
Studies in the Efficiency and (versus)
Security of Cryptographic Tasks

Mohammad Mahmoody-Ghidary

A Dissertation
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of

Computer Science
Advisers: Boaz Barak

September 2010

c© Copyright by Mohammad Mahmoody-Ghidary, 2010.
All Rights Reserved

Abstract

In this thesis, we deal with the following questions: (1) How efficient a cryptographic algo-
rithm can be while achieving a desired level of security? (2) Since mathematical conjectures
like P 6= NP are necessary for the possibility of secure cryptographic primitives in the
standard models of computation: (a) Can we base cryptography solely based on the widely
believed assumption of P 6= NP, or do we need stronger assumptions? (b) Which alternative
nonstandard models offer us provable security unconditionally, while being implementable
in real life?

First we study the question of security vs. efficiency in public-key cryptography and prove
tight bounds on the efficiency of black-box constructions of key-agreement and (public-key)
digital signatures that achieve a desired level of security using “random-like” functions.
Namely, we prove that any key-agreement protocol in the random oracle model where the
parties ask at most n oracle queries can be broken by an adversary who asks at most O(n2)
oracle queries and finds the key with high probability. This improves upon the previous
Õ(n6)-query attack of Impagliazzo and Rudich [98] and proves that a simple key-agreement
protocol due to Merkle [118] is optimal. We also prove that any signature scheme in the
random oracle model where the parties ask at most q oracle queries can be broken by an
adversary who forges a signature by asking at most 2O(q) oracle queries. This implies that a
simple (one-time secure) signature scheme of Lamport [112] is optimal.

Next, we study the possibility of basing the security of cryptographic tasks on the (neces-
sary) assumption that NP 6= BPP. We show that any (black-box) reduction for basing the
security of a one-way function on (worst-case) hardness of NP implies that SAT is check-
able. Whether SAT is checkable or not has been open for more than two decades since the
notion of checkability was introduced by Blum and Kannan [23]. Then we study the possi-
bility of basing the security of specific cryptographic tasks/primitive on the hardness of NP.
We show that doing so for the tasks of collision resistant hashing (or other primitives such
as constant-round statistical commitment) implies that co-NP has a (single-prover) proof
system with prover complexity BPPNP (which implies the checkability of SAT).

Finally, we study the possibility of achieving statistical security (without relying on com-
putational assumptions) through the alternative model of interaction in which parties can
exchange tamper-proof hardware tokens. We focus on the case where the tokens only en-
capsulate efficient circuits (and does not need to keep any state). The stateless property
of the tokens gives advantage to the protocol both from a security perspective and also at
the implementation level. We show that using stateless tokens one can not perform statisti-
cally secure oblivious transfer, but it is possible to achieve statistically hiding and binding
commitment schemes and statistically secure zero-knowledge proof systems for NP with
an efficient prover. Our protocols are secure even against malicious parties who might use
stateful tokens during the execution of the protocol.

iii

Acknowledgements

I would like to start by thanking my wonderful adviser Boaz Barak whose support and
guidance has always been with me during my five years of PhD at Princeton. I learnt
immensely from talking to and working with Boaz who not only did tell me where exactly
to look/read to find what I was searching for, but also taught me how to attack a problem
from all directions till finally taming it.

I thank the computer science department of Princeton and in particular the faculties and
students of the theory group there who provided a friendly environment for my research and
life in Princeton. I also thank the members of my thesis committee: Sanjeev Arora, Moses
Charikar, Bernard Chazelle, and Russell Impagliazzo.

I was lucky to be at Princeton while David Xiao was also there and some of our enjoyable
discussions led to some of the work here. I also thank Iftach Haitner for great discussions and
our work together. I would like to thank Yuval Ishai, Amit Sahai and Vipul Goyal for the
great time I spend during the spring of 2009 in their fascinating crypto group at UCLA which
among others led to some of the results presented here. I thank Avi Wigderson for insightful
discussions, specially at the early stages of my PhD studies. I thank Amin Shokrollahi
for great discussions and a lovely summer in Lausanne. I also thank Thomas Holenstein,
Benny Applebaum, and Mahdi Cheraghchi, which discussions with whom affected my work
presented here directly or indirectly. I thank Salil Vadhan for very insightful comments and
suggestions during the development of some of the work presented here.

Finally, I thankfully acknowledge Princeton’s Wu prize and NSF grants CNS-0627526,
CCF-0426582 and CCF-0832797 for supporting my research.

iv

Contents

Abstract . iii
Acknowledgements . iv

1 Introduction and Preliminaries 1
1.1 Introduction . 1

1.1.1 Security vs. Efficiency in Public-Key Cryptography 1
1.1.2 NP-Hard Cryptography . 2
1.1.3 Unconditional Security by Exchanging Stateless Hardware 3

1.2 Previous Publications . 4
1.3 Preliminaries . 5

1.3.1 Basics about Probability . 5
1.3.2 Interactive Algorithms . 6
1.3.3 AM Languages . 6

I Security vs. Efficiency in Public-Key Cryptography 8

2 Merkel’s Key-Agreement Protocol is Optimal 9
2.1 Introduction . 9

2.1.1 Our Result . 11
2.2 Our Techniques . 12

2.2.1 Comparison with Previous Work of Impagliazzo and Rudich 12
2.2.2 The Issue of Independence . 13
2.2.3 Our Approach . 14

2.3 Our Attacker . 16
2.3.1 Attacking Algorithm . 16

2.4 Analysis of Attack: Proof of Theorem 2.3.1 18
2.4.1 Success of Attack: Proof of Lemma 2.4.1 19
2.4.2 Efficiency of Attack: Proof of Lemma 2.4.2 22

2.5 Completing the Proof . 24
2.5.1 Removing the Normal Form Assumption 24
2.5.2 Finding the Secret . 26

v

3 Lamport’s Signature Scheme is Optimal 28
3.1 Introduction . 28

3.1.1 Our Results . 29
3.1.2 Prior Work . 32

3.2 Our Techniques . 32
3.2.1 Defining the Usefulness Condition . 34

3.3 Signature Schemes in Oracle Models . 35
3.4 Proof of the Main Result . 37

3.4.1 Proof of Lemma 3.4.3 . 39
3.4.2 Proof of Claims 3.4.4 to 3.4.7 . 40

3.5 A One-Time Signature Scheme . 43
3.6 Extensions . 45

3.6.1 Handling Imperfect Completeness . 50
3.7 Lower-Bounds on Black-Box Constructions 53
3.8 Conclusions and Open Questions . 57

II NP-Hard Cryptography 58

4 Sampling with Size and Applications to NP-Hard Cryptography 59
4.1 Introduction . 59

4.1.1 Application to Basing Cryptography on NP-Hardness 61
4.1.2 Main Tool—A New Sampling Protocol 61
4.1.3 Related Work . 62
4.1.4 SamO(1) vs. Sam2 . 65
4.1.5 Contrast to Previous Work . 65

4.2 Our Techniques . 66
4.2.1 The Case of Sam2 . 66
4.2.2 The Case of SamO(1) . 67
4.2.3 Histograms . 70

4.3 Preliminaries . 73
4.3.1 Notation . 73
4.3.2 The Histogram of a Function . 73
4.3.3 Metrics over Distributions . 74
4.3.4 Efficient Provers for AM Protocols 77
4.3.5 Set Size Estimation and Sampling Protocols 79

4.4 Sampling with Size and Verifying The Histogram 83
4.4.1 Proving Supporting Lemmas . 95

4.5 Applications . 102
4.5.1 Lower-Bounds on Statistically Hiding Commitments 105

vi

5 More on NP-hard Cryptography, Randomized Reductions, and Checkabil-
ity of SAT 109
5.1 Introduction . 109

5.1.1 Difficulties with Randomized Reductions 110
5.1.2 Complexity of Real-Valued Functions Verifiable in AM 112
5.1.3 Randomized Reductions, Checkability, and Testability 114
5.1.4 Randomized vs. Deterministic Reductions 117

5.2 Preliminaries . 117
5.2.1 Promise Problems and Relations . 117
5.2.2 Checkability and Testability . 118
5.2.3 Worst-Case to Average-Case Reductions 119

5.3 Real-Valued Total Functions . 120
5.3.1 Definitions and Preliminaries . 120
5.3.2 Power of R-TUAM . 121

5.4 Reductions that Imply Checkability of SAT 123
5.4.1 Extending Beigel’s Theorem to Testability 124

III Unconditional (Statistical) Security 129

6 Zero-Knowledge Interactive PCPs and Unconditional Cryptography 130
6.1 Introduction . 130

6.1.1 Our Results . 132
6.2 Preliminaries . 136

6.2.1 Properties of Interactive and Oracle Algorithms 136
6.2.2 Interactive PCPs . 139
6.2.3 Interactive Locking Schemes . 144

6.3 Statistically Zero-Knowledge IPCP for NP 147
6.4 Interactive Locking Schemes . 156

6.4.1 ILS from IHS . 157
6.4.2 A 1-round ILS . 161
6.4.3 Efficiency of Noninteractive Locking Schemes 164

6.5 The Impossibility of Oblivious Transfer . 169

vii

Chapter 1

Introduction and Preliminaries

1.1 Introduction

Due to the enormous growth in scale and complexity of electronic transaction systems, it is
now even more crucial to design algorithms whose security against adversarial behavior is
provable (at least based on clear and well-studied assumptions) in a mathematical way.

Ideally we would like to design cryptosystems which (1) are efficient and implementable
in real life and (2) have a high level of security against adversarial behavior. Unfortunately,
sometimes these two goals become competitive and achieving both might be challenging or
even impossible.

Here, we first study the above question (about the security versus efficiency trade-off)
for the tasks of key-agreement and digital signatures (which both fall into the category of
public-key cryptography). Then we turn into studying the limits of our techniques to design
cryptosystems based on the most trusted mathematical assumptions such as P 6= NP or
the existence of one-way functions. Being obstructed by barriers against our techniques in
the standard model of interaction, an alternative is to pursue designing secure protocols
based on newer models of computation/interaction which have the potential of being ob-
tained in real life (e.g., quantum computation or tamper-proof hardware). The last part of
our thesis follows the last approach by studying the possibility of achieving unconditional
(statistical) security in the “tamper-proof hardware” model. In this model parties are al-
lowed to exchange hardware tokens where the receiver is only able to run the hardware in an
input/output fashion—without understanding the content of the hardware. In the following
I have described the results in this thesis briefly. For more details and background see the
introduction sections of each chapter.

1.1.1 Security vs. Efficiency in Public-Key Cryptography

The constructions used in practice for public key digital signature and encryption are based
on structured problems such as the integer factoring [51, 141, 144]. The non-trivial attacks
such as the subexponential factoring algorithms [34] and of efficient quantum factoring al-
gorithms [149] place a limit to how large the security of the scheme can be as a function of

1

the key size. These attacks strongly motivate the study of whether we can achieve strongly
secure public key cryptosystems based on unstructured “random-like” functions (e.g., the
block-cipher AES or the hash function SHA-2).

Looking at our techniques in design of cryptographic protocols, most constructions and
proofs in the cryptographic literature are black-box, so it is worthwhile to understand
whether black-box reductions can base cryptographic primitives on NP-hardness, and this
is the framework under which we study the possibility or impossibility results here. In Chap-
ter 2 and Chapter 3 we give tight quantitative answers both to the case of key-agreement
and digital signature schemes explained as follows.

Public Key Encryption / Key Agreement. In 1974 Merkle [118] suggested the first
key agreement protocol which could be considered also as a public-key cryptosystem based on
random-like functions. Unfortunately Merkle’s scheme only achieved Θ(n2) security where
n is the number of times that the parties need to execute a “random-like” function. In their
1989 paper, Impagliazzo and Rudich showed that any construction of key agreement from
a random function can achieve at best n6 log n (black-box) security and it was left open
whether Merkle’s scheme is optimal or one can do better. In Chapter 2 we resolve this
open question by showing that any such key agreement protocol can achieve at best O(n2)
black-box security.

Digital Signatures. In Chapter 3 we show that any algorithm for digital signature for m-
bit messages achieving black-box security S = 2q from a random function needs to evaluate
the random function at least q times for sufficiently large m ≥ q . The bound, even for a mild
desired security like S = 21000 to sign 1000-bit messages, makes the system inefficient. This
is in contrast to message authentication codes—the private-key analog of signatures —that
can be realized with security S = 2q using only a single invocation of the random function
over input/output length q. In fact, our result shows that the well known construction by
Lamport [112] from 1979 for (one-time) digital signatures is optimal.

1.1.2 NP-Hard Cryptography

A holy grail in foundations of cryptography is to base cryptography on the minimal assump-
tion of P 6= NP; namely, to show that P 6= NP implies the existence of one-way functions,
or, even more desirably, the existence of stronger cryptographic primitives such as collision-
resistant hash functions or public-key cryptosystems. Other than the fact that P 6= NP is
necessary for the existence of one-way functions (and almost all other cryptographic primi-
tives [97, 131]), the former is a “worst-case” assumption while the latter is of “average-case”
nature, hence making the first assumption much more desirable. In fact, this goal dates back
to the seminal paper by Diffie and Hellman [47].

A black-box reduction (also known as, black-box proof of security) from the security of a
cryptographic primitive to NP-hardness, is an efficient randomized oracle algorithm R such
that given any oracle O that breaks the security of the cryptographic primitive, RO solves

2

SAT. The question of whether black-box reductions can be used to base cryptography on
NP-hardness has been previously studied in [5, 27, 31, 54, 64, 135].

In Chapter 4 evidence that for some specific tasks (such as collision-resistant hashing),
basing the security on NP-hardness is unlikely to be possible. We prove that achieving this
goal is unlikely to be possible (or at least very hard to do) by showing that such NP-hard
primitives would imply the existence of interactive proof systems for the class co-NP with
BPPNP prover complexity. The known provers in the proof systems for the class co-NP
require #P computation [115, 148].

In Chapter 5 we show that constructing NP-hard one-way functions (or even more gener-
ally basing the average-case hardness of NP on its worst-case hardness) implies that SAT, the
language of satisfiable formulae, has a program checker. Whether SAT has a program checker
or not has been open for more than two decades [23, 57]. This connection between checkabil-
ity and NP-hard cryptography gives motivation to further study even specific checkers (e.g.
of bounded adaptivity) for SAT. The existence of program checkers for SAT is equivalent
to the existence of a two-prover proof system for co-NP, with honest provers in BPPNP.
Therefore the results of Chapter 4 and Chapter 5 are incomparable.

In Chapter 5 we also show that the well-known lattice problems such as GapSVP (i.e.,
approximating the length of the shortest vector in a lattice of dimension up to the factor n/√n)
which are used to build cryptography over the worst-case assumptions [3], are unlikely to be
NP-hard even under a randomized reduction. It was previously known only for deterministic
reductions [65].

1.1.3 Unconditional Security by Exchanging Stateless Hardware

It is known that achieving statistical security which does not rely on computational as-
sumptions, in the standard model of computation/interaction is impossible for almost all
cryptographic tasks [97, 131]. In that respect, what is the minimal amount of trust, or
alternative models which allows us to achive unconditionally secure cryptography? Uncon-
ditional cryptography can be based on trusted two-party functionalities such as oblivious
transfer [107, 139] or noisy channels [42], on bounded storage assumptions [116], on the
presence of an honest majority [16, 41, 142], or even on the presence of a dishonest majority
of non-communicating parties [15]. More recently, there has been a considerable amount of
work on cryptographic protocols in which parties can generate and exchange tamper-proof
hardware tokens. In this model it was shown that unconditionally secure commitments [123]
or even general secure two-party computation [80] are possible, provided that the tokens can
be stateful. In particular, stateful tokens can erase their secrets after being invoked. The
subject of Chapter 6 is motivated by the goal of establishing unconditional feasibility results
for cryptography using stateless hardware tokens. This question turns out to be related to
the classical question of unconditional multi-prover zero-knowledge proofs, which we revisit
in this work.

In the stateless token model (short for “stateless tamper-proof hardware token”) the
parties are allowed to construct efficient circuits based on their private randomness/input
and the messages received from other parties. Then they can put this circuit inside a token

3

(making it tamper-proof) and send it to another party. The receiver is allowed to ask any
input from the token, but the model does not allow the party to get any more information
from the received token. Ideally we would like to construct protocols which the honest
behavior of the parties does not require any memory to be planted inside the tokens, while
the protocol is secure against maliciously chosen stateful tokens.

In Chapter 6 we give an almost complete map of which basic cryptographic tasks are
possible or impossible to achieve with unconditional statistical security, while the parties only
exchange stateless hardware tokens. Our main building block in our positive results of this
chapter is to construct an Interactive Locking Scheme (ILS) which is a protocol to simulate
a secure vault (or more technically a “commitment scheme”) by using a single stateless
token and interaction. Then we use our ILS to get statistically secure zero-knowledge proof
systems for the class NP which the prover only sends a single token to the verifier followed
by some classical interaction. Our prover can be implemented efficiently given the witness
for the language NP. On the other hand, we show that “general” statistically secure two-
party computation—in particular the task of oblivious transfer (OT)—is not possible using
stateless tokens. Perhaps surprisingly, we show that if one extends the model to allow parties
building token around the tokens that they have received, then statistically secure OT, and
therefore any two-party computation [107, 139] is possible.

1.2 Previous Publications

The results of this thesis previously have appeared in the following papers:

• Chapter 2: B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal - an
O(n2)-query attack on any key exchange from a random oracle. In International Cryp-
tology Conference (Crpyto), 2009.

