
Special Topics in Cryptography

Mohammad Mahmoody

Last time

• Public-key encryption and key-agreement

• Diffie Hellman (key agreement protocol)

• RSA public key encryption

• Digital signatures

Today

Public Key Encryption

• Secure communication even without shared secret keys!

Recalling Public Key Encryption

• Key generation: Gen 1𝑛 → 𝑒𝑘, 𝑑𝑘

• Encryption: Enc 𝑒𝑘,𝑚 → 𝑐

• Decryption: Dec 𝑑𝑘, 𝑐 = 𝑚′

• Completeness: decrypting correction 𝑚 = 𝑚′

• Security: same as CPA security for private-key, but the adversary does
not need any encryption oracle: it has the encryption key itself!

Recalling Key Agreement

• Interactive protocol between randomized Alice and Bob

• The sequence of messages 𝑇 = (𝑡1, 𝑡2, … 𝑡𝑚) is called “transcript”

• At the end, Alice and Bob output key 𝑘𝐴, 𝑘𝐵

• Completeness: getting same keys 𝑘𝐴 = 𝑘𝑏 = 𝑘𝑒𝑦

• Security: suppose |𝑘𝑒𝑦| = 𝑛, then
(𝑇, 𝑘𝑒𝑦) is computationally indistinguishable from 𝑇, 𝑈𝑛
Namely, even if 𝑇 is known, 𝑘𝑒𝑦 is indistinguishable from uniform 𝑈𝑛

Diffie Hellman Key Agreement

• Public parameters: large prime 𝑞 a (multiplicative) generator 𝑔 for 𝒁𝒒

1. Alice picks 𝑥 ← {1,… 𝑞 − 1} and Bob picks 𝑦 ← 1,…𝑞 − 1 at random

2. Alice sends 𝑎 = 𝑔𝑥 to Bob and Bob sends 𝑏 = 𝑔𝑦 to Alice.

3. Alice takes 𝑏𝑥 = 𝑔𝑥𝑦 = 𝑘 and Bob takes 𝑎𝑦 = 𝑔𝑥𝑦 = 𝑘 as the key.

• To implement in efficiently, we use “fast exponentiation” algorithm
that computes 𝑎𝑦 mod 𝑞 in time polynomial in lengths of 𝑞, 𝑦, 𝑎

RSA Public-Key Encryption

Main Idea of RSA: Trapdoor Permutations

• Intuition: Permutation 𝜋 ∶ 0,…𝑁 − 1 → 0,…𝑁 − 1
1. Easy to compute 𝜋 publically
2. Easy to “invert” 𝜋 only if have the trapdoor.

• Key generation find: 𝑒𝑘 = 𝜋 and 𝑑𝑘 = 𝜎 for permutations 𝜋, 𝜎 such that :
1. for all 𝑥 ∈ 0,…𝑁 − 1 : 𝜎 𝜋 𝑥 = 𝑥 namely 𝜎(⋅) = 𝜋−1(⋅)
2. Given 𝜋(𝑥) it is “hard” to invert it to find 𝑥. Formally, for all poly-time 𝐴

Pr
𝑥← 0,…𝑁−1

𝐴 𝜋 𝑥 = 𝑥 ≤ negl(𝑛) where 𝑛 ≈ log(𝑁) is sec parameter

• What is useful intuitively?
• Why cannot we use it naively?

Number Theory 101- (continued)

• gcd 𝑁,𝑀 = greatest common divisor of 𝑀, 𝑁

• 𝜑 𝑁 = 𝑖 1 ≤ 𝑖 ≤ 𝑁, gcd 𝑁, 𝑖 = 1 |

• 𝜑(𝑝) for prime 𝑝 ?

• 𝜑 𝑝𝑞 for primes 𝑝, 𝑞 ?

• Euler’s theorem: if gcd 𝑎, 𝑁 = 1 → 𝑎𝜑(𝑁) = 1 (mod 𝑁)

RSA Trapdoor Permutation

• Euler’s theorem: if gcd 𝑎, 𝑁 = 1 → 𝑎𝜑(𝑁) = 1 (mod 𝑁)

• 𝑎𝜑(𝑁) ⋅ 𝑎𝜑 𝑁 ⋅ 𝑎𝜑 𝑁 … = 1  𝑎1+𝑘⋅𝜑(𝑁) = 𝑎 (mod 𝑁)

• If 𝑒 ⋅ 𝑑 = 1 + 𝑘 ⋅ 𝜑(𝑁) which is the same as 𝑒 ⋅ 𝑑 = 1 mod 𝜑 𝑛 then
𝑎𝑒 𝑑 = 𝑎 (mod 𝜑 𝑁)

which means 𝜋 𝑥 = 𝑥𝑒 is inverse of 𝜎 𝑦 = 𝑦𝑑 for gcd 𝑥, 𝑁 = 1

• Interestingly 𝜎 𝜋 𝑥 = 𝑥 even for gcd 𝑥, 𝑁 ≠ 1

How to use RSA Trapdoor Permutation
for public-key encryption?
• Intuition: Permutation 𝜋 ∶ 0, …𝑁 − 1 → 0,…𝑁 − 1

1. Easy to compute 𝜋 publically

2. Easy to “invert” 𝜋 only if have the trapdoor.

• What is useful intuitively?

• Why cannot we use it naively?

One “correct” way to use RSA trapdoor
permutation for public key encryption

• Actual Randomized (CPA secure) Encryption of a big 𝑏:
Pick 𝑟, 𝑠 ∈ {0, … , 𝑁 − 1} at random and output [𝜋 𝑟 , 𝑠, 𝑟, 𝑠 ⊕ 𝑏]

More efficient way, using an “ideal” hash function

• Let ℎ: 0,1 𝑛 → 0,1 𝑛 be an “idea” hash function
• Key gen: generate a pair 𝑒𝑘 = 𝑔(⋅), 𝑑𝑘 = 𝑔−1 (⋅)

• Encryption of 𝑚 ∈ 0,1 𝑛: pick 𝑟 ← 0,1 𝑛, output 𝑐 = 𝑔 𝑟 , ℎ 𝑟 ⊕𝑚

• Decryption of 𝑐 = (𝑦, 𝑧) : output 𝑚 = 𝑔−1 𝑦 ⊕ 𝑧

• Even possible to do it efficiently in a CCA secure way using ideal hashing

We need prime numbers for RSA and DH !

• We need large prime numbers!

• How many prime numbers are there?

• How can we fine one?

Public Key Authentication:
Digital Signatures

• Secure authentication without shared secret keys!

Making MACs public key (just like how we
moved to public key encryption)

Defining Digital Signatures

• Alice has a signing key 𝑠𝑘 and a verification key 𝑣𝑘

• Using 𝑠𝑘 Alice can sign 𝑚 with 𝜎 = Sign𝑠𝑘(𝑚)

• If Bob verifies Verif𝑣𝑘 𝑚, 𝜎 = 1 he can be sure Alice signed 𝑚

• Security:

One possible idea based on TDPs (e.g. RSA)

• Signing key: “private key” (or the trapdoor)

• Verification key: “public key” (or the description of the permutation)

• To sign 𝑚 publish 𝜎 𝑚 = 𝑡

• To verify (𝑚, 𝑡) accept if and only if: 𝜋 𝑡 = 𝑚

• Is it secure signature?

“Hash and sign” using ideal hash function

