do not prove the security of PRFs based on
a specific property of hash functions, but the ”good” hash hash functions in practice
lead to PRFs that we don’t know how to break.

• (2) Using Hash Functions. A simple way of getting PRFs that are pretty good in
practice is to let

F (k, x) = H(k||x)

where H is a ”secure” hash function like SHA3 or SHA-256 and || is the string con-
catenation. In the latter case, the output will be 256 bits, but SHA3 allows the output
length to be chosen. So, even though the code of H is public and everyone can run it,
beause we are plugging in a fixed random key as part of the prefix to the input, not
having k we cannot guess the output F (k, x) and if we have oracle access to it, no one
knows how to distinguish it from truly random oracle in a polynomial time.

In other words, without the key, SHA-256 is NOT a PRF, it is just a deterministic hash
function, as everyone knows how to compute it. But we can still use hash functions
that do not have a key by concatenating the key to Y and hashing the concatenation,
which will still allow it to appear random.

A good hash function should pass many tests (like being ”collision-resistant”) but we
will talk about these properties later one when we need them.

3 CPA secure encryption using PRFs

To achieve CPA secure encryption, without loss of generality, it is enough to only encrypt one
block (e.g. M = {0, 1}l). This is something you prove in the problem set 2 and formalized
in the following claim.

Claim 3.1. Enc(k, x) where x = (x1, x2, ..., xk) and each xi is ` bits. Let yi be a fresh
encryption (yi ←− Enc(k, xk)) using fresh randomness, and then output (y1, ..., yk) as the
ciphertext. To decrypt, decrypt each block yi separately and put the pieces together to get
back x If Enc is CPA-secure for a fixed block length `, then it is CPA secure for all messages
{0, 1}∗ if we encrypt and decrypt them as described above.

CPA Secure Encryption from PRFs-5

Examples. Suppose we have a pseudorandom function such that F (k, x) = y, where k is
n-bits, x has arbitrary length, y is l-bits, and F is a PRF. Goal: obtaining Enc(k,m; r) −→ c
and Dec(k, c) −→ m, where k is n-bits and m; r is l-bits in a CPA secure way. We go over
some efforts, each time we fail, but we eventually put all the ideas together and it works!

1. Enc(k,m) = F (k,m). This is not a good way to encrypt, because the decryption
method is not clear at all! We don’t know how to go back from F (k,m) to m even if
we know k.

2. Enc(k,m) = F (k,m) ⊕ m. This also has the same issue, but it just has a more
complicated encryption!

3. Enc(k,m) = F (k, 1234) ⊕ m and Dec(k, c) = F (k, 1234) ⊕ c. Note that 1234 is a
constraint input. This decryption method is correct and even the decryption is also
efficient and well defined! The only problem is that we do not have CPA security.
(Note, we have not injected more randomness into the encryption, and we already
know that deterministic encryption cannot be CPA secure as we saw last time..)

4. Enc(k,m, r) = F (k, r)⊕m and Dec(k, c) = F (k, r)⊕c = m. This does not work either
because r is not in the decryption algorithm. If it was given to the decryptor as well,
it would be just part of the key! All we have to do is to twist this scheme a bit more!

Constructing a CPA-secure encryption from any PRF:
Let F (·, ·) be a secure pseudorandom function with output length `, then define a private-key
encryption scheme for messages of length ell as follows:

1. Gen: on input 1n, choose uniform k ∈ {0, 1}n and output it

2. Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}` , choose uniform r ∈ {0, 1}n
and output the ciphertext:

c = [r,m⊕ Fk(r)]

3. Dec: on input a key k ∈ {0, 1}n and a ciphertext c = [r, y], output the plaintext
message

m = y ⊕ Fk(r)

.

Proof of Security. The basic idea is that we analyze the security of the scheme in an
idealized world where a truly random function R(·) is used in place of PRF Fk(·), and show
that the scheme is secure in this case. Next, we claim that if the scheme were insecure when
Fk(·) was used this would imply the possibility of distinguishing Fk(·) from a truly random
function.

We begin by constructing real and ideal worlds as follows:

CPA Secure Encryption from PRFs-6

1. Real World 0: Challenger is given encryption oracle Enc(k, ·) and receive messages
m0 and m1 all of the same lengths. Challenger sends back an fresh encryption of m0:
Enc(k,m0), and adversary A outputs a bit b and

p0 = Pr[b = 1].

2. Ideal World 0: Let its encryption scheme be exactly the same except that a truly
random function R(·) used in place of Fk(·), so adversary A receives an fresh encryption

of m0: Ẽnc(m0) = (r, R(r) ⊕ m), and whenever there is an encryption request for a

message m, Ẽnc(m) = (r, , R(r)⊕m) is returned (with fresh randomness r). Adversary
A outputs a bit b and

q0 = Pr[b = 1].

3. Ideal World 1: This world is exactly the same as Ideal world 0, the only difference
is that m1 is “encrypted” for the adversary and

q1 = Pr[b = 1].

4. Real World 1: This world is exactly the same as Real world 0, but adversary receives
Enc(k,m1) with output b:

p1 = Pr[b = 1].

The indistinguishability of Real World 0 and Real World 1 follows from the following two
claims.

Claim 3.2. If F is a secure PRF, then |p0 − q0| and |p1 − q1| are both negligible for any
polynomial time adversary.

Proof. We prove this for |p0− q0| ≤ negl(n) and the other part is similar. The reason is that
if |p0 − q0| ≥ ε(n) for some adversary A, then we can use A to distinguish between F and
real random function R(·). That is because, we can run A and whenever it wants to call its
oracle O ∈ {R,F}, we would use our oracle O′ (which we want to find out if it is random or
pseudorandom) and provide the ”encryption” (r, O′(r) ⊕m for A. This holds both for the
encryption oracle and the encrypted challenge m0. Now, if our oracle O′ is F , we end up
simulating the world Real 0 for A, and if O′ happens to be truly random, we simulate the
world Real 0 for A.

Claim 3.3. If 2−|r| is negligible (e.g., we can choose the length of r to be n or even as small
as ω(log n)) then |q0 − q1| is negl(n).

Proof. When we run either of the experiments Ideal 0 or Ideal 1, as long as none of the
randomness choices r collide for any of the encrypted messages and that of the encrypted
challenge mb (which is encrypting different messages in these two experiments) the message
that the adversary receives as challenge looks completely random and independent of every-
thing else that he has received. Note that if the adversary gets lucky and the randomness r

CPA Secure Encryption from PRFs-7

that is used for encrypting mb gets equal to another encryption that he gets from its oracle,
then he can clearly tell apart which world he is in, but the point is that this is the only thing
that might be different between the two worlds. Therefore, if we choose r large enough, the
probability of k encryption queries having a similar randomness with that of the encryption
of mb would be at most k/2|r| where k = poly(n). Therefore, if 1/2|r| happens to be negligi-
ble, this probability is very small and then with probability 1−negl(n) the two experiments
Ideal 0 and Ideal 1 would be the “same” in eyse of the adversary in an statistical sense (so
the output bits would be negligibly close).

CPA Secure Encryption from PRFs-8

	Review
	Pseudorandom Functions
	CPA secure encryption using PRFs