• Chapter 3: B. Barak and M. Mahmoody-Ghidary. Lower-bounds on signatures from
symmetric primitives. In IEEE Symposium on Foundations of Computer Science
(FOCS), 2007.

• Chapter 4: I. Haitner, M. Mahmoody, and D. Xiao. A new sampling protocol and
applications to basing cryptographic primitives on hardness of NP.. In Computational
Complexity Conference (CCC), 2010.

• Chapter 5: M. Mahmoody and D. Xiao. On the power of randomized reductions and
the checkability of SAT. In Computational Complexity Conference (CCC), 2010.

• Chapter 6: V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai. Interactive locking,
zero-knowledge PCPs, and unconditional cryptography. In International Cryptology
Conference (Crypto), 2010.

4

1.3 Preliminaries

In this section we only mention the basic preliminaries which are needed across (or in more
than two) chapters. The requirements that are specifically needed for the results of each
chapter are described in the preliminary section of the same chapter.

1.3.1 Basics about Probability

By Supp(X) we mean the support set of the random variable X. By x← X we mean that
x is sampled according to the distribution of the random variable X. For event E defined
over Supp(X), by (X | E) we denote the random variable X conditioned on the event E.
For a set S, by US we mean the random variable with uniform distribution over S. For a set
S, by x

R← S we mean x ← US. By Un we mean the random variable uniformly distributed
over {0, 1}n.

As is standard convention, when talking about an ensemble of random variables {Xn} and
event E = {En} defined over {Xn}, we say E occurs with negligible probability if it occurs
with probability n−ω(1) = neg(n) and we say that it occurs with overwhelming probability if
it occurs with probability 1− neg(n).

Definition 1.3.1. For the random variables X and Y defined over the set U we let SD(X, Y)
denote their statistical distance defined as SD(X, Y) = maxE⊆U |Pr[X ∈ E] − Pr[Y ∈ E]|.
We also use X ≈α Y and call X and Y α-close whenever SD(X, Y) ≤ α. Two ensembles of
distributions {Xn} , {Yn} over {0, 1}poly(n) are statistically indistinguishable if Xn ≈neg Yn.

It is easy to see that the triangle inequality holds for the statistical distance: SD(X, Y)+
SD(Y, Z) ≥ SD(X,Z).

It also can be verified that the the statistical distance is the maximum advantage by which
a statistical test (i.e., an algorithm A which outputs in {0, 1}) can distinguish between two
random variables X and Y : SD(X, Y) = maxA |Pr[A(X) = 1]− Pr[A(Y) = 1]|.

Lemma 1.3.2. Let X = (X1, X2) and Y = (Y1, Y2) be random variables defined over the
set U1 × U2 and suppose SD(X, Y) ≤ ε. Let Z = (Z1, Z2) be the random variable defined
over U1 × U2 as follows: Z1 is sampled according to X1 (defined by the distribution of X),
and then Z2 is sampled according to (Y2 | Y1) conditioned on Z1 = Y1. Then it holds that
SD(Y, Z) ≤ ε and therefore by the triangle inequality SD(X,Z) ≤ 2ε.

Proof. Let SD(Y, Z) ≥ ε and let A be the algorithm that distinguishes between Y and Z
with advantage ≥ ε. Then one can distinguish between X and Y with advantage more than
ε as well by the following algorithm. Given the input W = (W1,W2) (which is either sampled
according to X or Y) we take the first component W1 and sample Y2 conditioned on Y1 = W1

according to the distribution of Y . We then apply the test A over (W1, Y2). It is easy to see
that the new test distinguishes between Y and X as well as A does between Y and Z.

The following two lemmas are easy to verify.

5

Lemma 1.3.3. Let X be a random variable distributed over the set (S × T) ∪ {⊥}, and
suppose SD(X,US×T) ≤ Pr[X = ⊥] + δ. Let XS be the random variable that equals ⊥ if
X = ⊥ and equals to s ∈ S if X = (s, t). Then it holds that SD(XS, US) ≤ Pr[X = ⊥] + δ.

Lemma 1.3.4. Let X, Y be a random variables distributed over the set S ∪ {⊥} such that
Pr[Y = ⊥] = 0 and SD(X, Y) ≤ Pr[X = ⊥] + δ. Then for any event T ⊂ S it holds that:

Pr[X ∈ T] = Pr
x←X

[x 6= ⊥ ∧ x ∈ T] ≤ Pr[T] + δ.

Lemma 1.3.5 (Lemma 6.4 of [98]). Let Z1, . . . , Zi, . . . be any sequence of random variables
determined by a finite underlying random variable X, let E be any event for random variable
X, and let 0 ≤ p ≤ 1. Let Bj be the event that PrX [E(X) | Z1, . . . , Zj] ≥ p, and let
B =

∨
j Bj. Then it holds that PrX [E[X] | B] ≥ p.

1.3.2 Interactive Algorithms

We assume that the reader is familiar with the notion of interactive Turing Machines intro-
duced in [76] which here we call interactive algorithms. An interactive protocol is defined by
two interactive algorithms A and B where each of A and B may have its own private input,
private random tape, and output. By 〈A,B〉 (x) we denote the output of B when A and
B interact on the common input x. We take the output 1 to denote an “accept” and the
output 0 to denote a “reject”. When x is clear from the context we might omit it from the
notation (e.g., letting 〈A,B〉 denote 〈A,B〉 (x)).

We use the standard notation Aπ to denote an oracle algorithm A accessing the oracle π.
By an efficient algorithm we mean one which runs in polynomial time over its input

length. We do not assume the interactive algorithms to be necessarily efficient unless explic-
itly mentioned. We always let n denote the length of the input x which will also serve as
the security parameter when A and B are efficient.

A round consists of a message from A followed by another message from B assuming
that A starts the protocol. The round complexity of the protocol (A,B) is the maximum
number of rounds that A and B interact as a function of the input length n.

The view of an interactive algorithm consists of its input, its randomness and the answers
received from the other interactive algorithm participating in the protocol.

1.3.3 AM Languages

A language L is in AM[k] if there exists a k-round interactive protocol for deciding L where
the verifier V is efficient (i.e., polynomially bounded) and public coin (its messages are simply
random coins). Namely, for every x ∈ L∩{0, 1}n it holds that Pr[V accepts in 〈P, V 〉 (x)] ≥
1 − 2−n and for every x ∈ {0, 1}n \ L and any cheating (possibly inefficient) prover P ∗ it
holds that Pr[V accepts in 〈P ∗, V 〉 (x)] ≤ 2−n. If k = 2, then we simply write L ∈ AM
(and call L an AM set or language). Finally, we abuse notation and say that (P, V) is an
AM[k] protocol if it is a k-round, public-coin protocol with an efficient verifier.

We also consider the promise variant of an AM language.

6

Definition 1.3.6. Let M = (P, V) be an AM protocol. We say that M is a proof system
for the promise problem (Y,N) (where Y ∩N = ∅) if the following holds.

• Y =
⋃
n Yn where Yn = {x ∈ {0, 1}n : Pr[V accepts in 〈P, V 〉 (x)] ≥ 1− 2−n}.

• N =
⋃
nNn where Nn = {x ∈ {0, 1}n : ∀P ∗,Pr[V rejects in 〈P ∗, V 〉 (x)] ≥ 1− 2−n}.

We call Yn the set of YES instances, Nn the set of NO instances and Tn = {0, 1}n \ (Yn∪Nn)
the set of non-promise instances of length n. We also let T =

⋃
n Tn to be the set of all

non-promise inputs to M.

Note that a language L ∈ AM iff there exist a two-round public-coin protocol (with an
efficient verifier) M = (P, V) with an empty non-promise set T = ∅.

7

Part I

Security vs. Efficiency in Public-Key
Cryptography

8

Chapter 2

Merkel’s Key-Agreement Protocol is
Optimal

2.1 Introduction

In the 1970’s Diffie, Hellman, and Merkle began to challenge the accepted wisdom that two
parties cannot communicate confidentially over an open channel without first exchanging
a secret key using some secure means. The first such protocol (at least in the open scien-
tific community) was designed by Merkle in 1974 (although only published in 1978 [118]).
Merkle’s protocol allows two parties Alice and Bob to agree on a random number k that will
not be known to an eavesdropping adversary Eve. It is described in Fig. 2.1.

One problem with Merkle’s protocol is that its security was only analyzed in the random
oracle model which does not necessarily capture security when instantiated with a crypto-
graphic one-way or hash function [38]. Recently, Biham, Goren and Ishai [18] took a step
towards resolving this issue by providing a security analysis for Merkle’s protocol under
the concrete complexity assumption of existence of exponentially hard one-way functions. In
particular, they proved that assuming there exist a one-way function that cannot be inverted
with probability more than 2−αn by adversaries running in time 2αn for α ≥ 1/2 − δ, there
is a key exchange protocol in which Alice and Bob run in time n but any adversary whose
running time is at most n2−10δ has o(1) chance of finding the secret. But the most serious
issue with Merkle’s protocol is that it only provides a quadratic gap between the running
time of the honest parties and the adversary. Fortunately, not too long after Merkle’s work,
Diffie and Hellman [47] and later Rivest, Shamir, and Adleman [144] gave constructions for
key exchange protocols that are conjectured to have super-polynomial (even subexponential)
security. But because these and later protocols are based on certain algebraic computational

1Merkle described his protocol using “puzzles” that can be implemented via some ideal cryptographic
primitive; we describe the protocol in the case that the puzzles are implemented by a random oracle. We
remark that in Merkle’s original protocol Bob will try different random queries y1, y2, . . . without sending
them to Alice until he finds yj such that f(yj) ∈ {a1, . . . , a10n} and send j — the index of the “puzzle” aj —
to Alice. The Protocol of Fig. 2.1 is a symmetric version of Merkle’s protocol, and is similar to the protocol
of [35] in the bounded storage model; see also discussion in [18].

9

Merkle’s Key Exchange Protocol

Let n be the security parameter and H : {0, 1}` 7→ {0, 1}` where ` � log n be a random
function accessible for all parties. The protocol is as follows:

1. Alice chooses 10n random numbers x1, . . . , x10n in [n2] and sends a1, . . . , a10n to Bob
where ai = H(xi) (embed [n2] in {0, 1}` in some canonical way).

2. Bob chooses 10n random numbers y1, . . . , y10n in [n2] and sends b1, . . . , b10n to Alice
where bj = H(xj).

3. With at least 0.9 probability, there will be at least one “collision” between Alice’s
and Bob’s messages: a pair i, j such that ai = bj. Alice and Bob choose the lexico-
graphically first such pair, and Alice sets sA = xi as her secret, and Bob sets sB = yj
as his secret. Note that assuming 2` � n4, H will be one to one on [n2] with very
high probability and hence H(xi) = H(yj) implies xi = yj.

Analysis: the collision is distributed uniformly in [n2] and thus an adversary making o(n2)
queries to the oracle will find the secret with o(1) probability.

Figure 2.1: Merkle’s key exchange protocol. 1

problems, and so could perhaps be vulnerable to unforseen attacks using this algebraic struc-
ture, it remained an important question to show whether there exist key exchange protocols
with superpolynomial security that use only a random oracle.2 The seminal paper of Impagli-
azzo and Rudich [98] answered this question negatively by showing that every key exchange
protocol using n queries in the random oracle model can be broken by an adversary asking
O(n6 log n) queries.3 Since a random oracle is in particular a one-way function (with high
probability), this implied that there is no construction of a key exchange protocol based on
a one-way function with a proof of super-polynomial security that is of the standard black-
box type (i.e., a proof that transforms an adversary breaking the protocol into an inversion
algorithm for the one-way function that only uses the adversary and the function as black
boxes). Indeed, that was the motivation behind their result.

Question and motivation. Impagliazzo and Rudich [98, Section 8] mention as an open
question (which they attribute to Merkle) to find out whether their attack can be improved

2This is not to be confused with some more recent works such as [13], that combine the random oracle
model with assumptions on the intractability of other problems such as factoring or the RSA problem to
obtain more efficient cryptographic constructions.

3More accurately, [98] gave an O(m6 logm)-query attack where m is the maximum of the number of
queries n and the number of communication rounds, though we believe their analysis could be improved to
an O(n6 log n)-query attack. For the sake of simplicity, when discussing [98]’s results we will assume that
m = n, though for our result we do not need this assumption.

10

to O(n2) queries (hence showing the optimality of Merkle’s protocol in the random oracle
model) or there exist key exchange protocols in the random oracle model with ω(n2) security.
Beyond just being a natural question, it also has some practical and theoretical motivations.
The practical motivation is that protocols with sufficiently large polynomial gap could be
secure enough in practice — e.g., a key exchange protocol taking 109 operations to run and
(109)6 = 1054 operations to break could be good enough for many applications.4 In fact, as
was argued by [18], as technology improves and honest users can afford to run more opera-
tions, such polynomial gaps only become more useful. Thus if known algebraic key exchange
protocols were broken, one might look to polynomial-security protocol such as Merkle’s for
an alternative. Another motivation is theoretical— Merkle’s protocol has very limited inter-
action (consisting of one round in which both parties simultaneously broadcast a message)
and in particular it implies a public key encryption scheme. It is natural to ask whether
more interaction can help achieve some polynomial advantage over this simple protocol.
A third, less direct motivation comes from quantum computing. In one scenario in which
some algebraic key exchange protocols will be broken— the construction of practical quan-
tum computers— Merkle’s protocol will also fail to offer non-trivial security due to Grover’s
search algorithm [81]. Our results below suggest (though do not prove) that Merkle’s protocol
may be optimal in this setting also, and so there may not exist a fully classical key-exchange
protocol based on a one-way function with a black-box proof of super-linear security for
quantum adversaries. We note that using quantum communication there is an information
theoretically secure key-exchange protocol [17], and moreover, very recently Brassard and
Salvail [32] (independently observed by [18]) gave a quantum version of Merkle’s protocol,
showing that if Alice and Bob can use quantum computation (but classical communication),
to obtain a key-exchange protocol with super-linear (i.e., n3/2) security in the random oracle
model against quantum adversaries.

2.1.1 Our Result

In this work we answer the above question of [98], by showing that every protocol in the
random oracle model where Alice and Bob make n oracle queries can be broken with high
probability by an adversary making O(n2) queries. That is, we prove the following:

Theorem 2.1.1. Let Π be a two-party protocol in the random oracle model such that when
executing Π the two parties Alice and Bob make at most n queries each, and their outputs
are identical with probability at least ρ. Then for every 0 < δ < 1, there is an adversary Eve
making (16n

δ
)2 queries to the oracle whose output agrees with Bob’s output with probability at

least ρ− δ.

To the best of our knowledge, no better bound than the Õ(n6)-query attack of [98]
was previously known even in the case where one does not assume the one-way function

4Of course, these numbers are just an example and in practical applications the constant terms will make
an important difference. We note though that the above constants are not ruled out by [98]’s attack, but
are ruled out by our attack (taking number of operations to mean the number of calls to the oracle).

11

is a random oracle (hence making the task of proving a negative result easier). We note
that similarly to previous black-box separation results, our adversary can be implemented
efficiently in a relativized world where P = NP.

2.2 Our Techniques

The main technical challenge in proving such a result is the issue of dependence between
the executions of the two parties Alice and Bob in a key exchange protocol. At first sight,
it may seem that a computationally unbounded attacker that monitors all communication
between Alice and Bob will trivially be able to find out their shared key. But the presence
of the random oracle allows Alice and Bob to correlate their executions even without com-
municating (which is indeed the reason that Merkle’s protocol achieves non-trivial security).
Dealing with such correlations is the cause of the technical complexity in both our work and
the previous work of Impagliazzo and Rudich [98]. We handle this issue in a different way
than [98]. On a very vague high level our approach can be viewed as using more information
about the structure of these correlations than [98] did. This allows us to analyze a more
efficient attacking algorithm, that is more frugal with the number of queries it uses than the
attacker of [98]. Below we provide a more detailed (though still high level) exposition of our
technique and its relation to [98]’s technique.

2.2.1 Comparison with Previous Work of Impagliazzo and Rudich

We now review [98]’s attack and outline of analysis, and particularly the subtle issue of
dependence between Alice and Bob that arises in both their work and ours. The main
novelty of our work is the way we deal with this issue, which is different from the approach
of [98]. We believe that this review of [98]’s analysis and the way it compares to ours can
serve as a useful introduction to our actual proof. However, no result of this section is used in
the later sections, and so the reader should feel free at any time to skip ahead to Section 2.3
and 2.4 that contain our actual attack and its analysis.

Consider a protocol that consists of n rounds of interaction, where each party makes
exactly one oracle query before sending its message. [98] called protocols of this type “normal-

form protocols” and gave an Õ(n3) attack against them (their final result was obtained by
transforming every protocol into a normal-form protocol with a quadratic loss of efficiency).
Even though without loss of generality the attacker Eve of a key exchange protocol can
defer all of her computation till after the interaction between Alice and Bob is finished, it
is conceptually simpler in both [98]’s case and ours to think of the attacker Eve as running
concurrently with Alice and Bob. In particular, the attacker Eve of [98] performed the
following operations after each round i of the protocol:

• If the round i is one in which Bob sent a message, then at this point Eve samples
1000n log n random executions of Bob from the distribution D of Bob’s executions
that are consistent with the information that Eve has at that moment (communication

12

transcript and previous oracle answers). That is, Eve samples a uniformly random
tape for Bob and uniformly random query answers subject to being consistent with
Eve’s information. After each time that she samples an execution, Eve asks the oracle
all the queries asked during this execution and records the answers. (Generally, the
true answers will not be the same answers as the one Eve guessed when sampling the
execution.)

