
CS 4501-6501 Topics in Cryptography 2 Mar 2018

Lecture 4, CCA Security
Lecturer: M. Mahmoody, Scribe: Jiefu Liang, Jin Ding, Xinhao Chen

1 Introduction

Before this class, we have already discussed security against two types of adversaries: a
passive adversary that only eavesdrop, and a “partially active” adversary that carries out a
chosen-plaintext attack. As we saw for CPA security, the encryption could be “resettable”,
which means the adversary could modify the ciphertext again and again. The reason this
is a drawback of CPA security is that the adversary might get some feedback about the
decryption every time he modifies the ciphertext. So we want to have a stronger security
definition which makes any modification of an encryption c “useless” (for example, not
decrypted). For that purpose, we are going to talk about another (stronger) type of attack,
called a chosen-ciphertext attack (CCA) which is even more powerful. In a CCA security
game, we provide the adversary not only with the ability to encrypt messages of its choice
(as in a chosen-plaintext attack), but also with the ability to decrypt ciphertexts of its choice
(except the challenge ciphertext c that is received from the challenger). Formally, we give the
adversary access to a decryption oracle in addition to a encryption oracle. Finally, today we
also introduce how to combine CPA secure encryption and MACs to achieve CCA security.

2 Review: MAC Authentication

2.1 What’s MAC?

MACs (message authentication codes) enable the communicating parties to know whether or
not a message was tampered with. The MAC’s aim is to prevent an adversary from modifying
a message sent by the other party who also holds the secret key (or at least noticing it when
it happens). So, a secret key (that is kept secret from the attacker) comes to help.

We use some symbols to represent the message, key and how the MAC is used. Two users
who wish to communicate in an authenticated manner begin by generating and sharing a
secret key k in advance of their communication. When one party wants to send a message
m to the other, she computes a tag t based on the message and the shared key, and sends
the message m along with the tag t to the other party. The tag is computed using a tag-
generation algorithm that can be denoted by MAC if this satisfied message authentication
codes. The sender of a message m computes t ← Mack(m) and transmits (m, t) to the
receiver. Upon receiving (m, t), the second party verifies whether t is a valid tag on the
message m (with respect to the shared key) or not. This is done by running a verification

CCA Security-1

algorithm Vrf that takes as input the shared key as well as a message m and a tag t, and
indicates whether the given tag is valid. The mathematical version of what we described is
as follow:

Definition 2.1 (Recalling MAC). A message authentication code (MAC) is a tuple of prob-
abilistic polynomial-time algorithms (Gen,Mac,Vrf) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and outputs
a key k with length |k| > n.

2. The tag-generation algorithm of MAC takes as input a key k and a message m ⊆
{0, 1}∗, and outputs a tag t. Since this algorithm may be randomized, we write this as
t← Mack(m). (In contrast to CPA security, randomness is not necessary here).

3. The verification algorithm Vrf takes as input a key k, a message m, and a tag t .It
outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We assume
without loss of generality that Vrf is deterministic, and so write this as b := Vrfk(m, t).

It is required that for every n, every key k output by Gen(1n) and every m ← {0, 1}∗
it holds that Vrfk(m,Mack(m)) = 1. If (Gen,Mac,Vrf) is such that for every k output by
Gen(1n) algorithm Mack is only defined for messages m ← {0, 1}`(n) (and Vrfk outputs 0
for any m * {0, 1}`(n) then we say that (Gen,Mac,Vrf) is a fixed-length MAC for messages
of length `(n). As with private-key encryption, it is almost always the case that Gen(1n)
chooses k > {0, 1}n uniformly at random.

2.1.1 The Security of MAC

We give the adversary access to a MAC oracle Mack(·); the adversary can submit any message
m to the oracle and is given in return a tag t← Mack(m).

This can be considered as a “break” of the scheme if the adversary is able to output any
message m along with a tag t such that:

(1) t is a valid tag on the message m (like Vrfk(m, t) = 1) and (2) the adversary had
not previously requested a MAC tag on the message m. The first condition means that the
adversarial algorithm could fool the party to think the message originated from the legitimate
party. The second condition prevents the situation happened under a replay attack, if we
augment the messages with a time stamp. We can also write the message authentication
experiment MACforgeA,π(n).

