Special Topics in Cryptography

Mohammad Mahmoody
Last time

• RSA public key encryption
• Digital signatures

Today

• Finishing digital signatures
• Zero Knowledge Proofs
• Secure Computation.
Public Key Authentication: Digital Signatures

• Secure authentication without shared secret keys!
Defining Digital Signatures

• Alice has a signing key sk and a verification key vk

• Using sk Alice can sign m with $\sigma = \text{Sign}_{sk}(m)$

• If Bob verifies $\text{Verif}_{vk}(m, \sigma) = 1$ he can be sure Alice signed m

• Security: For any poly-time adversary A who has access to a signing oracle $\text{Sign}_{sk}(\cdot)$, the probability of A finding (m, σ) for m not asked by A that also passes the test $\text{Verif}_{vk}(m, \sigma) = 1$ is negligible.
One possible idea based on TDPs (e.g. RSA)

- Signing key: “private key” (or the trapdoor)
- Verification key: “public key” (or the description of the permutation)

To sign m publish $\sigma(m) = t = \pi^{-1}(m)$

To verify (m, t) accept if and only if: $\pi(t) = m$

Is it secure signature? No, because we can choose t first and then find m for it easily!
"Hash and sign" using ideal hash function

- Directly works for any message (arbitrary length):
- Suppose $h : \{0,1\}^* \rightarrow \{0,1\}^n$ for security parameter n
- And we have trapdoor permutation π, π^{-1} on domain $\{0,1\}^n$

- Signing key π^{-1}
- Verification key π
- To sign m, first get $s = h(m)$ and then output $\sigma = \pi^{-1}(s)$

$\text{Verif} (m, t) : \frac{h(m) = \pi(t)}{s} \quad \frac{h(m) \neq \pi(t)}{\text{output 0}}$
Why is it a good signing method?

Theorem: If \((T, \tilde{n})\) is a secure TDP

\[
\Pr\left[A \text{ wins the security game against the } \tilde{G} \text{ has a sign scheme} \right] \leq \text{neg}(\cdot)
\]

Proof: Reduction: assuming such \(A\)

\[
\rightarrow \text{ turn it into } B \text{ breaks } TDP \left(T, \tilde{n} \right)
\]
Zero Knowledge Proofs

• Proving the truth of statements, while revealing nothing about the proof!
Can we ever prove we know something without revealing the details of the secret?

- Alice knows a magic word to open the door inside the cave:

- How can she prove to Bob that she knows that word?

1. Alice opens the door
2. Bob enters and asks A/B
3. Alice exits from A/C
What is an “efficiently provable” property?

- Examples:

1. No known poly time alg for finding HC in a graph or even test if it exists.

2. If somebody knows cycle C in G, it is easy to convince others.

3-Coloring Problem \[G \]

- Yes: if \(\exists \) way to color "nodes" with \(1, 2, 3 \) such that \(i \mapsto j \quad \text{and} \quad C(i) \neq C(j) \).
What is an “efficiently provable” property?

• Complexity Class \(\text{NP} \): set of all languages \(L \) where there is an \textbf{efficient} verifier \(V \) for proving membership in \(L \). Name for all \(x \in L \) there is a “witness” (or proof) \(w \) that \(V(x, w) = 1 \) and if \(x \notin L \) then \(V(x, w) = 0 \).

\[
L : \{ x \in \{0, 1\}^* \mid \exists y \text{ s.t. } h(x, y) \text{ is valid} \}
\]

\(L \) \(\subseteq \) \(\text{NP} \)

\(\forall y \in \{0, 1\}^* \left(T(y) : \text{graph } G \text{ is 3-colorable} \iff \right. \}

\(\left. \exists \text{polynomial } T(y) \text{ s.t. } T(y)_G \right) \)}
NP complete problems

L is NP complete if

Solving L in poly-time can be used "in a very simple way" to solve any other $L' \in \text{NP}$.
GMW: membership in any NP language can be proved Zero Knowledge!

• Enough to do it for one NP complete problem only.
• Idea: using *interaction*
• Suppose we have digital lockable envelopes

\[A \xrightarrow{\text{Comm}[x]} B \]

1. Alice can "open" \(y \) into \(x \) and only \(x \)
2. Bob has no idea what \(x \) is by looking at \(y \)

\[\exists C : \{1,2,\ldots,n\} \rightarrow \{1,2,3\} \]

Such that: \(\forall i,j \) \(M(i,j) = 1 \rightarrow c(i) \neq c(j) \)
Proving a graph is 3 colorable

Alice permutes the colors randomly.

Bob: nodes \(\{1, 2, \ldots, n\} \),
edges \(e(i,j) = 1 \) \(\neq i \rightarrow j \)

Pick \(C(i,j) \): connected edge at random amongst \(e_1, e_2, \ldots, e_m \)

if \(C \) is not a 3-coloring \(\rightarrow \) Bob catches the Alice by prob. \(\frac{1}{m} \)

\[P_i(\text{catching Alice}) \leq \left(1 - \frac{1}{m}\right) \]

Bob opens \(E_i, E_j \) such that \(C(i) \neq C(j) \)

Bob cannot catch Alice if 3-coloring of \(C(i) \) is valid.

\(E_i \) contains \(C(i) \)

Know \(C(i) \) for all \(i \).
Why is this a convincing (sound) interactive proof?

because if (i) not 3-colorable Bob
 catch Alice \(\geq \frac{1}{m} \).

If we repeat protocol (from the begining) \(k \) time

\[
P_i(\text{not catch} : j) \leq \left(1 - \frac{1}{m} \right)^k
\]

\[
\leq \left(\left(1 - \frac{1}{m} \right)^m \right)^{100}
\]

\[
\leq e^{-100} \leq 2^{-100}
\]
Why is this proof carrying “zero knowledge”?

In one interaction, \(\mathcal{E} \) simulates what \(\mathcal{B} \) observes, that is, efficiently generates what \(\mathcal{B} \) observes.

\(\text{Sim:} \quad \text{Gen} \quad \text{pick} \quad (i, j) \quad \text{at random} \)
\[\text{choose random} \quad c(i) \neq c(j) \]
\[\text{choose} \quad c(u) \quad \text{so for all other nodes,} \quad u \neq i, u \neq j \]
\[\text{put} \quad c(i) = (u) \quad \text{all in envelopes} \]
\[\text{only open} \quad E_i, \quad E_j \]
Formal Definition of Zero Knowledge Proofs

Sound: if \(G \in L \rightarrow P_i \{ V \text{ accept} \} \leq \text{neg}(n) \).

Zero-knowledge: \(\exists \text{ poly-time Sim.} \forall G \in L \)

Sim (G) supr \(T \xrightarrow{\approx} T \) actual transcript

false Transcript.
How to get a lockable digital envelope?

Wrong: \[\text{Wrong} \quad \text{Env}(a \oplus b) \approx \text{Env}_a(b) \]

open \[\text{open by sending key } k \]

2 prop \{ hiding \}

bindig: \(\exists \) at most one \(b \) that we can open to.

Good: \[h(b, \text{random}) = E \]

hidig because \(h \) is PRF
bindig because \(h \) is collision resistant.