• Similarly, if the round i is one in which Alice sent a message then Eve samples
1000n log n executions of Alice and makes the corresponding queries.

Overall Eve will sample Õ(n2) executions making a total of Õ(n3) queries. It’s not hard
to see that as long as Eve learns all of the intersection queries (queries asked by both Alice
and Bob during the execution) then she can recover the shared secret with high probability.
Thus the bulk of [98]’s analysis was devoted to showing the following statement, denoted
below by (*): With probability at least 0.9 Eve never fails, where we say that Eve fails at
round i if the query made in this round by, say, Alice was asked previously by Bob but not
by Eve.

2.2.2 The Issue of Independence

At first look, it may seem that one could easily prove (*). Indeed, (*) will follow by showing
that at any round i, the probability that Eve fails in round i for the first time is at most
1/(10n). Now all the communication between Alice and Bob is observed by Eve, and if
no failure has yet happened then Eve has also observed all the intersection queries so far.
Because the answers for non-intersection queries are completely random and independent
from one another it seems that Alice has no more information about Bob than Eve does,
and hence if the probability that Alice’s query q was asked before by Bob is more than
1/(10n) then this query q has probability at least 1/(10n) to appear in each one of Eve’s
sampled executions of Bob. Since Eve makes 1000n log n such samples, the probability that
Eve misses q would be bounded by (1− 1

10n
)1000n logn � 1/(10n).

When trying to make this intuition into a proof, the assumption that Eve has as much
information about Bob as Alice does translates to the following statement: conditioned on
Eve’s information, the distributions of Alice’s view and Bob’s view are independent from
one another.5 Indeed, if this statement was true then the above paragraph could be easily
translated into a proof that [98]’s attacker is successful, and it wouldn’t have been hard to
optimize this attacker to achieve O(n2) queries. Alas, this statement is false. Intuitively
the reason is the following: even the fact that Eve has not missed any intersection queries
is some non-trivial information that Alice and Bob share and creates dependence between

5Readers familiar with the setting of communication complexity may note that this is analogous to the
well known fact that conditioning on any transcript of a 2-party communication protocol results in a product
distribution (i.e., combinatorial rectangle) over the inputs. However, things are different in the presence of
a random oracle.

13

them.6

Impagliazzo and Rudich [98] dealt with this issue by a “charging argument” (see also
Remark 2.2.1 below), where they showed that such dependence can be charged in a certain
way to one of the executions sampled by Eve, in a way that at most n samples can be charged
at each round (and the rest of Eve’s samples are distributed correctly as if the independence
assumption was true). This argument inherently required sampling at least n executions
(each of n queries) per round, hence resulting in an Ω(n3) attack.

2.2.3 Our Approach

We now describe our approach and how it differs from the previous proof of [98]. The
discussion below is somewhat high level and vague, and glosses over some important details.
Again, the reader is welcome to skip ahead at any time to Section 2.3 that contains the full
description of our attack, and does not depend on this section in any way.

Our attacking algorithm follows the same general outline, but has two important differ-
ences from the attacker of [98]:

1. One quantitative difference is that while our attacker Eve also computes a distribution
D of possible executions of Alice and Bob conditioned on her knowledge, she does not
sample from D full executions and then ask the arising queries. Rather, she computes
whether there is any heavy query— a string q ∈ {0, 1}∗ that has probability more than,
say, 1/(100n) of being queried in D— and makes only such heavy queries.

Intuitively, since Alice and Bob make at most 2n queries, the total expected number
of heavy queries (and hence the query complexity of Eve) is bounded by O(n2). The
actual analysis is more involved since the distribution D keeps changing as Eve learns
more information through the messages she observes and query answers she receives.
We omit the details in this high-level overview.

2. The qualitative difference between the two attackers is that we do not consider the same
distribution D that was considered by [98]. Their attacker to some extent “pretended”
that the conditional distributions of Alice and Bob are independent from one another.
In contrast, we define our distribution D to be the real distribution of Alice and Bob,
where there could be dependencies between them. Thus to sample from our distribution
D one would need to sample a pair of executions of Alice and Bob (random tapes
and oracle answers) that are jointly consistent with one another and Eve’s current
knowledge. Another (less important) point is that the distribution D computed by
Eve at each point in time will be conditioned not only on Eve’s knowledge so far, but
also on the event that she has not failed until this point.

6As a simple example for such dependence consider a protocol where in the first round Alice chooses x
to be either the string 0n or 1n at random, queries the oracle H at x and sends y = H(x) to Bob. Bob then
makes the query 1n and gets y′ = H(1n). Now even if Alice chose x = 0n and hence Alice and Bob have no
intersection queries, Bob can find out the value of x just by observing that y′ 6= y. Still, an attacker must
ask a non-intersection query such as 1n to know if x = 0n or x = 1n.

14

The main challenge in the analysis is to prove that the attack is successful, that is that
the statement (*) above holds, and in particular that the probability of failure at each round
(or more generally, at each query of Alice or Bob) is bounded by, say, 1/(10n). Once again,
things would have been easy if we knew that the distribution D of the possible executions
of Alice and Bob conditioned on Eve’s knowledge (and not having failed so far) is a product
distribution, and hence Alice has no more information on Bob than Eve has. While this is
not generally true, we show that in our attack this distribution is close to being a product
distribution, in a precise sense we define below.

At any point in the execution, fix Eve’s current information about the system and define a
bipartite graph G whose left-side vertices correspond to possible executions of Alice that are
consistent with Eve’s information and right-side vertices correspond to possible executions
of Bob consistent with Eve’s information. We put an edge between two executions A and B
if they are consistent with one another and moreover if they do not represent an execution in
which Eve failed prior to this point (i.e., there is no intersection query that is asked in both
executions A and B but not by Eve). The distribution D that our attacker Eve considers
can be thought of as choosing a random edge in the graph G. (Note that the graph G and
the distribution D change at each point that Eve learns some new information about the
system.) If G was the complete bipartite clique then D would be a product distribution.
What we show is that G is dense in the sense that each vertex is connected to most of the
vertices on the other side. We show that this implies that Alice’s probability of hitting a
query that Bob asked before is at most twice the probability that Eve does so if she chooses
the most likely query based on her knowledge.

The bound on the degree is obtained by showing that G can be represented as a dis-
jointness graph, where each vertex u is associated with a set S(u) (from an arbitrarily large
universe) and there is an edge between a left-side vertex u and a right-side vertex v if and
only if S(u) ∩ S(v) = ∅.7 The definition of the graph G implies that |S(u)| ≤ n for all
vertices u. The definition of our attacking algorithm implies that the distribution obtained
by picking a random edge {u, v} and outputting S(u)∪ S(v) is light, in the sense that there
is no element q in the universe that has probability more than 1/(10n) of being contained in
a set chosen from this distribution. We show that these properties together imply that each
vertex is connected to most of the vertices on the other side, and so G is close to being a
complete bipartite graph.

Remark 2.2.1 (Comparison with Previous Work). One can also phrase the analysis of [98]
in terms of a similar bipartite graph. Their argument involved fixing, say, Alice’s execution
which corresponds to fixing a left-side vertex u. As we noted above, if the degree of u is
high (e.g., u is connected to most of the right side) then independence approximately holds
and hence the probability that [98]’s attacker fails at this point is less than 1/(10n). The
crucial component of [98]’s analysis was their observation that if the degree of u is low, then
by taking a random vertex v on the right side and making all queries in the corresponding
execution to v, one is likely to make progress in the sense that we learn a new query made in

7The set S(u) will correspond to the queries that are made in the execution corresponding to u but not
made by Eve.

15

the execution corresponding to u. Now there are at most n new queries to learn, and hence
if we sample much more than n queries then in most of them we’re in the high degree case.
This potential/charging argument inherently requires sampling all queries of the execution,
rather than only the heavy ones, hence incurring a cost of at least n2 queries per round or
n3 queries total.

In this work, we use the notion of “seminormal” protocols, which are the same as normal
protocols with the difference that at each round Alice or Bob asks either either one or no
query. It is easy to see that every protocol can be put in seminormal form without increasing
the number of queries or loosing the security. We use this compilation only for the sake of
analysis to show that our O(n2)-attack works against the original form of the protocol.

In fact, using the idea of seminormal form, we observe that one can get an Õ(n4) attack
using [98]’s ideas saving a factor of n2, but as we explained above, Ω(n3) queries seems like
an inherent limit to [98]’s approach.

2.3 Our Attacker

We consider a key exchange protocol Π in which Alice and Bob first toss coins rA and rB
and then run Π using access to a random oracle H that is a random function from {0, 1}`
to {0, 1}` for some ` ∈ N. We assume that the protocol proceeds in some finite number of
rounds, and no party asks the same query twice. In round k, if k is odd then Alice makes
some number of queries and sends a message to Bob (and then Eve asks some oracle queries),
and if k is even then Bob makes some queries and sends a message to Alice (and then Eve
asks some oracle queries). At the end of the protocol Alice obtains an output string sA and
Bob obtains an output string sB. We assume that there is some constant ρ > 0 such that
Pr[sA = sB] ≥ ρ, where the probability is over the coin tosses of Alice and Bob and the
randomness of the oracle. We will establish Theorem 2.1.1 by proving that an attacker can
make O(n2) queries to learn sB with probability arbitrarily close to ρ.

In this section we describe an attacking algorithm that allows Eve to find a set of size
O(n2) that contains all the queries asked by Alice and Bob in the random oracle model.
This attack is analyzed in Section 2.4 to show that it is successful in finding all intersection
queries and is efficient (i.e., will not ask more than O(n2) many queries). As was shown by
Impagliazzo and Rudich, it not hard to use this set to obtain the actual secret.

2.3.1 Attacking Algorithm

We start by showing that an attacker can find all the intersection queries (those asked by
both Alice and Bob) with high probability. It turns out that this is the main step in showing
that an attacker can find the secret with high probability (see Section 2.5.2 below).

Theorem 2.3.1. Let Π be a key exchange protocol in the random oracle model in which
Alice and Bob ask at most n oracle queries each. Then for every 0 < δ < 1 there is an
adversary Eve who has access to the messages sent between Alice and Bob and asks at most

16

(13n
δ

)2 number of queries such that Eve’s queries contain all the intersection queries of Alice
and Bob with probability at least 1− δ.

Letting ε = δ/13, our attack can be described in one sentence as follows:

As long as there exists a string q such that conditioned on Eve’s current knowledge
and assuming that no intersection query was missed so far, the probability that
q was asked in the past (by either Alice or Bob) is at least ε/n, Eve makes the
query q to the oracle.

To describe the attack more formally, we need to introduce some notation. We fix n to be
the number of oracle queries asked by Alice and Bob and assume without loss of generality
that all the queries are of length ` = `(n) for some ` ∈ N. We will make the simplifying
assumption that the protocol is in normal form— that is, at every round of the protocol
Alice or Bob make exactly one query to the oracle (and hence there are 2n rounds). Later in
Section 2.5.1 we will show how our analysis extends to protocols that are not of this form.
Below we often identify a distribution D with a random variable distributed according to D.

Executions and the distribution E. A (full) execution of Alice, Bob, and Eve can be
described by a tuple (rA, rB, H) where rA denotes Alice’s random tape, rB denotes Bob’s
random tape, and H is the random oracle (note that Eve is deterministic). We denote by E
the distribution over (full) executions that is obtained by running the algorithms for Alice,
Bob and Eve with uniformly chosen random tapes and a random oracle. A partial execution
is an execution truncated at a certain point in time (that is, the transcripts contain only
the oracle answers for queries that are asked up to that point). For any partial execution
we denote by M the sequence of messages sent between Alice and Bob till that moment,
and denote by I the set of oracle query/answer pairs known to Eve. We define Alice’s view
in the execution to be the tuple A = (rA, HA,M) where rA are Alice’s coins and HA is
the concatenation of oracle answers to Alice’s queries. Similarly Bob’s view is the tuple
B = (rB, HB,M). Below we will only consider Alice’s and Bob’s view conditioned on a fixed
value of M and hence we drop M from these tuples and let A = (rA, HA) and B = (rB, HB).

The distribution E(M, I). For M = [m1, . . . ,mi] a sequence of i messages, and I a set of
query/answer pairs, we denote by E(M, I) the distribution over the views (A,B) of Alice and
Bob in partial executions up to the point in the system in which the i’th message is sent (by
Alice or Bob), where the transcript of messages equals M and the set of query/answer pairs
that Eve learns equals I. For every (M, I) that have nonzero probability to occur in the
protocol, the distribution E(M, I) can be sampled by first sampling (rA, rB, H) at random
conditioned on being consistent with (M, I) and then deriving from this tuple Alice’s and
Bob’s views: A = (rA, HA) and B = (rB, HB).8

8Note that we can verify that the pair (M, I) has nonzero probability to occur in the protocol by simulating
Eve’s algorithm on the transcript M , checking that whenever Eve makes a query, this query is in I, in which

17

The event Good(M, I) and the distribution GE(M, I). The event Good(M, I) is defined
as the event over E(M, I) that all the intersection queries asked by Alice and Bob during
the partial execution are in I. More formally let Q(A) (resp., Q(B)) be the set of queries
asked by Alice (resp., Bob) which are specified by Alice’s view A (resp., Bob’s view B).
Therefore Good(M, I) is the same as Q(A) ∩Q(B) ⊂ Q(I) where Q(I) is the set of queries
of I (note that I is a set of query/answser pairs). We define the distribution GE(M, I) to
be the distribution E(M, I) conditioned on Good(M, I).

Eve’s algorithm. The attacker Eve’s algorithm is specified as follows. It is parameterized
by some constant 0 < ε < 1/10. At any point in the execution, if M is the sequence
of messages Eve observed so far and I is the query/answer pairs she learned so far, Eve
computes for every q ∈ {0, 1}` the probability pq that q appears as a query in a random
execution in GE(M, I). If pq > ε/n then Eve asks q from the oracle and adds q and its
answer to I. (If there is more than one such q then Eve asks the lexicographically first one.)
Eve continues in this way until there is no additional query she can ask, at which point she
waits until she gets new information (i.e., observes a new message sent between Alice and
Bob).

Note that Eve’s algorithm above may ask much more than n2 queries. However, we will
show that the probability that Eve asks more than n2/ε2 queries is bounded by O(ε), and
hence we can stop Eve after asking this many queries without changing significantly her
success probability.

2.4 Analysis of Attack: Proof of Theorem 2.3.1

We now go over the proof of Theorem 2.3.1. For i ∈ [2n], define the event Faili to be the
event that the query made at the i’th round is an intersection query but is not contained
in the set I of query/answer pairs known by Eve, and moreover that this is the first query
satisfying this condition. Let the event Fail =

∨
i Faili be the event that at some point an

intersection query is missed by Eve, and let the event Long be that Eve makes more than
n2/ε2 queries. By setting ε = δ/13 and stopping Eve after n2/ε2 queries, Theorem 2.3.1
immediately follows from the following two lemmas:

Lemma 2.4.1 (Attack is successful). For every i, PrE [Faili] ≤ 3ε
2n

. Therefore by the union
bound, PrE [Fail] ≤ 3ε.

Lemma 2.4.2 (Attack is efficient). PrE [Long] ≤ 10ε.

case we feed Eve with the corresponding answer (and verifying at the end that there are no “extra” queries
in I not asked by Eve). However in our attack the pair (M, I) will always be generated by running the
actual protocol and so we won’t need to run such checks.

18

2.4.1 Success of Attack: Proof of Lemma 2.4.1

Lemma 2.4.1 follows from the following stronger result which is the main technical lemma
of this chapter:

Lemma 2.4.3. Let i be even and let B = (rB, HB) be some fixing of Bob’s view in an execu-
tion up to the i’th message sent by him, and let M, I be some fixing of the messages exchanged
and query/answer pairs learned by Eve in this execution such that PrE(M,I)[Good(M, I) | B] >
0. Then it holds that

Pr
GE(M,I)

[Faili | B] ≤ 3ε

2n
.

That is, the probability that Faili happens is at most 3ε
2n

conditioning on Eve’s information
equalling (M, I), Bob’s view of the execution equalling B and Good(M, I).

We first see why Lemma 2.4.3 implies Lemma 2.4.1.

Proof of Lemma 2.4.1 from Lemma 2.4.3. Lemma 2.4.3 implies that in particular for every
even i,

Pr
E

[Faili | Goodi] ≤
3ε

2n
,

where Goodi denotes the event Good(M, I) where M, I are Eve’s information just before
the i’th round. But since Faili is the event that Eve fails at round i for the first time,
Faili implies Goodi and hence PrE [Faili] ≤ PrE [Faili | Goodi], establishing the statement of
Lemma 2.4.1 for every even i. By symmetry, the analog of Lemma 2.4.3 for odd i also holds
with the roles of Alice and Bob reversed, completing the proof for all i.

Proof of Lemma 2.4.3.

Product characterization. Lemma 2.4.3 would be easy if the distribution GE(M, I)
would have been a product distribution, with the views of Alice and Bob independent from
one another. Roughly speaking this is because in this case Bob has no more information than
Eve on the queries Alice made in the past, and hence also from Bob’s point of view, no query
is more probable than ε/n to have been asked by Alice. Unfortunately this is not the case.
However, we can show that the distribution GE(M, I) is equal to the distribution obtained
by taking some product distribution A× B and conditioning it on the event Good(M, I). 9

The intuition is that fixing (M, I), the probability that certain computation for Alice and
Bob happens is proportional to 2−l|H| where H is the set of queries asked by (this specific)
Alice or Bob, but not by Eve. In case Alice and Bob do not have intersection queries out of
Eve’s queries, the set H can be partitioned into Alice’s private queries HA and Bob’s private
queries HB. Hence we have 2−l|H| = 2−l|HA|2−l|HB |. But note that 2−l|HA| (resp., 2−l|HB |) is
independent of Bob’s (resp., Alice’s) computation. More formally, we prove the following
lemma:

9A similar observation was made by [98], see Lemma 6.5 there.

