Reminder

• Problem set 1 reminder due this Wed

• Need to solve problem 2.6 part b (from Katz-Lindell) book, as well.
Last time

• Defining encryption formally
• Information theoretic (perfect) vs. computational secrecy
• Limitation of perfect secrecy (and even its relaxations)

Today

• Secrecy based on (unproven) computational assumptions
• Pseudorandom generators (and functions)
Computational Privacy/Security

A scheme is \((t, \varepsilon)-secure\) if every adversary running for time \(t\) succeeds in breaking the scheme with probability at most \(\varepsilon\).

- What it means to “break” depends on the exact security def.

- Ideal: \(t > \text{“feasible computation”}\) and \(\varepsilon < \text{“negligible probability”}\)

 \[t(n) \leq n^c \quad \text{for some constant } c \]

 \[\varepsilon(n) \leq \frac{1}{n^c}, \text{ if } n \text{ is large enough.} \]

- Example: \(t = 2^{100}\) \(\varepsilon = 2^{-100}\) (age of universe \(\approx 2^{80}\) seconds)
Examples

- NP-Complete / hard:
 - Boolean SAT problem.

TSP:
- Input: weighted graph
- Run-time: 2^n
- Easy.

Conjecture: There is no poly-time alg for TSP.

Some constant:
- $O(1)$
- 100

Find a tour that goes to all nodes using minimal distance total.

Quick run-time: $O(n \log n)$

Feasible

Poly-time.

Input size

Conjecture: There is no poly-time alg for TSP.

Large prime numbers (into prime factors)
Computational Indistinguishability Secrecy

- Eve (eavesdropping) security: Even if Eve knows \(m \in \{m_0, m_1\} \) she cannot guess \(m \) in time \(t(n) \) with probability greater than \(\frac{1 + \varepsilon(n)}{2} \).}

\(t(n) \), \(\varepsilon(n) \) are functions of “security parameter” \(n \) (e.g. key length \(n = 1000 \))
“Efficient” time and “Negligible” probability...

• Efficient: polynomial time over input length

\[t(n) \leq \text{poly}(n) \]

\[\exists c, \forall n, t(n) \leq n^c \]

• Negligible: smaller than any inverse polynomial (over input length)

\[\forall c, \exists n_0, e(n) \leq \frac{1}{n^c} \text{ if } n \text{ is large enough.} \]
Formal definitions of security

The adversarial indistinguishability experiment $\text{PrivK}^{\text{eav}}_{A,\Pi}(n)$:

1. The adversary A is given input 1^n, and outputs a pair of messages m_0, m_1 of the same length.
2. A random key k is generated by running $\text{Gen}(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. The ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to A.
3. A outputs a bit b'.
4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. If $\text{PrivK}^{\text{eav}}_{A,\Pi}(n) = 1$, we say that A succeeded.

DEFINITION 3.9 A private key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr[\text{PrivK}^{\text{eav}}_{A,\Pi}(n) = 1] \leq \frac{1}{2} + \text{negl}(n).$$

where the probability is taken over the random coins used by A, as well as the random coins used in the experiment (for choosing the key, the random bit b, and any random coins used in the encryption process).
Two main issues:

• How to realize this definition?

• Is this the best definition addressing all issues? (No, it is still weak, but we will get back to this)
Pseudo-randomness
(random in eyes of computationally bounded)

\[\underbrace{0 \mid 0 \mid 0} \text{ \(\times 100 \) times.} \]

\[\frac{1}{2^{100}} \]

\(\text{Word 1} \)

\[X = X_1 \mid \ldots \mid X_n \text{ \(\subseteq \) } 2^{100} \]

\(\text{truly randomly generated} \)

\[Y = Y_1 \mid \ldots \mid Y_n \text{ \(\subseteq \) } 2^{100} \]

\(\text{more likely to be random.} \)

\(\text{generated \(\& \) differently.} \)
Pseudo-random generator (PRG)

• A magical tool that let us still do “one-time-pad” using short keys!
Formal definition of PRGs

For all poly-time adv A, there is a negligible function \(\varepsilon(n) \) such that

\[
P_0 \left[\text{Win} \left[\text{Adv} \right] \right] \leq \frac{1}{2} + \varepsilon(n)
\]

for all possible \(y \in \mathbb{U}_n \).
Using PRGs \(\rightarrow \) encrypting one long message

\[
\text{assume the existence of a PRG } g : x \rightarrow x, \ |x| = \frac{n}{2} \text{-bit}
\]

\[
\text{Goal:}
\]

Construct an ind. secure private-key encryption scheme \((\text{Enc}, \text{Dec}, k(\cdot)) \)

Work on messages of length \(n \).

\[
\text{Thm: if } g \text{ is a secure PRG } \rightarrow B \text{ is a secure SKE.}
\]

\[
\begin{align*}
\text{Enc}(k, m) : g(k) \oplus m \quad &\text{Compared with } k \text{-bitwise} \\
\text{Dec}(k, s) : g(k) \oplus m \quad &\text{key } k \text{ at random} \\
\end{align*}
\]

\[
\text{Dec}(k, \text{Enc}(k, m)) = m
\]
Equivalent definition of PRG (applies to any ind. Security game – see PS1)

Guessing game

\[b \sim \{0, 1\} \]
- if \(b = 0 \)
 - \(c \sim X_0 \)
- else
 - \(c \sim X_1 \)

\[\Pr \left[\text{Win} \right] \leq \frac{1 + \epsilon}{2} \]

\[\Pr_{\text{World}_1} \left[\text{ADV}(c) = 1 \right] - \Pr_{\text{World}_2} \left[\text{ADV}(c) = 1 \right] \leq \epsilon \]
Proof of security for PRG \(\rightarrow \) ind-secure encryption

Assuming \(g : secure \) \((t, \epsilon) \)-PRG

Goal: \(B = (\text{Enc}, \text{Dec}) \) is a secure Enc.

\((\frac{1}{2}, 10\epsilon) \)-secure

World 0

Hybo

Hyb 1

World 1

\[P_0 \{ \text{ADV} \rightarrow 1 \} = P_0 \]

\[P_0' \]

\[P_1' \]

\[\Delta P_1 \{ \text{ADV} \rightarrow 1 \} = P_1 \]

View of ADV is the same!

\[\text{Goal } P_1 - P_0 < \epsilon \]
Proof: Suppose this is **NOT** the case!

Suppose A_1 is poly time t such that $P'_o - P_o > \varepsilon$

We construct Adversary A_2 that runs in poly time and breaks security of PRG by ε!

A$_2$ is given y, $y \oplus m_0 \rightarrow y'$ calls $A(y')$ and outputs $A(y')$.

\[\text{easy: } \Pr[A_2^{\text{output 1}} \text{ on } u_n] = P'_o \]
\[\Pr[A_2^{\text{output 1}} \text{ on } g(u_n)] = P_o \]

\[m_{0'} \rightarrow m_{0', A^D} \]
\[m_{0'} \rightarrow m_{0', A^D} \]

\[m_0 \oplus g(u_{n/2}) \]

\[m_0 \oplus U_n \]

\[P_o \{ \text{out} = 1 \} = P_o \]

\[P'_o \{ \text{out} = 1 \} = P'_o \]

Claim: $P'_o - P_o < \varepsilon$