The message authentication experiment MACforgeA,π(n):

1. A random key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Mack(·). The adversary even-
tually outputs a pair (m, t). Let Q denotes the set of all queries that A asked to its
oracle.

CCA Security-2

3. The output of the experiment is defined to be 1 if and only if (1) Vrfk(m, t) = 1 and
(2) m * Q.

Therefore, a MAC algorithm is secure if no efficient adversary can succeed in the above
experiment with non-negligible probability. Here we can get the mathematical definition of
MAC- secure as follow:

Security definition of MAC : A message authentication code A = (Gen,Mac,Vrf) is
existentially unforgeable under an adaptive chosen-message attack, or just secure, if for all
probabilistic polynomial-time adversaries A, there exists a negligible function negl such that:

Pr[MACforgeA,π(n)] ≤ negl(n).

2.2 Constructing Secure MACs using PRFs

The former part is talking about the security of MAC. In this part, we’ll focus on how to
form a MAC with tool: Pseudorandom functions. The intuitive idea is that if the MAC
tag t is obtained by applying a pseudorandom function to the message m, then forging
a tag on a previously unauthenticated message requires the adversary to guess the value
of pseudorandom function as a new point, which is the message itself. The probability of
doing so is 2−` if the function is truly random and has output length `, and should remain
2−` +negl(n) if we switch to PRF instead of a truly random function. See last lecture notes
for formal description and proof of security, but the construction is simple to describe: the
tag is simply Fk(m) using a PRF that can accept arbitrary length messages.

One property of the above mentioned MAC is that it is deterministic. In particular, for
every message m there is a unique tag t that can be accepted. This property is useful and
we will rely on it in our construction of CCA secure encryption.

Definition 2.2 (Strong MAC). This is defined similar to MAC, but for all (m, k), there is
only one unique acceptable tag t that makes the verifier Vrfk(m, t) output 1 (i.e., accept).

3 CCA Security

We first recall an example that explains why CPA security is not great for all scenarios.

3.1 Password verification example (Review and Expand)

Scenario:

1. Alice(client) wants to login on Bob’s computer(server)

2. Alice’s browser has a shared key k with Bob

3. Alice encrypts the password using k and sends c = Enck(password)

CCA Security-3

4. Bob decrypts c and if the password is correct, it allows Alice to log-in

Although this is CPA security, there might have a attack that a resetter algorithm
Res(c, i, b) → c′, c is encrypted by m = m1, ...,mk, i is the location of m which will be
changed, b is the change bit. Dec(c′) → m1, ...mi, ...,mk, where mi = b. The attacker don’t
need even know the output after producing the c′. But they can know which m be changed
from the feedback of this password verification. So if given a 100 bits password, attacker can
recover the password for at most 100 tries by using this function. Although it’s CPA secure,
it’s not secure enough. So we want to design some stronger security scheme to cover all the
vulnerabilities.

Do it yourself Can you design an actually CPA security which has the above vulnerabil-
ity? Namely, assume that there is PRF, can you design a CPA secure encryption that has
the above vulnerability?

3.2 Stronger security

Definition 3.1 (Tamper resilience – informal definition). If a third party tries to mod-
ify ciphertext, the encryption algorithm with stronger security could always ends up with
completely useless which means “not decryptable”.

Recall the completeness condition: Enc(k,m, r) → c, Dec(k, c) → m′. And the correct-
ness condition is that: ∀k, ∀m, ∀r: Enc(k,m, r)→ c, Dec(k, c)→ m′, m = m′. Note that this
definition does not prevent us from rejecting messages that are not properly encrypted.. we
will rely on this aspect in our search for a stronger security notion that prevents tampering
with ciphertexts. In particular, we can use a specific symbol ⊥, which is one error symbol.
For example, when I want to decrypt something, and I notice it’s not a right decryptable
message, I might output this specific error symbol instead of any classic output m′.

In order to have a stronger security, we don’t even have to change the above definition.
Because this definition does not say what happens if we plug in another different ciphertext.
If we plug in another ciphertext, this decryption algorithm can potentially output anything.

So we can use the same definition above, but we then focus on trying to make sure
what we achieved would also detect whenever you plug in something which is not correctly
generated, and give this specific error symbol ⊥. In which case, if you try to tamper the
ciphertext, you will get error nearly all the time. The reason why it’s nearly all the time
instead of all the time is that sometimes you might luckily obtain a correct ciphertext which
you could only have very very low chance to obtain.