19

Lemma 2.4.4 (Product characterization). For every M, I denoting Eve’s information up
to just before the i’th query, if PrE(M,I)[Good(M, I)] > 0 there exist a distribution A (resp.,
B) over Alice’s (resp., Bob’s) view up to that point such that the distribution GE(M, I) is
the same as the product distribution (A× B) conditioned on the event Good(M, I):

GE(M, I) = (A× B) | Good(M, I).

Proof. We will show that for every pair of Alice/Bob views (A,B) in the probability space
E(M, I) that satisfy the event Good(M, I), PrGE(M,I)[(A,B)] = c(M, I)αAαB where αA
depends only on A, αB depends only on B and c(M, I) depends only on M, I. This means
that if we let A be the distribution such that PrA[A] is proportional to αA, and B be the
distribution such that PrB[B] is proportional to αB, then GE(M, I) is proportional (and
hence equal to) the distribution A× B | Good(M, I).

Because (A,B) ∈ Supp(GE(M, I)), if (A,B) happens, it makes the event Good(M, I)
hold, and so we have

Pr
E(M,I)

[(A,B)] = Pr
E(M,I)

[(A,B) ∧ Good(M, I)] = Pr
E(M,I)

[Good(M, I)] Pr
GE(M,I)

[(A,B)].

On the other hand, by definition we have PrE(M,I)[(A,B)] = PrE [(A,B,M,I)]
PrE [(M,I)]

, therefore it
holds that

Pr
GE(M,I)

[(A,B)] =
PrE [(A,B,M, I)]

PrE [(M, I)] PrE(M,I)[Good(M, I)]
.

The denominator of the righthand side is only dependent on M and I. The numerator
is equal to

2−|rA|2−|rB |2−`|Q(A)∪Q(B)∪Q(I)|.

The reason is that the necessary and sufficient condition that (A = (rA, HA), B =
(rB, HB),M, I) happens is that when we choose an execution (r′A, r

′
B, H

′) then r′A = rA,
r′B = rB and H is consistent on the queries in Q(A) ∪ Q(B) ∪ Q(I) with the answers
specified in HA, HB, I. Note that this will ensure that Alice and Bob will indeed pro-
duce the transcript M . Let αA = 2−|rA|2−`|Q(A)\Q(I)| and βB = 2−|rB |2−`|Q(B)\Q(I)|. Since
(Q(A)\Q(I))∩(Q(B)\Q(I)) = ∅, the numerator is equal to 2−|rA|2−|rB |2−`|Q(A)∪Q(B)∪Q(I)| =
αAβB2−`|Q(I)|. Thus indeed PrGE(M,I)[(A,B)] = c(M, I)αAβB where c(M, I) only depends
on (M, I).

Graph characterization. This product characterization implies that we can think of GE
as a distribution over random edges of some bipartite graph G. Using some insights on the
way this graph is defined, and the definition of our attacking algorithm, we will show that
every vertex in G is connected to most of the vertices on the other side. We then show that

20

this implies that Bob’s chance of asking a query outside of I that was asked before by Alice
is bounded by O(ε/n).

More precisely, fixing M, I that contain Eve’s view up to just before the i’th round, define
a bipartite graph G = (VL, VR, E) as follows. Every node u ∈ VL will have a corresponding
view Au of Alice that is in the support of the distribution A obtained from Lemma 2.4.4; we
let the number of nodes corresponding to a view A be proportional to PrA[A], meaning that
A corresponds to the uniform distribution over the left-side vertices VL. Similarly, every node
v ∈ VR will have a corresponding view of Bob Bv such that B corresponds to the uniform
distribution over VR. We define Qu = Q(Au)\Q(I) for u ∈ VL to be the set of queries outside
of I that were asked by Alice in the view Au, and define Qv = Q(Bu) \Q(I) similarly. We
put an edge in the graph between u and v (denoted by u ∼ v) if and only if Qu ∩ Qv = ∅.
Lemma 2.4.4 implies that the distribution GE(M, I) is equal to the distribution obtained by
letting (u, v) be a random edge of the graph G and choosing (Au, Bv).

It turns out that this graph is dense (i.e., every vertex is connected to almost all other
vertices in the other side). The proof has two steps. The first one is to show that such graphs
are “highly connected” in the sense that removing any vertex v and its neighbors from the
graph, remains a small fraction of the edges in the graph. The reason is that otherwise,
there is a member of Qv which is heavy and Eve should have asked that query. The second
step is to show that this notion of connectivity would imply that the graph dense (whenever
the graph is bipartite). More formally, we prove the following lemma:

Lemma 2.4.5. Let G = (VL, VR, E) be the graph above. Then for every u ∈ VL, d(u) ≥
|VR|(1− 2ε) and for every v ∈ VR, d(v) ≥ |VL|(1− 2ε) where d(w) is the degree of the vertex
w.

Proof. We first show that for every w ∈ VL,
∑

v∈VR,w 6∼v d(v) ≤ ε |E|. The reason is that

the probability of vertex v being chosen when we choose a random edge is d(v)
|E| and if∑

v∈VR,w 6∼v
d(v)
|E| > ε, it means that Pr

(u,v)
R←E

[Qw ∩ Qv 6= ∅] ≥ ε. Hence because |Qw| ≤ n,

by the pigeonhole principle there exists q ∈ Qw such that Pr
(u,v)

R←E
[q ∈ Qv] ≥ ε/n. But this

is a contradiction, because then q should be in I by the definition of the attack and hence
cannot be in Qw. The same argument shows that for every w ∈ VR,

∑
u∈VL,u6∼w d(u) ≤ ε |E|.

Thus for every vertex w ∈ VL ∪ VR,
∣∣E 6∼(w)

∣∣ ≤ ε |E| where E 6∼(w) denotes the set of edges
that are not adjacent to any neighbor of w (i.e., E 6∼(w) = {(u, v) ∈ E | u 6∼ w ∧ w 6∼ v}).
Now the following claim proves the lemma.

Claim 2.4.6. Let G = (VL, VR, E) be a nonempty bipartite graph such that for every vertex
w,
∣∣E 6∼(w)

∣∣ ≤ ε |E| for ε ≤ 1/2, then for all u ∈ VL, d(u) ≥ |VR|(1 − 2ε) and for every
v ∈ VR, d(v) ≥ |VL|(1− 2ε).

Proof. Let dL = min{d(u) | u ∈ VL} and dR = min{d(v) | v ∈ VR}. By switching the left
and right sides if necessary, we may assume without loss of generality that (*): dL

|VR|
≤ dR
|VL|

.

Thus it suffices to prove that 1 − 2ε ≤ dL
|VR|

. Suppose 1 − 2ε > dL
|VR|

, and let u ∈ VL be the

vertex that d(u) = dL < (1−2ε) |VR|. Because for all v ∈ VR we have d(v) ≤ |VL|, thus using

21

(*) we see that |E∼(u)| ≤ dL |VL| ≤ dR |VR| where E∼(u) = E \ E 6∼(u). On the other hand
since we assumed that d(u) < (1 − 2ε)|VR|, there are more than 2ε|VR|dR edges in E 6∼(u),
meaning that |E∼(u)| <

∣∣E 6∼(u)
∣∣ /(2ε). But this implies∣∣E 6∼(u)

∣∣ ≤ ε|E| = ε
(∣∣E 6∼(u)

∣∣+ |E∼(u)|
)
< ε

∣∣E 6∼(u)
∣∣+
∣∣E 6∼(u)

∣∣ /2,
which is a contradiction for ε < 1/2 because the graph G is nonempty.

Proof of Lemma 2.4.3 from Lemmas 2.4.4 and 2.4.5. LetB,M, I be as in Lemma 2.4.3
and q be Bob’s query which is fixed now. By Lemma 2.4.4, the distribution GE(M, I) condi-
tioned on getting B as Bob’s view is the same as (A×B) conditioned on Good(M, I)∧ (B =
B). By the definition of the bipartite graph G = (VL, VR, E) it is the same as choosing a ran-

dom edge (u, v)
R←E conditioned on Bv = B and choosing (Au, Bv). We prove Lemma 2.4.3

even conditioned on fixing v such that Bv = B. Now the distribution on Alice’s view
is the same as choosing u

R← N(v) to be a random neighbor of v and choosing Au. Let
S = {u ∈ VL | q ∈ Au}. Then it holds that

Pr
u

R←N(v)

[q ∈ Au] ≤
|S|
d(v)

≤ |S|
(1− 2ε)|VL|

≤ |S| |VR|
(1− 2ε) |E|

≤
∑

u∈S d(u)

(1− 2ε)2 |E|
≤ ε

(1− 2ε)2n
<

3ε

2n
.

The second and fourth inequalities are because of Lemma 2.4.5. The third one is because
|E| ≤ |VL| |VR|. The fifth one is because of the definition of the attack which asks ε/n heavy
queries, and the sixth one is because ε = δ/13 < 1/13.

2.4.2 Efficiency of Attack: Proof of Lemma 2.4.2

The proof of attack’s efficiency (i.e. Lemma 2.4.2) crucially uses the fact that the attack is
successful, and uses Lemma 1.3.5.

Recall that Eve’s criteria for “heaviness” is based on the distribution GE(M, I) that is
conditioned on her not missing any queries up to this point. However, because we have
proven that the event Good(M, I) has significant probability, queries that are heavy under
this distribution are also almost as heavy under the real distribution E(M, I), and have
probability, say, at least ε/(2n). Intuitively this means that, on expectation, Eve will not
make more than O(n2/ε) such queries. The reason is that initially Alice and Bob made at
most 2n queries that are unknown to Eve, and each query Eve makes decreases the (nonzero)
expected number of unknown queries by at least ε/(2n).

We say that a member of the probability space X ∈ E is in the event Badj, if at the mo-
ment that Eve is go to ask her j’th query from the oracle, we have PrE(M,I)[¬Good(M, I)] >
1/2, where (M, I) are the sequence of messages and Eve’s set of query/answer pairs at that
moment. Let Bad =

∨
j Badj. We define the probability space E(Bad) to be the same as E

with the difference that Eve stops asking more queries whenever Badj happens for some j.
(The behavior of Alice and Bob is the same as before.) Note that although E and E(Bad)

22

are the same probability spaces, because the behavior of Eve is defined differently in them,
the events Long and Fail are also defined over them is different ways.10 However, because E
and E(Bad) are identical as long as Bad does not happen we have PrE [Bad] = PrE(Bad)[Bad]
and more generally for every event D whose definition might depend on Eve’s behavior in
the system we have PrE [Bad ∨D] = PrE(Bad)[Bad ∨D].

The proof of efficiency consists of the following two steps.

Step 1. We first use the success property of the attack (i.e., PrE [Fail] ≤ 3ε/n) to show
that PrE [Bad] ≤ 6ε (Lemma 2.4.7 below) which also means that PrE(Bad)[Bad] = PrE [Bad] ≤
6ε. Note that ¬Good(M, I) implies that Faili has already happened for some i, and so
¬Good(M, I) implies Fail.

Step 2. We then show that in E(Bad) on average Eve will not ask more than N = 4n2

ε

number of queries (see Lemma 2.4.8 below). Since Long is the event that Eve asks more
than n2

ε2
= N

4ε
queries, by Markov inequality we have PrE(Bad)[Long] ≤ 4ε, and therefore we

will have

Pr
E

[Long] ≤ Pr
E

[Long ∨ Bad] = Pr
E(Bad)

[Long ∨ Bad] ≤ Pr
E(Bad)

[Long] + Pr
E(Bad)

[Bad] ≤ 10ε.

Now we prove the needed lemmas.

Lemma 2.4.7. PrE [Bad] ≤ 6ε.

Proof. We use Lemma 1.3.5 as follows. Let the underlying random variable be X = E , and
the event F = Fail. Let the random variable Zj be the information that Eve learns about
X after asking her (j − 1)’th query, before she asks her j’th query. Namely (Z1, . . . , Zj) is
equal to (M, I) of the moment she wants to ask her j’th query. Let p = 1/2, which means
Bj is the event that Pr[Fail | Z1, . . . , Zj] ≥ 1/2. Lemma 1.3.5 implies that Pr[Fail | B] ≥ 1/2.

Note that ¬Good(M, I) at any moment implies that Fail has already happened, so Badj
implies Bj and therefore Bad implies B. Now if PrE [Bad] ≥ 6ε, we would have Pr[Fail] ≥
Pr[B ∧ Fail] = Pr[B] Pr[Fail | B] ≥ Pr[Bad](1

2
) ≥ 3ε which contradicts Lemma 2.4.1.

Lemma 2.4.8. Let γ = ε
2n

, and X = E(Bad). If I denotes the set of query/answer pairs

that Eve learns by the end of protocol in X, then EX [|I|] ≤ 2n
γ

= 4n2

ε
.

Proof. For a fixed query q ∈ {0, 1}`, let Eq (resp., Fq) be the event (over X) that Eve
(resp., Alice or Bob) asks q. By linearity of expectation we have E[|I|] =

∑
q Pr[Eq] and∑

q Pr[Fq] ≤ 2n. We claim that Pr[Eq]γ ≤ Pr[Fq] which would imply the lemma E[|I|] =∑
q Pr[Eq] ≤ 1

γ

∑
q Pr[Fq] ≤ 2n

γ
.

To prove Pr[Eq]γ ≤ Pr[Fq], we use Lemma 1.3.5 as follows. The underlying random
variable X = E(Bad) (as here), the event F = Fq, and the random variable Zj is as defined in

10In fact, the event Long in E(Bad) is a subset of Long in E , and Fail in E is a subset of Fail in E(Bad).

23

the proof of Lemma 2.4.7. Let p = γ which meansBj is the event that Pr[Fq | Z1, . . . , Zj] ≥ γ.
Lemma 1.3.5 implies that Pr[Fq | B] ≥ γ.

Note that if Eve asks q from the oracle when she knows (M, I) = Z1, . . . , Zj about X,
q has at least ε/n probability to be asked by Alice or Bob conditioned on Good(M, I). But
Pr[Good(M, I)] ≥ 1/2 holds in X whenever Eve wants to ask a query, and it means that q
is asked by Alice or Bob with probability at least ε

2n
= γ before. In other words when Eve

asks q it holds that Pr[Fq | Z1, . . . , Zj] ≥ γ which means that the event Eq implies B.
Therefore it holds that Pr[Fq] ≥ Pr[Fq ∧B] = Pr[B] Pr[Fq | B] ≥ Pr[Eq]γ.

2.5 Completing the Proof

To complete the proof, we need to (a) show how to handle protocols that are not necessarily
in normal form and (b) show how Eve can recover the secret once she knows the intersection
queries. Task (b) was already achieved by [98, Theorem 6.2] (although it can be shown
that our attack does not need to ask any more queries to find the secret). [98] also showed
how one can achieve task (a) using a general “compiler” that transforms general protocols
to normal form. However that transformation has a quadratic blowup in efficiency that we
cannot afford. We show how our attack can be extended to handle general protocols without
incurring this cost. (See the full version for the remaining details.)

2.5.1 Removing the Normal Form Assumption

In order to get an attack of the same (13n
δ

)2 complexity finding all the intersection queries
of Alice and Bob for general form of protocols we do the following.

Attack for Seminormal Protocols

Now we assume that Alice and Bob run a seminormal protocol in which each of them asks
at most n number of oracle queries. We prove that the same attack of Section 2.3 finds all
the intersection queries with probability 1− δ using (13n

δ
)2 number of queries. We only show

that the attack is successful in finding all the intersection queries and the same argument as
before shows that the efficiency follows from the success property.

Suppose j ≤ O(n2), and it is Bob’s turn in the j’th round of the new seminormal protocol.
The same argument as before (used for the normal protocols), shows that the probability
that Eve misses an intersection query at this point for the first time is at most O(ε/n),
because by not asking any query by Bob, Eve’s probability of missing the intersection query
can not increase.

Intuitively, we only need to care about the rounds in which Bob does ask a query, but
we do not know which n rounds (out of the total O(n2) rounds) they actually are. One idea
is to marginalize the Eve’s success probability by fixing the rounds in which Bob asks his
queries. But fixing such rounds, would mean that we are fixing Bob’s computation to some
extent. Therefore we can get the same bound on Eve’s failure probability, if we could bound

24

the failure probability in a round, even when Bob’s computation till that point is fixed, but
we already did so in Lemma 2.4.3. 11

More formally, let BFaili be the event that Bob’s i’th query is the first intersection query
out of I, and similarly let AFaili be the event that Alice’s i’th query is the first intersection
query out of I.

Lemma 2.5.1. For every 1 ≤ i ≤ n, we have Pr[BFaili] ≤ 3ε
2n

and Pr[AFaili] ≤ 3ε
2n

.

Before proving the lemma note that it shows

Pr[Fail] = Pr[
∨
i

(BFaili ∨ AFaili)] ≤
∑

1≤i≤n

Pr[BFaili] + Pr[AFaili] ≤ 3ε.