So we come up with a stronger security - CCA security which we will define below.

3.3 Define CCA Security

Definition 3.2 (CCA Security). A private-key encryption scheme π has indistinguish-
able encryption under a chosen-ciphertext attack (or is CCA-secure), if for all probabilistic

CCA Security-4

polynomial-time adversariesA, there exists a negligible function negl such that: Pr[PrivKeyccaA,π(n) =
1] ≤ 1

2
+negl(n), where the probability is taken over all random coins used in the experiment.

Consider the following experiment for any private-key encryption scheme π = (Gen,Enc,Dec),
adversary A and value n for the security parameter.

1. A key k is generated by running Gen(1n)

2. The adversary A gets the oracle access to Enck(·) and Deck(·). A is given the inputs
1n, and it outputs two same length message m0 and m1.

3. Challenger choose an random bit b from {0, 1}, and use Enck(·) to compute the chal-
lenge cipher-text c and send to Adversary.

4. Now the adversary still have the oracle access to Enck(·) and Deck(·), but with one
restriction - it is not allowed to query the challenge cipher-text c.

5. Then the adversary output its guess b′. The adversary wins if b = b′, otherwise adver-
sary lose.

This scheme is CCA secure if for every poly-time Adversary A, there is a negligible ε:
N 7→ [0, 1] , and large enough n, Pr[A wins] ≤ 1

2
+ ε(n).

Contrasting CCA with CPA security. The adversaries A for CCA security are given
the access to oracle decryption which can decrypt everything but cannot decrypt the cipher-
text encrypted by the challenger.

Do it yourself. Check why using CCA secure encryption algorithms in the context of
”password encryption” example described above will resolve the issue. Namely, show that
if an adversary tries to intercept messages and re-send modified versions of them, he will
always get ”rejected” and thus would not ”learn” anything meaningful from the interaction.
More formally, show that the probability of the adversary outputting the password at the
end of such interaction is negligible if the passowrd is long enough (i.e., longer than the
security parameter) and chosen at random.

4 Achieve CCA Security: MAC+CPA Security

In this section, we try to establish CCA security schema based on our previous achieved
security schema. The adversary now has access to the message m0 m1, the encryption
algorithm Enc(m, k), and the decryption algorithm Dec(c, k). In order to achieve CCA
security, we have to establish a security schema which can guarantee Pr[Advwins] ≤ 1

2
+ ε(n).

These are the two tools we have for achieving CCA security:

• CPA-Secure encryption: (Enc, Dec) based on key k1

• Strongly-Secure MAC: (Mac,Vrf) based on key k2

CCA Security-5

There are three seemingly ”natural” ways to achieve CCA security by combining MAC and
CPA security. We will go over them to see which one works better!

0 Do authentication and encryption at the same time. (Wrong: Even not a CPA secure)

1 Do authentication, then encryption.(Wrong: remains CPA secure, but not CCA secure)

2 Do encryption, then authentication(Right: CCA security is achieved).

4.1 0th try (Wrong)

Claim: Doing the authentication and encryption at the same time is not CCA security,
even not CPA security.

Proof: Assuming that we do the authentication and encryption together at the same time,
encryption algorithm EncK1(M) is a CPA secure algorithm, tm is a MAC tag unique for a
message m. After encrypting the message m, the adversary will be provided with a ciphertext
c = [Enck1(m), tm]. The reason why this security schema is not CCA even not a CPA secure
schema is that the adversary can easily distinguish which message (m0 or m1) the ciphertext
c is generated from, by encrypting m0 and m1 and comparing the their MAC tags tm0 , tm1

with tmc . Due to the fact that the MAC tag is unique for every message, the adversary can
easily know which message has been encrypted as long as they compare their MAC tags.

4.2 1st try (Still Wrong)

Claim: Doing the authentication then encryption is CPA security but not CCA security,
because the encryption scheme π is resettable.

Do it by yourself: Figure out how to prove the encryption scheme π is CPA security.