Proof. Let the event BGoodi (in the seminormal protocol) be the event that when Bob
asks his i’th query, the intersection queries of Alice and Bob are all inside I (the set of
query/answer pairs known to Eve). Let Bi be the random variable denoting the view of
Bob,till he asks his i’th query and let q(Bi) be his i’th query determined by Bi. Also let
(M, I)i be the random variable denoting Eve’s information before Bob asks q(Bi).

So we have Pr[BFaili] =
∑

(Bi,M,I)∈Supp(Bi×(M,I)i)
PrE [Bi,M, I] PrE [BFaili | Bi,M, I]. But

since BFaili implies BGoodi we have

Pr
E

[BFaili | Bi,M, I] ≤ Pr
E

[BFaili | Bi,M, I,BGoodi]

and by definition we have PrE [BFaili | Bi,M, I,BGoodi] = PrGE(M,I)[BFaili | Bi]. But the
proof of Lemma 2.4.3 already showed that PrGE(M,I)[BFaili | Bi] ≤ 3ε

2n
because it only used

the fact that Alice and Bob ask at most n queries each and did not depend on the number
of rounds. Hence it holds that

Pr
E

[BFaili] ≤
∑

(Bi,M,I)∈Supp(Bi×(M,I)i)

Pr
E

[Bi,M, I]
3ε

2n
=

3ε

2n
.

Compiling into Normal Form

Suppose i is a round in the original protocol in which Bob is going to ask k ≤ n number of
queries (k is not known to Eve or Alice) and then send the message mi to Alice. In the new
protocol, this round will be divided into 2n − 1 sub-rounds, which Bob can ask his queries
one by one in different rounds, and Alice simply sends ⊥ messages to Bob. Using 2n − 1
number of rounds rather than 2k− 1 (in case k is known to Alice and Bob at the beginning
of round i in the original protocol), is because k might need to be kept secret, and this way
the new protocol does not leak any information about k more than the original protocol did.

11In fact Lemma 6.2 in [98] is also proved even conditioned on Bob’s computation being fixed. Taking this
into account, by compiling into seminormal protocols rather than normal ones one can get an O(n4) attack
using [98]’s approach.

25

Now we fix i and describe how the new protocol works in the sub-rounds of this original
round. In the j’th sub-round (of round i of the original protocol) if j is even, Alice will just
send the message ⊥ to Bob. So let j be an odd number. If j ≤ k, Bob will ask his j’th
query which he was going to ask in the i’th round of the original protocol, and if j > k he
asks no query. If j < 2n− 1, Bob sends also the message ⊥ to Alice in the sub-round j, and
if j = 2n − 1 he sends his message mi to Alice. It is clear that this artificial change only
increases the number of rounds and will not give Eve any extra information, and therefore
it is as secure as the original protocol. In the actual attack, Eve will pretend that Alice and
Bob are sending the extra ⊥ messages to each other in the sub-rounds and will attack the
protocol in the seminormal form, and as we will prove she finds all the intersection queries
with probability 1− δ using (13n

δ
)2 number of queries.

2.5.2 Finding the Secret

Now, we turn to the question of finding the secret. Theorem 6.2 in [98] shows that once
one finds all the intersection queries, with O(n2) more queries they can also find the actual
secret. Here we use the properties of our attack to show that we can do so even without
asking more queries.

Theorem 2.5.2. Assume that the total number of queries asked by Alice and Bob is at most
n each, and their outputs agree with probability at least ρ having access to a random oracle.
Then for every 0 < δ < 1 there is an adversary Eve asking at most (16n

δ
)2 number of queries

such that Eve’s output agrees with Bob’s output with probability at least ρ− δ.

Proof. Let assume that in the last round of the protocol Alice sends a special message LAST
to Bob. In order to find the secret Eve runs the attack of Section 2.3.1 and at the end
(when Alice has sent LAST and Eve has asked her queries from the oracle), Eve samples

(A,B)
R← GE(M, I) (where (M, I) is Eve’s information at the moment) and outputs the

secret s(A) determined by Alice’s view A. Now we prove that her secret agrees with Bob’s
secret with probability at least ρ− 16ε and the theorem follows by setting δ = ε/16.

Let the random variables A,B, E be in order the view of Alice, Bob, and Eve at the end
of the game. Let Â be the random variable generated by sampling (A,B)

R←GE(M, I) where
M, I are the information specified in E and choosing A from it. (So s(Â) is Eve’s output.) We
will prove that the statistical distance between (A,B, E) and (Â,B, E) is at most 16ε which
shows that |Pr[s(A) = s(B)] − Pr[s(Â) = s(B)]| ≤ 16ε. For (A,B,E) ∈ Supp(A × B × E)
we say the event Good(A,B,E) holds if A and B do not have any intersection query out of
I where (M, I) = E. The proof follows from the following three claims:

1. Pr[¬Good(A,B, E)] ≤ 13ε.

2. Pr[¬Good(Â,B, E)] ≤ ε.

3. The statistical distance between

(A,B, E) | Good(A,B, E) and (Â,B, E) | Good(Â,B, E)

26

is at most 2ε.

The first claim follows from the proof of Theorem 2.3.1. The second claim is true because
after fixing E = (M, I), the random variable Â is independent of B, and if we fix B = B
any query of Q(B) has chance of at most ε/n of being in Q(Â) and there are at most n such
queries.

So we only need to prove the third claim which we do even conditioned on fixing B = B
and fixed E = E = (M, I). The claim follows from Lemma 2.4.5. Let G = (VL, VR, D) be
the graph characterization of GE(M, I). Hence we have:

• The distribution of A in (A, B,E) | Good(A, B,E) is the same as choosing v ∈ VR
such that Bv = B and then choosing a random neighbor of it u

R← N(v) and getting
Au.

• The distribution of Â in (Â, B,E) | Good(Â, B,E) is the same as choosing v ∈ VR such

that Bv = B and then choosing a random edge (u, v′)
R←D conditioned on u ∼ v and

then getting Au. This is the same as choosing u ∈ N(v) at random with probability
proportional to d(u).

The two above distributions have statistical distance at most 2ε even for a fixed v such
that Bv = B. The first distribution chooses u ∈ N(v) uniformly at random, but the second
distribution chooses u ∈ N(v) with probabilities proportional to their degrees. But since
for every u ∈ VL, (1 − 2ε)|VR| ≤ d(u) ≤ |VR|, (and ε < 1/10) one can easily show that the
statistical distance is bounded by 2ε.

27

Chapter 3

Lamport’s Signature Scheme is
Optimal

3.1 Introduction

Digital signature schemes allow authentication of messages between parties without shared
keys. Signature schemes pose an interesting disconnect between the worlds of theoretical and
applied cryptography. From a theoretical point of view, it is natural to divide cryptographic
tools into those that can be constructed using one-way functions and those that are not
known to have such constructions. Signature schemes, along with private key encryption,
message authentication codes, pseudorandom generators and functions, belong to the former
camp. In contrast, the known constructions of public key encryption are based on structured
problems that are conjectured to be hard (i.e., problems from number theory or the theory
of lattices). From a practical point of view, it is more natural to divide the tools according
to the efficiency of their best known constructions. The division is actually similar, since
schemes based on structured problems typically require both more complicated computations
and larger key size, as they often have non-trivial attacks (e.g., because of the performance
of the best known factoring algorithms, to get 2n security based on factorization one needs
to use Ω̃(n3) bit long integers).

Signature schemes are outlier to this rule: even though they can be constructed using
one-way functions, applied cryptographers consider them as relatively inefficient since prac-
tical constructions are based on structured hard problems, and thus are significantly less
efficient than private key encryption, message authentication codes, pseudorandom func-
tions etc... In particular, very high speed applications shun digital signatures in favor of
message authentication codes,1 even though the latter sometime incur a significant cost in
keeping shared private keys among the entities involved (e.g., see [138] and the references
therein). The reason is that known constructions of such schemes from one-way functions or

1In contrast to digital signatures that have a public verification key and secret signing key, message
authentication codes have a single key for both verification and signing, and hence that key must be kept
private to maintain security.

28

other unstructured primitives are quite inefficient. This problem already arises in one-time
signatures [112, 119, 140], that are a relaxation of digital signatures offering security only
in the case that the attacker observes at most a single valid signature. The best known
constructions for this case require Ω(k) invocations of the one-way function (or even a ran-
dom oracle) to achieve 2k security. In contrast, there are known constructions of message
authentication codes, private key encryptions, and pseudorandom generators and functions
that use only O(1) queries to a random oracle.

In this chapter, we study the question of whether there exist more efficient constructions
of signature schemes from symmetric primitives such as hash functions and block ciphers.
We show to a certain extent that the inefficiency of the known constructions is inherent.

3.1.1 Our Results

We consider the efficiency of constructions of one-time signatures using black boxes / oracles
that model ideal symmetric primitives: the random oracle, the random permutation oracle,
and the ideal cipher oracle (see Section 3.3 for definitions). We wish to study the security
of such constructions as a function of the number of queries made to the oracle by the con-
struction (i.e., by the generation, signing, and verification algorithms). Of course, we believe
that one-time signatures exist and so there are in fact signature schemes achieving super-
polynomial security without making any query to the oracle. Hence we restrict ourselves to
bounding the black-box security of such schemes. We say that a cryptographic scheme using
oracle O has black-box security S if for every 1 ≤ T ≤ S, a (potentially computationally
unbounded) adversary that makes at most T queries to O cannot break the scheme with
probability larger than T/S (see Definition 3.3.2). Our main result is the following:

Theorem 3.1.1. Any one-time signature scheme for n-bit messages using at most q ≤ n
queries to a random oracle has black-box security at most 2(1+o(1))q where o(1) goes to zero
with q.

This is in contrast to other primitives such as message authentication codes, collision
resistant hash functions, private-key encryption, and pseudorandom functions, that can all
be implemented using one or two queries to a random oracle with black-box security that
depends exponentially on the length of these queries. We note that Theorem 3.1.1 is tight
up to a constant factor in the number of queries, since a simple modification of Lamport’s
scheme [112] yields 2(α−o(1))q black-box security, where α ∼ 0.812 is equal to H(c)/(1 + c),
where H is the Shannon entropy function and c = (3 −

√
5)/2 (see Section 3.5). We also

prove several extensions of the main result:

Other oracles. Since our goal is to find out whether signatures can be efficiently con-
structed from symmetric primitives, it makes sense to study also other primitives than
the random oracle. Theorem 3.1.1 extends (with a loss of a constant factor in the
number of queries) to the ideal cipher oracle and random permutation oracle that are
also sometimes used to model the idealized security of symmetric primitives such as
block ciphers and one-way permutations.

29

Implementing adversary in BPPNP. The proof of Theorem 3.1.1 shows that for every
q-query one-time signature scheme for {0, 1}n from random oracle, there is an adversary
that breaks it with probability close to 1 using at most poly(q)2q queries. However,
the running time of this adversary can be higher than that. This is inherent, as
otherwise we would be proving unconditionally the non-existence of one-time signature
schemes. However, we show that this adversary can be implemented in probabilistic
polynomial-time using an oracle to an NP-complete problem. Thus, similar to what
Impagliazzo and Rudich [98] showed for key-exchange, if there were a more efficient
construction of signature schemes from random oracles with a proof of security relying
on the adversary’s efficiency, then this is also a proof that P 6= NP.

Imperfect completeness. While the standard definition of signature schemes requires the
verifier to accept valid signatures with probability 1, one can also consider relaxed
variants where the verifier has some small positive probability of rejecting even valid
signatures. We say that such signature schemes satisfy imperfect completeness. We
can extend Theorem 3.1.1 to this case, though to get an attack succeeding with high
probability we lose a quadratic factor in the number of queries.

Efficiency of the verifier. Because the signing and the verification algorithms are exe-
cuted more often than the key generation algorithm, it makes sense to study their
efficiency separately rather than just studying the total number of queries. Although
in the construction for signature schemes that we will see later (see Section 3.5), the
signing algorithm asks only one oracle query and the total number of queries is optimal
up to a constant factor, the question about the efficiency of the verifier still remains.
We show that (keeping the number of signing queries fixed to one) there is a trade-
off between the number of queries asked by the verification algorithm and the total
number of queries, conditioned on getting certain black-box security.

Black-box constructions. As mentioned above, all the symmetric primitives can be con-
structed from random oracle, random permutation oracle, or ideal cipher oracle by only
O(1) queries and get exponential security over the length of the queries. Therefore,
our lower-bounds on signatures from ideal oracles yield as corollaries lower-bounds on
the efficiency of signatures from symmetric primitives when the construction is black
box. This holds even when the one-way permutation used in the construction has n/2
hardcore bits. The latter answers a question raised by [61]. Our results reject the ex-
istence of black-box constructions unconditionally (similar to [82], while the results of
[61] show the existence of one-way function as a consequence. We prove the strongest
possible form of lower-bound on the efficiency of black box constructions of signatures
from symmetric primitives. Namely, we show that black-box constructions of signa-
ture schemes for n-bit messages based on exponentially hard symmetric primitives of
security parameter n, need to make at least Ω(n) calls to the primitive.

Note on the random oracle model. Although the random oracle model [13] (and its
cousin the ideal cipher model) is frequently used as an idealization of the properties enjoyed

30

by certain constructions such as the SHA-1 hash function [126] and the AES block cipher [43],
it has drawn a lot of criticism as this idealization is not generally justified [38]. However,
for the sake of lower-bounds (as is our concern here) this idealization seems appropriate,
as it is a clean way to encapsulate all the attractive properties that could be obtained by
constructions such as SHA-1,AES, etc..

Taxonomy of black-box reductions. Reingold, Trevisan and Vadhan [143] study var-
ious notions of “black-boxness” of security proofs in cryptography according to whether a
construction of a cryptographic tool based on an underlying primitive uses this primitive
as a black box, and whether its security proof uses the adversary as a black box. Those
definitions are not in the oracle model that we are concerned here. They call a construction
for primitive A from primitive B black-box, if the implementation of A uses B as a black
box. The security reduction which converts an adversary for the implementation of A to an
adversary for B could have different levels of being black box 2. However, in the oracle based
constructions studied here, the implementation reduction is always forced to be black-box,
and for the proof of security, there is no security measure defined for the primitive used
(i.e. the oracle) to which we could reduce the security of our construction. One common
way to prove security for oracle based constructions is to rely on the statistical properties
of the oracle and show that any (even computationally unbounded) adversary breaking the
implementation needs to ask many queries from the oracle. This gives a quantitative security
guarantee and is called a black-box proof of security in the oracle model. A non-black-box
proof of security in this model, is a proof showing that any adversary who runs in time
poly(n, T) where n is the input length and T the number of oracle queries it asks, needs
to ask many queries from the oracle. In this work, we give a lower-bound on the number
of queries needed to get black-box security S for one-time signatures in various ideal oracle
models, and also show that if P = NP, then this bound holds for non-black-box proofs of
security as well. We note that if one-way functions exist, then there do exist constructions
making no query to the random oracle with super-polynomial non-black-box security. As
we mentioned before, our lower-bounds in the ideal oracle models yield some lower-bounds
on the efficiency of one-time signatures from symmetric primitives in the standard model of
[143]. We also note that there do exist cryptographic constructions that use the primitive
[70, 71] or the adversary [12] in a non-black-box way, but at the moment all of the known
highly efficient cryptographic constructions (e.g., those used in practice) are black box, in
the sense that if they use a generic underlying primitive (i.e., not based on specific problems
such as factoring) then it’s used as a black-box and if they have a proof of security then the
proof treats the adversary as a black box.

2It could be fully black-box, semi black-box, or non-black-box, and if the implementation reduction is
black box, the whole construction is called, (resp.,) fully black-box, semi black-box, or weakly black-box.

31

3.1.2 Prior Work

To the best of our knowledge, this is the first lower-bound on the number of random oracle
queries needed to construct signature schemes. Starting with the seminal paper of Impagli-
azzo and Rudich [98], that showed that there is no construction of a key exchange protocol
from a random oracle with super-polynomial black-box security, and therefore rejecting black-
box constructions of key exchange protocols from one-way function, several works have inves-
tigated the existence of black-box constructions reducing one kind of cryptographic scheme
to another. However, only few works studied the efficiency of such constructions [61, 109].
Of these, the most relevant is the paper by Gennaro, Gertner, Katz, and Trevisan [61]. They
considered the efficiency of basing various cryptographic primitives on one-way permuta-
tions (OWP) secure against S-sized circuits, and proved that to achieve super-polynomial
security (1) pseudorandom generators with ` bits of stretch require Ω(`/ logS) invocations
of the OWP, (2) universal one-way hash functions compressing their input by ` bits require
Ω(`/ logS) invocations, (3) private key encryption schemes for messages of length n with
key length k require Ω((n− k)/ logS) invocations, and (most relevant for us) (4) one-time
signature schemes for n-bit messages require Ω(n/ logS) invocations.3

However, the one-way permutation oracle used by [61] was very far from being a random
oracle.4 Indeed, the applications (1), (2), and (3) can be implemented using only a constant
number of calls to a random oracle, and correspondingly are considered to have efficient
practical implementations. Thus, [61] did not answer the question of whether signature
schemes can be efficiently constructed from efficient symmetric key primitives such as hash
functions and block ciphers. It is this question that we are concerned with in this chapter.
Thus, on a technical level our work is quite different from [61] (as we work with a random
oracle and cannot “tamper” with it to prove our lower-bound) and in fact is more similar
to the techniques in the original work of Impagliazzo and Rudich [98]. We note that this
work partially answers a question of [61], as it implies that any black-box construction of
one-time signatures from one-way permutation p : {0, 1}n 7→ {0, 1}n with even n/2 hard-core
bits requires at least Ω(n) queries to the permutation.

Several works [19, 20, 53, 119, 155] considered generalizations of Lamport’s one-time
signature scheme. Some of these achieve shorter keys and signatures, although their relation
between the number of queries and security (up to a constant factor) is at most a constant
factor better than Lamport’s scheme (as we show is inherent).

3.2 Our Techniques

We now give a high level overview of the ideas behind the proof of Theorem 3.1.1. Our
description ignores several subtle issues, and the reader is referred to Section 3.4 for the full

3Otherwise, we can construct a one-way function directly.
4They considered an oracle that applies a random permutation on the first t bits of its n-bit input, for

t� n, and leaves the rest of the n− t bits unchanged. This is a one-way permutation with 2Ω(t) security.

32

proof. To understand the proof of the lower-bound,5 it is instructive to review the known
upper-bounds and in particular the simple one-time signature scheme of Lamport [112]. To
sign messages of length n with security parameter ` using a random oracle O (that we model
as a random function from {0, 1}` to {0, 1}`) the scheme works as follows:

• Generate the public verification key vk by choosing 2n random strings {xbi}i∈[n],b∈{0,1}
in {0, 1}` and setting vk to be the sequence {ybi}i∈[n],b∈{0,1} for ybi = O(xbi).

• To sign a message α ∈ {0, 1}n, simply reveal the preimages in the set {xbi}i∈[n],b∈{0,1}
that correspond to the bits of α. That is, the signature is xα1

1 , . . . , x
αn
n .

• The verifier checks that indeed O(xαii) = yαii for every i ∈ [n].

This scheme uses 3n queries. It can be shown that it has 2Ω(`) security. Note that in this
case the security can be arbitrarily large independently of the number of queries. Indeed,
note that Theorem 3.1.1 requires that the number of queries q is not larger than the length of
the messages to be signed. Lamport’s scheme can be easily modified to work for unbounded
size messages by following the well known “hash-and-sign” paradigm: first use the random
oracle to hash the message to length k, and then apply Lamport’s scheme to the hashed
value. This will result in a scheme with 3k + 2 queries and (by the birthday bound) 2k/2

black-box security (see Section 3.5 for some improvements). We see that now indeed the
security is bounded by 2O(q) (where q = 3k + 2 is the number of queries), regardless of the
length ` of the queries.

The above discussion shows that to prove Theorem 3.1.1, we will need to use the fact
that there is a large number of potential messages, which is indeed what we do. Note that
the reason that the hash-and-sign variant of Lamport’s scheme only achieves 2k/2 security
is that if a pair of messages α, β satisfies Ok(α) = Ok(β) (where Ok(x) denotes the first
k bits of O(x)), then they have the same signature, and so a signature for α allows an
adversary to forge a signature on β. We will try to generalize this observation to arbitrary
signature schemes. For every such scheme S and two messages α, β (after fixing the oracle
and the randomness of the system), we will say that “α is useful for β” if they satisfy a
certain condition. Then (roughly speaking) we will prove that: (A) if α is useful for β then
a signature on α can be used to compute a signature on β by asking at most 2O(q) oracle
queries (where q is the total number of queries made by the scheme S), and (B) if α and
β are chosen at random from a large enough space of messages, then α will be useful for
β with probability at least 2−O(q). Together (A) and (B) imply that, as long as the space
of possible messages is large enough, then the black-box security of S is bounded by 2O(q),
since the adversary can find a useful pair of messages α, β with probability 2−q, ask for a
signature on α and use that to forge a signature on β by asking 2q queries.6

5We use the terms “lower-bound” and “upper-bound” in their traditional crypto/complexity meaning of
negative results vs. positive results. Of course one can view Theorem 3.1.1 as either upper-bounding the
security or lower-bounding the number of queries.

6The actual adversary we’ll show will operate by asking poly(q)2q queries, and it succeeds with probability
almost 1, see the proof of Theorem 3.4.1.

33

3.2.1 Defining the Usefulness Condition

This proof strategy rests of course on the ability to find an appropriate condition “α is useful
for β” for every one-time signature scheme S. This is what we describe now. For now, we
will assume that only the key generation algorithm of S is probabilistic, and that both the
signing and verification algorithms are deterministic.7 For every fixed randomness for the
generation algorithm, fixed oracle, and a message α, we define G,Sα and Vα to be the sets
of queries (resp.,) made by the generation, signing, and verification algorithms where the
last two are applied on the message α.

First attempt. Observe that in the hash-and-sign variant of Lamport’s scheme, α and β
have the same signature if Vα = Vβ. This motivates stipulating for every signature scheme
that α is useful for β if Vβ ⊆ Vα. This definition satisfies Property (A) above: if we know
all the queries that the verifier will make on a signature of β, then finding a signature that
makes it accept can be done by an exponential-time exhaustive search that does not make
any oracle queries at all. The problem is that it might not satisfy (B): it’s easy to make
the verifier ask, when verifying a signature for α, a query that uniquely depends on α, thus
ensuring Vβ * Vα for every distinct α, β.

Second attempt. A natural intuition is that verifier queries that do not correspond to
queries made by the generation algorithm are sort of “irrelevant”— after all, in Lamport’s
scheme all the queries the verifier makes are a subset of the queries made by the generation
algorithm. Thus, we might try to define that α is useful for β if Vβ ∩ G ⊆ Vα. Since G has
at most q queries, and so at most 2q subsets, this definition satisfies Property (B) since if α
and β are randomly chosen from a set of size 2q then α will be useful for β with probability
at least 2−2q. Unfortunately, it does not satisfy Property (A): there is a signature scheme
for which every pair of messages α, β satisfies this condition even when a signature for α
cannot be used to forge a signature on β.8

Our actual condition. The condition we actually use, roughly speaking, is that α is
useful for β if

Vβ ∩ (G ∪ Sα) ⊆ Vα . (3.2.1)

Using Bollobás’s Inequality [29] (see the proof of Claim 3.4.7) it can be shown that the
condition (3.2.1) satisfies Property (B). It’s less obvious why it satisfies Property (A)— to
see this we need to see how our adversary will operate. The high level description of our
attack is as follows:

7We study the randomized verifier in Section 3.6.1, but assuming that the signer is deterministic is without
loss of generality. That is because the key generator can give, through the secret key, a secret seed s to the
signer, and the signer would use O(s, α) as the randomness needed to sign the message α.

8Such an example can be obtained by the variant of Lamport’s scheme where each signer uses the veri-
fication key vk to sign a new verification key vk′ (the randomness for which is part of the secret key), and
then signs the message using the secret key corresponding to vk′. In this case Vα ∩G = Vβ ∩G for every pair
α, β, even if a signature on α cannot be used to compute a signature on β.

34

1. Input: key generation. The adversary receives the verification key vk.

2. Request signature. Choose α 6= β
R← {0, 1}n at random, and get σα, the signature

of α.

3. Learning oracle queries. Run Ver(vk, α, σα) to learn the set Vα of oracle queries
that it asks and their answers. (Later we will modify this step somewhat, and ask
some more oracle queries.)

4. Sampling a possible transcript. Conditioned on knowing vk, σα, and answers of
Vα, guess : the value of sk, the sets G and Sα, and their answers. Let s̃k, G̃, and S̃α be
the guesses.

5. Forging. Sign the message β by using s̃k and sticking to the oracle answers guessed
for queries in G̃∪ S̃α to get σβ. That is, if we wanted to ask a an oracle query in G̃∪ S̃α,
use the guessed answer, and otherwise ask the real oracle O. Output σβ.

Note that the queries for which we might have guessed a wrong answer are in the set
(G̃∪S̃α)\Vα, because we did the guesses conditioned on knowing Vα and its answers. Suppose
that during the verification of (β, σβ), none of these queries is asked from the oracle (i.e.

Vβ ∩ (G̃ ∪ S̃α) ⊂ Vα). Then we can pretend that our guesses were correct. That is, because
the answers to different queries of random oracle are independent, as far as the verifier is
concerned our guesses could be right, and hence by definition, the verification of (β, σβ) must
accept with probability 1.

The description of the attack above shows that a similar condition to the condition (3.2.1),
namely

Vβ ∩ (G̃ ∪ S̃α) ⊂ Vα , (3.2.2)

has Property (A). But condition (3.2.2) might not have Property (B). We cope with this by
ensuring that the attacker has sufficient information so that (essentially) whenever (3.2.1)
happens, (3.2.2) also happens. This is accomplished by learning more oracle queries before

making the guesses. Namely, we learn all the queries that are in the set G̃ ∪ S̃α with some
noticeable probability (conditioned on what we know about them). We then use a careful
hybrid argument (that involves the most technical part of the proof) to show that after
performing this learning, the condition (3.2.2) occurs with probability at least as large as
the probability that (3.2.2) occurs (up to some lower order terms). Thus our actual usefulness

condition will be (3.2.2), though for the complete definition of the sets G̃, S̃α involved in it,
one needs to go into the details of the proof of Theorem 3.4.1).

3.3 Signature Schemes in Oracle Models

We define the notion of one-time signature schemes and their black-box security. We spe-
cialize our definition to the case that the signature schemes use an oracle O that may also be
chosen from some probability distribution. We use the standard notation AO(x) to denote
the output of an algorithm A on input x with access to oracle O.

35

Definition 3.3.1. An oracle signature scheme (with perfect completeness) for n bit messages
is a triple of oracle algorithms (Gen, Sign,Ver) (where Gen could be probabilistic) with the
following property: for every oracle O, if (sk, vk) is a pair that is output by GenO(1n) with
positive probability, then for every α ∈ {0, 1}n, VerO(vk, α, SignO(sk, α)) = 1. We call sk the
signing key and vk the verification key.

One can also make a relaxed requirement that the verification algorithm only needs to
accept valid signatures with probability 0.9 (where this probability is over the verifier’s coins
only). We say that such relaxed signature schemes have imperfect completeness, and we will
consider such schemes in Section 3.6.1. If the oracle algorithms of the Definition 3.3.1 run
in polynomial-time, then we call the signature scheme efficient. Note that we consider (not
necessarily efficient) signature algorithms on a finite set of messages. For upper-bounds (i.e.,
positive results) one would want uniform efficient algorithms that could handle any size of
message, but for a lower-bound (i.e., a negative result), this simpler definition will do.

So far, we did not say anything about the security. In the following definition we specify
the “game” in which the adversary participates and tries to break the system and give a
quantitative measure for the security.

Definition 3.3.2. For every S ∈ N, the oracle signature scheme (Gen, Sign,Ver) is a one-
time signature scheme with black-box security S, if for every message α ∈ {0, 1}n, 1 ≤ T ≤ S,
and adversary algorithm A that makes at most T queries to its oracle, Pr[Ver(vk, α∗, σ∗) =
1 where (α∗, σ∗) = AO(vk, SignO(sk, α)) and α∗ 6= α] ≤ T

S
, where (sk, vk) = GenO(1n), and

this probability is over the coins of all algorithms (Gen, Sign,Ver, and A), and the choice of
the oracle O.

This is a slightly weaker definition of security than the standard definition, since we are
not allowing the adversary to choose the message α based on the public key. However, this
is again fine for lower-bounds (the known upper-bounds do satisfy the stronger definition).
Also, some texts use 1/S (rather than T/S) as the bound on the success probability. Security
according to either one of these definitions is always at most quadratically related, but we
feel Definition 3.3.2 is more precise.

In a non-black-box proof of security, the running time of the adversary is utilized in order
to prove the security of the system:

Definition 3.3.3. For every S ∈ N, the oracle signature scheme (Gen, Sign,Ver) is a one-
time signature scheme with non-black-box security S, if for every message α ∈ {0, 1}n, T ≤ S,
and adversary algorithm AT that makes at most T oracle queries and runs in time poly(n, T),
Pr[Ver(vk, α∗, σ∗) = 1 where (α∗, σ∗) = AOT (vk, SignO(sk, α)) and α∗ 6= α] ≤ T

S
, where

(sk, vk) = GenO(1n), and this probability is over the coins of all algorithms (Gen, Sign,Ver,
and AT), and the choice of the oracle O.

Oracles. In this work, as for the oracle signature schemes, we only use one of the following
oracles: (1) The random oracle returns on input x ∈ {0, 1}n the value f(x) where f is a

36

random function from {0, 1}n to {0, 1}n.9 (2) The random permutation oracle returns on
input x ∈ {0, 1}n the value f(x) where f is a random permutation on {0, 1}n. (3) The ideal
cipher oracle with message length n, returns on input (k, x, d) where k ∈ {0, 1}∗, x ∈ {0, 1}n
and d ∈ {F,B}, fk(x) if d = F and f−1

k (x) if d = B, where for every k ∈ {0, 1}∗, fk is a random
permutation on {0, 1}n. These three oracles are standard idealizations of (respectively) hash
functions, one-way permutations, and block ciphers (see also Section 3.7).

3.4 Proof of the Main Result

Theorem 3.4.1. Let (Gen, Sign,Ver) be a one-time oracle signature scheme (with perfect
completeness) in random oracle model for the space of messagesM in which the total number

of oracle queries asked by Gen, Sign, and Ver is at most q, and |M| ≥ (q
q/2)
λ

. Then there is

a (computationally unbounded) adversary which asks at most O(
q2(q

q/2)
λδ2) = O(q

1.52q

λδ2) oracle
queries and breaks the scheme with probability 1 − (λ + δ). This probability is over the
randomness of the oracle as well as the coin tosses of the key generation algorithm and the
adversary.

Theorem 3.4.1 implies Theorem 3.1.1 via the following corollary:

Corollary 3.4.2. Let (Gen, Sign,Ver) be a one-time oracle signature for the messagesM =
{0, 1}n in the random oracle model in which the total queries asked by the scheme is at most
q where q ≤ n, then there is an adversary asking 2(1+o(1))q queries breaking the scheme with
probability at least 1− o(1) and at least 0.49 for any q ≥ 1.

Proof. Let δ = λ =
(
q
q/2

)
/2q = θ(q−1/2) = o(1), so we have |M| = 2n ≥ 2q =

(
q
q/2

)
/λ.

Therefore we get an adversary asking O(q3.5
(
q
q/2

)
) = O(q32q) = 2(1+o(1))q queries breaking

the scheme with probability 1− o(1). Thus the black-box security of the scheme is at most

by 2(1+o(1))q

1−o(1)
= 2(1+o(1))q. For any q ≥ 1, λ can be as small as

(
1
0

)
/21 = 1/2, and by taking

δ = 0.01 the success probability will be at least 0.49.

We now turn to proving Theorem 3.4.1. Let (Gen, Sign,Ver) be as in the theorem’s
statement. We assume that only Gen is probabilistic, and Sign and Ver are deterministic.
We also assume that all the oracle queries are of length `. Since we assume the signature has
perfect completeness, these assumptions can be easily shown to be without loss of generality.
(In the case of imperfect completeness the verifier algorithm is inherently probabilistic; this
case is studied in Section 3.6.1.) We will show an adversary that breaks the signature system
with probability 1 − (λ + O(δ)), which implies Theorem 3.4.1 by simply changing δ to δ/c
for some constant c.

9More generally, f can be a function from n to `(n) for some function ` : N 7→ N, but using standard
padding arguments we may assume `(n) = n.

37

The Adversary’s Algorithm

Our adversary Adv will operate as follows:

Input: Key generation. The adversary receives a verification key vk, where (vk, sk) =
Gen(1n).

Step 1: Request signature. Let β0, . . . , βN−1 denote the first N =
(q
q/2)
λ

distinct mes-
sages (in lexicographic order) in M. Let α0, . . . , αN−1 be a random permutation of
β0, . . . , βN−1. Adv asks for a signature on α0 and verifies it (note that α0 is chosen inde-
pendently of the public key). We denote the obtained signature by σ0, and we denote
by T0 the transcript of the algorithms run so far, which includes the random tape of
the key generation algorithm, all the queries made by the key generation, signing, and
verification algorithms, and the answers to these queries. So T0 completely describes
the running of the algorithms so far. (Note that Adv only has partial information on
T0.)

Step 2: Learning query/answer pairs. We denote by L0 the information that Adv cur-
rently has on the oracle O and the randomness of the generation algorithm: that is,
L0 consists of vk, σ0 and the queries made by the verifying algorithm Ver on input
vk, σ0, along with the answers to these queries. Let ε = δ

qN
, and M = q

εδ
= q2N

δ2 . For
i = 1, . . . ,M , do the following:

1. Let Di−1 be the distribution of T0, the transcript of the first step, conditioned on
only knowing Li−1.

2. We let Q(Li−1) denote the queries appearing in Li−1. If there exists a string
x ∈ {0, 1}` \ Q(Li−1) that is queried with probability at least ε in Di, then Adv
lets Li be Li−1 concatenated with the query/answer pair (xi,O(xi)), where xi is
the lexicographically first such string. Otherwise, Li = Li−1.

Step 3: Sampling a possible transcript. Adv generates a random transcript T̃0 accord-
ing to the distribution DM . Note that T̃0 also determines a secret signing key, which
we denote by s̃k (s̃k may or may not equal the “true” signing key sk). T̃0 may also
determine some query/answer pairs that were not in LM , and hence may not agree

with the the actual answers of the “true” oracle O. We denote by Õ the oracle that
on input x, if x appears as a query in T̃0 then Õ(x) outputs the corresponding answer,

and otherwise Õ(x) = O(x).