Proof: Next we will prove the encryption scheme π is not CCA secure in general. In other
words, we will show that some CPA secure encryption and secure MAC, when used this way,
will be not CCA secure. In particular, we will use a CPA secure encryption scheme that is
possible to be resettable. In the encryption scheme, the message m firstly is authenticated
by MAC with k1, generating a MAC tag tm. Then a combined message [m+ t] is encrypted
by a CPA encryption scheme, generating a ciphertext c = Enc([m + tm]). In order to prove
the encryption scheme is not CCA security, we can provide an attack to break the encryption
within polynomial time.

Here we want to prove the encryption scheme is resettable, meaning the adversary can
break the encryption scheme by modifying ciphertext and decrypting the modified ciphertext.
Suppose the adversary can modify the first bit of the messagem in the ciphertext Enc([m, tm])
and get a new ciphertext Enc([m′, tm]). Then the adversary can try to decrypt the new
ciphertext. Based on the decryption results (rejection or not), the adversary can know which

CCA Security-6

message was encrypted then break the encryption scheme. Suppose the adversary is provided

with message m =

{
m0 = 000
m1 = 111

}
. Of course the adversary does not know which message

is encrypted. For the ciphertext Enc([m, tm]), suppose the adversary resets the first bit of

the message m to 0 then gets new ciphertext Enc([m′, tm]), of which m′ =

{
m′0 = 000
m′1 = 011

}
.

Note here we do not modify the MAC tag tm, the tm is still generated from one of previous
message m0 and m1. Therefore, the adversary gets the new ciphertext c′ = Enc([m′, tm]), m′

is one of the two 000 and 011. Then the adversary can use the decryption scheme to decrypt
c′ and get the decryption results. If the adversary gets a rejected result, it means 111 was
encrypted in this challenge, otherwise 000 was encrypted.

4.3 2nd try (Right)

Claim: Doing the encryption then authentication is CCA security.

Big picture of proof: In order to prove a private-key encryption scheme is CCA security,
the intuition is to prove the decryption Dec() provided for the adversary is useless, then back
to CPA security. Assuming that we construct a private-key encryption scheme π which is a
CCA secure. The aim is to prove the encryption scheme is CCA security. Here we have two
assumptions:

1. a private-key (Enc,Dec) scheme as π1 which is CPA security.

2. a MAC authentication algorithm (Mac,Vrf) as π2 which has stronger security, meaning
that for every message the MAC tag is unique.

The big picture of the proof as usual is to show that if an adversary A can break the CCA
security of the new encryption scheme with polynomial time, then using A as a subroutine,
one can break either the above two assumptions. In other words, if the two assumptions are
correct, the private-key encryption scheme is CCA secure.

Suppose A distinguishes the encryption of m0 from m0 with advantage ε. We will break
the situation into two cases: Either, the following happens with probability ≥ ε/2 or at
mot ε/2: Event E: during its attack A asks its decryption oracle a query c′ where c′ is not
the challenge ciphertext and is not obtained by A from its encryption oracle and that c′ is
decrypted properly without returning the error ⊥.

• Breaking MAC: If Pr[E] ≥ ε/2, then note that ε/2 is also non-negligible (just like
ε) and so we can get an attacker B1 who can break the security of MAC scheme π2
with ≈ ε/2 probability. The way we can do this is as follows. B1 will simulate a copy
of the CPA secure encryption π1 in its head. Then it runs A and tries to provide what
A needs. It will use π1 and its Mac oracle to implement the (supposedly) CCA secure
encryption scheme. The first moment that A makes the event E happen, it means that
it has found a ciphertext c′ = [C, t] where t is a correct tag for C and that A has not
obtained this c′ from B1.

CCA Security-7

• Breaking CPA encryption: If Pr[E] ≤ ε, it means that with probability at least ε,
A succeeds without asking any query like c′ described above. It means that with
probability ε/2 all the queries that A asks from the decryption oracle, is something
that it knows the answer to them already! So if we remove the decryption oracle from
A, it can still win in the CPA security game with probability at least ε/2.

Do it by yourself: Foralize the above sketch of the proof.

CCA Security-8

	Introduction
	Review: MAC Authentication
	What's MAC?
	The Security of MAC

	Constructing Secure MACs using PRFs

	CCA Security
	Password verification example (Review and Expand)
	Stronger security
	Define CCA Security

	Achieve CCA Security: MAC+CPA Security
	0th try (Wrong)
	1st try (Still Wrong)
	2nd try (Right)