Step 4: Forging. For every j = 1, . . . , N − 1, Adv uses s̃k and the oracle Õ to compute a
signature on the message αj, which it then tries to verify this time using vk and the
“true” oracle O. Adv outputs the first signature that passes verification.

38

Analysis

The number of queries asked during the attack is at most M + qN = q2N
δ2 + qN ≤ 2q2N

δ2 =

O(
q2(q

q/2)
λδ2). To analyze the success probability of Adv we will prove the following lemma:

Lemma 3.4.3. For every j ∈ [0..N − 1], let Vj denote the set of queries made by Adv when

verifying the signature on αj. Let G̃ and S̃0 be the sets of queries made by the generation

and signing algorithms according to the transcript T̃0. For every j ≥ 1, let Ej be the event

that Vj ∩ (G̃ ∪ S̃0) ⊆ V0. Then,

Pr[∪j∈[1..N−1]Ej] = 1− (λ+ 2δ)

Note that the event Ej corresponds to the condition that “α0 is useful for αj” described
in Section 3.2. Lemma 3.4.3 implies Theorem 3.4.1 since if the event Ej holds then when
verifying the signature for αj, the verifier never asks a query on which the oracles O and

Õ differ (these oracles can differ only on queries in (G̃ ∪ S̃0) \ V0). But if the verifier uses

the same oracle Õ used by the generation and signing algorithm, then by the definition of a
signature scheme, it must accept the signature.

3.4.1 Proof of Lemma 3.4.3

It turns out that using known combinatorial techniques, one can show that ∪jEj holds with
high probability if all signatures and verifications were to use the “true” oracle O and signing
key sk (as opposed to Õ and s̃k). The idea behind the proof is to show this holds in our case
using a hybrid argument. Specifically, we define four distributions Hyb0,Hyb1,Hyb2,Hyb3,
where Hyb0 corresponds to T̃0 joint with all the oracle queries/answers that the adversary
gets during the signing and verification algorithms on αj for j ≥ 1 (we call this information
the transcript of the experiment), and Hyb3 corresponds to T0 (the real transcript of the first
step) joint with the rest of the system’s transcript if we use the “true” oracle and signing
key (so the adversary is not doing anything in generating Hyb3). We will prove the lemma
by showing that the probability of ∪jEj is almost the same in all these four distributions.

Definition of hybrid distributions. The four hybrid distributions Hyb0, ..,Hyb3 are de-
fined as follows:

Hyb0: This is the distribution of T̃0, T1, . . . , TN−1, where T̃0 denotes the transcript sampled
by Adv in Step 3, while Tj (for j ≥ 1) denotes the transcript of the j’th signature (i.e.,
the queries and answers of the signing and verification algorithms on αj) as generated

by Adv in Step 4. Note that T0 and T̃0 describe also the running of the key generation
while Tj for j ≥ 1 do not.

Hyb1: This is the same distribution as Hyb0, except that now in Step 4 of the attack, the
adversary uses the modified oracle Õ for both signing and verifying the signatures on
α1, . . . , αN−1 (recall that in Hyb0 the oracle Õ is only used for signing).

39

Hyb2: This is the same distribution as Hyb1, except that we make a slight modification in
the definition of Õ: for every query x that was asked by the generation, signing, and
verification algorithms in the Input step and Step 1 (i.e., for every query in T0), we
answer with O(x) only if x also appears in LM . Otherwise, we answer this query with
a completely random value. Note that all the queries of the verification are in L0 and
so in LM as well. In other words, Õ agrees with O on all the queries that Adv has asked
from O till the end of Step 2, and all the others are answered completely at random.

Hyb3: This is the same distribution as the previous ones, with the difference that T̃0 is chosen
equal to T0 (and so, there is no point in neither Step 2 of the attack nor defining Õ
anymore). In other words, this is the transcript (randomness and all query/answer
pairs) of the following experiment: (1) Generate signing and verification keys (sk, vk)
using a random oracle O (2) for j = 0 . . . N − 1, sign αj and verify the signature using
sk, vk and O.

Note that the hybrid distributions Hybi are over the coin tosses of the oracle, the key gen-
eration algorithm, and the adversary. Lemma 3.4.3 follows immediately from the following
claims:

Claim 3.4.4. PrHyb0 [∪j≥1Ej] = PrHyb1 [∪j≥1Ej].

Claim 3.4.5. SD(Hyb1,Hyb2) ≤ 2δ. Thus,

Pr
Hyb1

[∪j≥1Ej] ≥ Pr
Hyb2

[∪j≥1Ej]− 2δ

.

Claim 3.4.6. Hyb2 ≡ Hyb3. Thus, PrHyb2 [∪j≥1Ej] = PrHyb3 [∪j≥1Ej].

Claim 3.4.7. PrHyb3 [∪j≥1Ej] ≥ 1− λ.

3.4.2 Proof of Claims 3.4.4 to 3.4.7

We now complete the proof of Lemma 3.4.3 by proving Claims 3.4.4 to 3.4.7.

Claim 3.4.4 (Restated). PrHyb0 [∪j≥1Ej] = PrHyb1 [∪j≥1Ej].

Proof. Suppose we sample the hybrid distributions Hyb0 and Hyb1 using the same oracle O,
same randomness for key generation, and the same randomness for the adversary. Then it
is easy to see that for any j, the event Ej holds for Hyb0 iff it holds for Hyb1 and so is the
event ∪j≥1Ej. This shows that the probability of ∪j≥1Ej happening in both distributions is
the same.

Claim 3.4.5 (Restated). SD(Hyb1,Hyb2) ≤ 2δ. Thus,

Pr
Hyb1

[∪j≥1Ej] ≥ Pr
Hyb2

[∪j≥1Ej]− 2δ

.

40

Proof. Let B be the event that Adv asks a query in Q(T0) \ Q(LM), where Q(T0) denotes
the queries in the transcript T0. It is easy to see that conditioned on B doesn’t happen Hyb1

and Hyb2 are identically distributed. That is because if we use the same randomness for
key generation, oracle and the adversary in the sampling of Hyb1 and Hyb2, conditioned on
B not happening (in both of them), the value of Hyb1 and Hyb2 is equal. In particular it
shows that the probability of of B is the same in both distributions. Therefore the statistical
distance between Hyb1 and Hyb2 is bounded by the probability of B. In the following, we
show that PrHyb2 [B] ≤ 2δ. In the the following all the probabilities will be in the experiment

for Hyb2.
Let ε, δ and M be as in Step 2 of Adv: ε = δ

qN
, and M = q

εδ
. We start by showing:

Pr[C] ≤ δ where the event C is defined as

C : ∃x 6∈ Q(LM) that is obtained in DM with prob ≥ ε

and Di is defined, as in Step 2 of Adv to be the distribution of the transcript of the first
signature conditioned on the information in Li.

Proof of Pr[C] ≤ δ. For every possible query x to the random oracle, let qx denote the
probability, taken over both the random oracle and the randomness used by Gen and Adv,
that x is queried when generating a key and then signing and verifying α0. Then

∑
x qx ≤ q

(*) since this sum is the expected number of queries in this process. Let px denote the
probability that x is learned at some iteration of Step 2. Then, qx ≥ εpx (**). Indeed, if
Ai is the event that x is learned at the i’th iteration, then since these events are disjoint
qx = Pr[x is queried] ≥

∑M
i=1 Pr[x is queried | Ai] Pr[Ai]. But by definition of the learning

process , Pr[x is queried | Ai] ≥ ε and hence qx ≥ ε
∑M

i=1 Pr[Ai] = εpx. But the event C only
occurs if M distinct queries are learned in Step 2. Hence, if it happens with probability more
than δ then the expected number of queries learned, which is

∑
x px, is larger than δM . Yet

combining (*) and (**), we get that δM <
∑

x px ≤
∑

x qx/ε ≤ q/ε, contradicting the fact
that M = q/(εδ).

Now we will show that Pr[B | ¬C] ≤ δ, and it means that

Pr[B] ≥ Pr[¬C] Pr[B | ¬C] ≥ (1− δ)2 > 1− 2δ.

Note that Adv makes all its operations in Step 4 based solely on the information in LM , and
the answers chosen for queries Q(T0)\Q(LM) does not affect it (because even if queries in
Q(T0)\Q(LM) are asked by Adv, they will be answered at random). So, it means that the
value of Hyb2 is independent of T0, conditioned on knowing LM . Thus, instead of thinking
of T0 being chosen first, then LM computed and then all queries of Step 4 being performed,
we can think of LM being chosen first, then Adv runs Step 4 based on LM to sample Hyb2,
and then T0 is chosen conditioned on LM and Hyb2. But because of the independence of
T0 and Hyb2 conditioned on LM , the distribution of T0 conditioned on LM and Hyb2 is
that conditioned on only LM which has the distribution DM . Now assume that LM makes
the event ¬C happen (note that C is defined by LM .). Since at most qN queries are

41

made in Step 4, and C has not happened, when T0 is chosen from DM , the probability
that Q(T0) \ Q(LM) contains one of these queries is at most εqN = δ. Therefore we get
Pr[B | ¬C] ≤ δ, and Pr[B] < 2δ.

Claim 3.4.6 (Restated). Hyb2 ≡ Hyb3. Thus, PrHyb2 [∪j≥1Ej] = PrHyb3 [∪j≥1Ej].

Proof. In the sampling of Hyb3 we can think of LM being chosen first (although not needed),
and then T0 being chosen conditioned on LM (i.e., from the distribution DM), and then
Step 4 of the experiment is done while any query in Q(LM) ∪ Q(T0) is answered according
to LM , T0, and any other query is answered randomly. (That is we sample LM and T0 in
the reverse order.) The point is that during the sampling process of Hyb2 we are also doing

exactly the same thing. Again, we sample LM first. Then T̃0 is chosen from the distribution
DM . Then Step 4 is done while any query in Q(LM)∪Q(T̃0) is answered according to LM , T̃0,
and all other queries (even the ones in Q(T0)\Q(LM)) are answered randomly. Therefore
Hyb2 and Hyb3 have the same distribution.

Claim 3.4.7 (Restated). PrHyb3 [∪j≥1Ej] ≥ 1− λ.

Proof. We will prove that this holds for every fixed oracle and randomness of all parties, as
long as the permutation α0, . . . , αN−1 is chosen at random. For every fixing of the oracle and
randomness and j ∈ [0..N − 1], let Uj = G ∪ Sβj denote the set of queries made by either
the key generation algorithm or the signing algorithm for message βj, and let Vj be the set
of queries made by the verification algorithm while verifying this signature. The proof will
follow from this fact:

Lemma 3.4.8 (Combinatorial Lemma). If U1, . . . , UK , V1, . . . , VK are subsets of some uni-
verse satisfying |Ui|+ |Vi| ≤ q and Ui ∩ Vj * Vi for every i 6= j then K ≤

(
q
q/2

)
.

The Combinatorial Lemma immediately implies Claim 3.4.7. Indeed, for every i, j with
i 6= j, define the event Ei,j to hold if Ui ∩ Vj ⊆ Vi. Then, there must be at least N −

(
q
q/2

)
=

N(1−λ) number of i’s (i.e., 1−λ fraction of them) such that Ei,j holds for some j (otherwise
we could remove all such i’s and obtain a larger than

(
q
q/2

)
-sized family contradicting the

combinatorial Lemma). But, if we choose a permutation α0, . . . , αN−1 such that α0 = βi for
such an i then the event ∪jEj holds.

Thus, all that is left is to prove is the combinatorial lemma. It essentially follows from
Bollobás’s Inequality [29], but we repeat the argument here for completeness. Assume for
the sake of contradiction that there is a family U1, . . . , UK , V1, . . . , VK satisfying conditions
of the lemma with K >

(
q
q/2

)
. First, we can remove any elements from Ui that are also in

Vi, since it will not hurt any of the conditions. It means that now we have: for every i, j,
Ui ∩ Vj = ∅ iff i = j. Now, take a random ordering of the universe W =

⋃
i(Ui ∪ Vi), and

let Ai be the event that all the members of Ui occur before the members of Vi in this order.
The probability of Ai is |Ui|!|Vi|!

(|Ui|+|Vi|)! = 1/
(|Ui|+|Vi|
|Vi|

)
≥ 1/

(
q
|Vi|

)
≥ 1/

(
q
q/2

)
. Hence if K >

(
q
q/2

)
,

there is a positive probability that both Ai and Aj hold for some i 6= j. But it is not hard
to see that in that case, either Ui and Vj are disjoint or Uj and Vi are disjoint, contradicting
our hypothesis.

42

3.5 A One-Time Signature Scheme

The following theorem shows that Theorem 3.1.1 is tight up to a constant factor in the
number of queries.

Theorem 3.5.1. There is a one-time signature scheme (Gen, Sign,Ver) for messages {0, 1}∗,
using a total of q queries to a random oracle that has security 2(0.812−o(1))q, where o(1) is a
term tending to 0 with q.

Proof. The scheme is basically Lamport’s Scheme [112] with two changes: (1) we use a
more efficient anti-chain (family of incomparable sets) than Lamport’s scheme (a well-known
optimization) and (2) we use a secret “salt” value for the hash function to prevent a birthday
attack.

The scheme description. Let c = (3−
√

5)/2 and k be such that (1 + c)k + 4 = q.

• Generate the keys by choosing k random strings xi ∈ {0, 1}q+i for 0 ≤ i ≤ k − 1, and
an additional random string z ∈ {0, 1}2q. 10 The secret key consists of these values,
and the public key is O(x1), . . . ,O(xk),O(z).

• Let h(α) be the first log
(
k
ck

)
bits of O(z, α), which we identify with a ck-sized subset

of 0, . . . , k − 1. The signature of α consists of {xi}i∈h(α) and the string z.

• To verify a signature, we first verify that O(z) is equal to its alleged value, then we
ask O(z, α) to know h(α), and then we ask ck more queries to check that the released
strings are indeed preimages of the corresponding entries of the public key indexed by
h(α).

The number of queries is q = (1 + c)k + 4, while, as we will see, the security is at

least Ω(
(
k
ck

)
) = 2(H(c)−o(1))k = 2

H(c)−o(1)
1+c

q > 2(0.812−o(1))q where H(·) is the Shannon entropy
function.

Let T be the total number of oracle queries asked by the adversary and α 6= β be (in
order) the message for which she asks a signature and the message for which she tries to
forge a signature. We assume without loss of generality that T < 2q−1, because 2q−1 �

(
k
ck

)
.

We divide the winning cases for the adversary into three cases:

1. The adversary chooses some z′ ∈ {0, 1}2q, z′ 6= z such that O(z) = O(z′), alleged to be
the real z in the signature of β.

2. The adversary uses the real z in the signature of β and h(α) = h(β).

3. The adversary uses the real z in the signature of β and h(α) 6= h(β).

10If we choose all of them from {0, 1}q the scheme is still as secure as we claimed, but now the analysis is
simpler.

43

We will show that the probability that the adversary wins conditioned on being in case
3 is at most O(T/

(
k
ck

)
), and the probability that either case 1 or case 2 happens at all is also

at most O(T/
(
k
ck

)
). So, the total probability of winning for the adversary will be at most

O(T/
(
k
ck

)
) as well.

In case 1, even if we reveal z to the adversary (xi’s are irrelevant), she has the chance of
at most (1 + T)/2q to find some z′ 6= z such that O(z) = O(z′). That is because she gets to
know at most T oracle query/answer pairs (other than 〈z,O(z)〉), and the probability that
she gets O(z) in one of them is at most T/2q. If she does not see O(z) as an oracle answer,
she needs to guess z′ blindly which succeeds with probability at most 1/2q.

In the case 2, we reveal all xi’s to the adversary at the beginning, although they are indeed
irrelevant to finding a pair α 6= β such that h(α) = h(β) (because they are of length < 2q).
Before the adversary gives us α, it asks at most T queries of length 2q. So, the probability
that she gets some z′ ∈ {0, 1}2q such that O(z′) = O(z) is at most T/22q = o(T/

(
k
ck

)
). Let

assume that this has not happened. So, we can pretend that when we receive α, the value of
z is chosen at random different from the members of {0, 1}2q that are asked from the oracle
by Adv. Thus, the probability that any adversary’s query so far with length more than 2q
has the prefix z will be at most T/(2q − T) < T/2q−1 = O(T/

(
k
ck

)
). It means that with

probability 1−O(T/
(
k
ck

)
), so far were no query asked from the oracle which has z as prefix.

Assuming this is the case, when we ask the query (z, α) from the oracle, h(α) is chosen

uniformly at random from {0, 1}log (kck). Hence, if the adversary asks T more oracle queries
of the form (z, γ) where γ 6= α, one of them will give h(γ) = h(α) with probability at most
T/
(
k
ck

)
, and if it does not happen for any of them, a blind guess β by the adversary will give

h(α) = h(β) with probability 1/
(
k
ck

)
. So, the probability of getting α 6= β, h(α) = h(β) for

the adversary is at most O(T/
(
k
ck

)
).

In the case 3, there always is some i ∈ h(β)\h(α). We choose the smallest such i, call
it i0, and change the game slightly by revealing z to Adv from the beginning and revealing
all xj’s for j 6= i0 to the her after she gives us β. It only might increases her chance of
success (although they are irrelevant because they have different length). For any fixed
i ∈ 0, . . . , k − 1, we show that the probability of the adversary to find a preimage for O(xi)
conditioned on i = i0 is at most (T + 1)/2q+i0 < (T + 1)/2q (which is necessary for her to
win), and then by the union bound, the probability of success for the adversary in this case
will be at most k(T + 1)/2q = O(T/

(
k
ck

)
). The reason is that the adversary can ask at most

T oracle queries after we reveal in order to find a preimage for O(xi0) . The probability that
for one of the queries x among these T queries she asks we have O(xi) = O(x) is at most
(T)/2q+i0 , and when it does not happen, the adversary has to guess a preimage for O(xi)
blindly, which will be correct with probability 1/2q+i0 .

The constant c in the description of the scheme maximizes
(
k
ck

)
, conditioned on q ≈

(1 + c)k. The same ideas show that whenever n ≤ dq where d ≈ 0.812 is obtained as above
(d = H(c)/(1 + c)), then there is a one-time signature scheme for messages {0, 1}n that
makes only q queries and achieved security exponential in the length of its queries.

44

3.6 Extensions

Now we prove several extensions of Theorem 3.1.1.

Other oracles Using minor changes to the proof of Theorem 3.4.1 we can get a similar
lower-bound for signature schemes based on the ideal cipher or a random permutation or-
acles. This is important as these oracles are also sometimes used to model highly efficient
symmetric-crypto primitives, and so it is an interesting question whether such oracles can
be used to construct signatures more efficiently.

Theorem 3.6.1. Let O be either the ideal cipher oracle. Then, for every one-time signature
scheme for messages {0, 1}n using a total of q ≤ n/4 queries to O there is an adversary
making 2(4−o(1))q oracle queries that breaks the scheme with probability 1 − o(1), where o(1)
denotes a term tending to 0 with q. In case of O being the random permutation oracle, only
q ≤ n/2 is needed to get and adversary asking 2(2−o(1))q queries, breaking the scheme with
probability 1− o(1).

Proof. We explain the proof for the ideal cipher oracle. Extending the proof for the random
permutation oracle is straightforward.

We change both the signature scheme and the oracle for the sake of the analysis. We
let the new oracle O′ be the same as O except that O′ does not answer queries of the
form (k, x, d) whenever |x| < 2(q+ log q). Instead it answers queries of the type (k, n) where
n < 2(q+log q), to which it returns the long string containing the concatenation of O(k, x, F)
for x ∈ {0, 1}n.

We change the signature scheme to get a new scheme (Gen′, Sign′,Ver′) as follows: (1)
use O′ instead of O and (2) whenever an algorithm makes a query (k, x, d) and obtains an
answer y, it will also make the “redundant” query (k, y, d̄) (where d̄ = B if d = F and vice
versa). Note that the total number of queries of the new scheme is at most q′ = 2q.

Lemma 3.6.2. Given the scheme (Gen′, Sign′,Ver′), there is an adversary Adv making at
most poly(q′)2q

′
queries from O′ that breaks the scheme with probability 1− o(1).

Lemma 3.6.2 implies Theorem 3.6.1 since any such adversary can be implemented using
the oracle O with at most a q222q factor increase in the number of queries, and the total
number of queries will be poly(q′)2q

′
q222q = 2(4−o(1))q.

Proof. The description of the attack remains basically the same as that of Theorem 3.4.1
set by parameters in Corollary 3.4.2 (i.e. N = 2q, λ = δ = θ(q−1/2)), and we have the same
distributions Hyb0,Hyb1,Hyb2,Hyb3 as before. However, there are some minor changes as
follows:

• During Step 2 of the attack, whenever learn a query, we add both the query and its
dual to Li.

45

• During Step 4 of the attach we might discover an inconsistency between the guesses
we made in the sampled transcript T̃0 and the answers we receive from the oracle O.
That is, we might get the same answer for two different plain texts with the same key.
However, as we will see this will only happen with small probability, and we ignore
this case safely. .

• The definition of Hyb2 needs to change a little. Namely, in the experiment for the
distribution Hyb2, during the signing and verification of α1, . . . , αN , whenever we make
a new non-redundant query (k, x, d), we look at all queries of the form (k, ·, d) appearing

either in the transcript of the system so far (i.e. T̃0, T1, . . .) or in the learned queries of
LM . Then we choose a random answer y from the set of unused answers and use it as
the oracle answer for (k, x, d). The next redundant query (k, y, d̄) is simply answered
by x.

The differences between the proof in this case and the proof of Theorem 3.4.1 are the
following:

• We need to include the condition in the event Ej that the queries made in the j’th
signing and verification are consistent with (the key generation part of) the transcript

T̃0 in the sense that they do not specify two queries (k, x, d), (k, x′, d), x 6= x′ which
map to the same answer y. The consistency condition guarantees (by definition) that
if Ej occurs, then the verifier will accept the j’th signature.

The combinatorial condition Vj∩(G̃∪S̃0) ⊆ V0 still guarantees that the j’th verification
does not ask any query for which we have guessed the answer.11

We can still prove that PrHyb0 [∃jEj] = PrHyb1 [∃jEj] using basically the same proof as
in Claim 3.4.4. We just have to note that as long as Ej happens in both experiments,
there is no way to distinguish their j’th signing and verification, and the consistency
also happens either in both or in none of them. s

• We again show SD(Hyb1,Hyb2) = o(1). The reason is that the difference between the
distributions Hyb1 and Hyb2 is due to some events which happen with probability o(1).
That is there are events in the experiments of sampling Hyb1 and Hyb2 which happen
with probability o(1) and conditioned on they not happening, Hyb1 and Hyb2 have the
same distribution.

– Similar to Claim 3.4.5 one of the differences between the distributions Hyb1,Hyb2

might be because of Adv asking a query in Q(T0) \Q(LM). Because of the same
analysis given in the proof of Claim 3.4.5 the probability that we ask any such
query (in both experiments) is at most 2δ = o(1). So, in the following we assume
that this case does not happen.

11This also guarantees that there is no inconsistency between the j’th verification and the transcript T̃0,
but later we will show that the total consistency happens with good probability

46

– In experiment of sampling Hyb1, when a new non-redundant query (k, x, d) is
asked in the 1 ≤ i’th signing or verification, the returned answer y might be equal
to a guessed answer for a query (k, x′, d) of T̃0 (we call this event F1), but it is never
equal to the answer of a query (k, x′′, d) ∈ Q(T0) \Q(LM). The situation for Hyb2

is the reverse: On a new non-redundant query (k, x, d) during the 1 ≤ i’th signing
or verification, the answer is never equal to a guessed answer for a query (k, x′, d)

in T̃0, but it might be equal to the answer of a query (k, x′′, d) ∈ Q(T0) \Q(LM)
(we call this event F2). Note that (Hyb1 | ¬F1) ≡ (Hyb2 | ¬F2). As we will see,
Pr[Fi] = o(1) for i = 1, 2 which shows that SD(Hyb1,Hyb2) = o(1).

The reason for Pr[F1] = o(1) is that whenever we have a new non-redundant query
in the 1 ≤ i’th signing or verification, its answer is chosen from a set of size at least
q222q − q′2q′ which might hit a guessed answer for a query in T̃0 with probability
at most q′/(q222q − q′2q′) = o(1). The same argument holds for Pr[F2] = o(1).

• Claim 3.4.6 still holds with the similar proof because of the way we defined Hyb2 for
the case of ideal cipher.

• Claim 3.4.7 is still correct with the same proof. Note that all the signing and verifica-
tions are consistent.

A similar and simpler proof works for the case of a random permutation oracle. In this
case, we again change the oracle by merging small queries into a single query with a huge
answer, but we don’t have the issue of adding “dual” queries, and therefore the condition
q ≤ n/2 (rather than q ≤ n/4) is enough to get an adversary who breaks the scheme with
probability 1− o(1) by asking 2(2−o(1))q queries (rather than 2(4−o(1))q queries).

Implementing Adversary in BPPNP. If the signature scheme is efficient, using an NP
oracle, our adversary can run in time poly(n, 2q), where n is the length of messages to be
signed.12 That is, we prove the following lemma:

Lemma 3.6.3. If the signature scheme is efficient, the adversary of the proof of Theo-
rem 3.4.1 can be implemented in poly(n, 2q) time using an oracle to an NP-complete prob-
lem.

Lemma 3.6.3 can be interpreted as saying that a non-black-box proof of security for
a signature scheme more efficient than the lower-bounds provided by Theorem 3.4.1 will
necessarily imply a proof that P 6= NP.

12In general, the security parameter could be different from the length of the messages n. For example, in
Section 3.5, the security parameter was q (so the security was 2Ω(q)), and the running time of the algorithms
was poly(n, q). Here, for simplicity, we assume that ` = poly(n), and all the algorithms’ queries are of length
`.

47

The only place in which the adversary uses its unbounded computational power is in
Step 2 where it chooses xi to be the lexicographically first unlearned string in {0, 1}l such
that xi is queried in Di with probability at least ε, and in Step 3 when it samples a random
T̃0 from DM .

We show that:

• Using an NP oracle, we can sample from a distribution D′i in expected poly(n, 2q) time
such that SD(D′i,Di) ≤ ε, where ε is as defined in Step 2.

• Using the D′i sampler, we can implement the adversary in poly(n, 2q) time with similar
success probability.

We first show how to use a D′i sampler to implement the adversary efficiently and then
will show how to sample from D′i efficiently using an NP oracle.

Efficient adversary using a Di approximate-sampler. So, here we assume that we
can sample efficiently from a distribution D′i such that SD(D′i,Di) ≤ ε. In order to choose xi
in the i’th step of the learning phase, we do the following. Let m = (l+logM− log δ)/ε2. We
sample m times from D′i to get D1

i , . . . , D
m
i . Then we choose xi to be the lexicographically

first unlearned query (i.e. not in Li−1) which appears in at least 2ε fraction of Q(Dj
i)’s.

Claim 3.6.4. With probability at least 1− δ we get the following: For every x ∈ {0, 1}l, and
every 1 ≤ i ≤M :

1. If Pr[x ∈ Q(Di)] ≥ 3ε, then x appears in more than 2ε fraction of Q(Dj
i)’s.

2. If Pr[x ∈ Q(Di)] ≤ ε, then x appears in less than 2ε fraction of Q(Dj
i)’s.

If the event above happens, it means that the learning algorithm learns all the 3ε-heavy
queries in its M rounds with probability at least 1 − δ (using the same argument as be-
fore). Therefore we get a weaker, yet strong enough, version of Claim 3.4.6 saying that the
SD(Hyb1,Hyb2) ≤ 3δ + δ + δ = o(δ).

The Claim 3.6.4 follows from the Chernoff bound. The probability that any specific x
violates the claim’s condition in any of the rounds is at most e−mε

2
< 2−mε

2
= 2−l−logM+log δ.

By union bound, the probability that the event is not violated at most M2l2−l−logM+log δ = δ.

Sampling D′i efficiently using an NP oracle. Note that Li which captures our knowl-
edge of the system after the i’th round of the learning phase can be encoded with poly(n, 2q)
bits. The number of random bits used by the adversary till the end of the i’th round of the
learning phase is also poly(n, 2q). For some technical reason which will be clear later, we
add the randomness used by the adversary to the description of Li. Similarly, any (possible)
transcript D which Pr[Di = D] > 0 can be represented with poly(n, q) < poly(n, 2q) bits.
In the following we always assume that such encodings are used to represent Li and D.

In order to sample from a distribution close to Di we use the following Lemma:

48

Lemma 3.6.5. There is a function f : {0, 1}∗×{0, 1}∗ 7→ N which is efficiently computable
(i.e. time poly(n, 2q)), with the following properties:

1. f(Li, D) = bcP[Di = D]c for some constant c depending on Li. So we have f(Li, D) =
0 if Pr[Di = D] = 0.

2. f(Li, D) ≥ 10/ε whenever Pr[D = D] > 0 where ε is as defined in Step 2.

Before proving the lemma, we see how it is used.

Corollary 3.6.6. We can sample from a distribution D′i such that SD(Di,D
′
i) ≤ ε in time

poly(n, 2q) (where the time poly(n, 2q) is independent of i for 1 ≤ i ≤M).

Proof. Let Wi = {(D, j) | 1 ≤ j ≤ f(Li, D)} be the set of “witnesses” for Li, where f is the
function in Lemma 3.6.5. Lemma 3.6.5 shows that the relation R = {(Li, w) | w ∈ Wi} is an
NP relation. It is known [14] that for any NP relation, there is a witness-sampling algorithm
that given any x, samples one of the witnesses of x uniformly in expected poly(|x|) time.
Therefore, we sample a random w = (D, j) such that w ∈ Wi in expected poly(n, 2q)-time,
and output D. It is easy to that the distribution D′i of our output has statistical distance
at most ε from the distribution Di.

Proof. (Lemma 3.6.5) Recall that Di is the distribution of transcripts T0 conditioned on the
information given in Li. Let the event E(Li) be the event that during the running of the
system (and our attack) adversary’s knowledge about the system and its randomness after the
i’th round of the learning is what Li denotes. Similarly, let E(D) be the event that D = T0

is the case in our experiment. Thus, for every transcript D, Pr[Di = D] = Pr[E(D) | E(Li)].
If we could compute Pr[E(D) | E(Li)], we could somehow use it in the Lemma 3.6.5, but
instead of doing that, we will rather compute Pr[E(D) ∧ E(Li)] which is proportional to
Pr[E(D)|E(Li)] up to a constant factor depending on Li, and will scale it up to some big
integer.

Given Li and D, in order to compute Pr[E(D) ∧ E(Li)], we track the whole experiment
from the beginning in the following order:

• Key Generation

• Signing α0

• The attack (which includes the verification of α0 as its first step) to the end of the i’th
round of the Learning.

At any moment that some coin tossing is involved (i.e. in the key generation algorithm,
in the attack, or fin an oracle answer), the result is determined by the description of Li
and D. Thus, we can calculate the probability that given values of Li and D will be the
ones in the real running of the experiment13. More quantitatively, during the simulation of

13For the case of ideal cipher or random permutation oracles, we need to keep track of the oracle answers
so far during the simulation of the experiment, in order to know what is that probability of receiving a
specific answer from the oracle at any point.

49

the experiment, we receive any specific oracle answer with probability at least 2−l whenever
it is a possible answer and the probability of getting a specific random tape for the key
generation and the adversary is at least 2− poly(n,2q). Since the total probability of Pr[E(D)∧
E(Li)] is the multiplication of all those probabilities that we get during the simulation of the
system, and because the number of oracle queries that we examine is at most 2O(q), we get
Pr[E(D) ∧ E(Li)] > 2− poly(n,2q) whenever Pr[E(D) ∧ E(Li)] 6= 0. Note that ε in the attack
is 2−O(q). Therefore, for a big enough constant c = poly(n, 2q), the function f(Li, D) =
bcPr[E(D) ∧ E(Li)]c is computable in time poly(n, 2q) and we have f(Li, D) > 10/ε as
well.

3.6.1 Handling Imperfect Completeness

While the typical definition of a signature scheme stipulates that a valid signature (generated
by the signing algorithm with the correct key) should be accepted with probability one, it
makes sense to consider (especially in the context of negative results) also signatures where
the verifier may reject such signatures with small probability, say 1/10. We are able to
extend our result to this case as well:

Theorem 3.6.7. For every one-time signature scheme for messages {0, 1}n, accepting cor-
rect signatures with probability at least 0.9 (over the randomness of the verifier), and asking
a total q ≤

√
n/20 queries to a random oracle, there is (1) an adversary making 2(1+o(1))q

queries that breaks the scheme with probability at least 2−q and (2) an adversary making
2O(q2) oracle queries that breaks the scheme with constant probability.

The proof of part (1) is a straightforward extension of the proof of Theorem 3.4.1 and
so we bring here the proof of part (2):

Lemma 3.6.8. For every one-time signature scheme with imperfect completeness (i.e., ver-
ifier can reject valid signatures with probability at most 1/10 over its coins) there is an
adversary asking 2O(q2) queries that finds with probability 1− o(1) a message/signature pair
which passes the verification with probability at least 0.7. 14

Proof. The main difference between the proof of this lemma compared to that of Theo-
rem 3.4.1 is the way we define the sets Vj’s. They are not simply the queries that the
verifications ask from the oracle. For sake of analysis, for every j, we define the set Vj to
be the set computed by the following process: run the j’th verification algorithm on the
generated message/signature pair m = times (for m to be defined later), and let Vj be the
set of queries that appeared in at least a 1/(20q) fraction of these verifications. Hence, we
have |Vj| ≤ 20q2. Note that the definition of Vj depends on the oracle used to do the ver-
ifications. We will treat the sets Vj’s in the analysis similar to what we did to them with
their previous definition. So, we define the new parameter r = 20q2 to the upper-bound on
|G|+ |Sj|+ |Vj|, while q is still an upper-bound for |G|+ |Sj|. As we will see, the proof will

14 The probability 0.7 could be substituted by any constant less than 0.9 with changing the constants in
the proof.

50

be similar to that of Theorem 3.4.1 and the parameters are set similar to those of Corol-

lary 3.4.2: N = 2r, λ = δ =
(r
r/2)
2r

= θ(r−1/2) = θ(1/q),m = 203q4, ε = δ
mqN

,M = q
εδ

. Other
than the parameters, the differences compared to the previous attack are:

1. When obtaining the signature σ0 in Step 1, we run the verification algorithm m times
and record in L0 all the resulting query/answer pairs.

2. In Step 4 we test q3 times each generated message/signature pair and output the first
signature that passes the verification at least a 0.75 fraction of these q3 times.

We also define the set Uj to be the set of queries that the j’th verification asks from the
oracle with probability at least 1/(10q) over its own randomness after we fix the random
oracle. Hence we have |Uj| ≤ 10q2

We say that Ej holds if (as before) Vj ⊆ (G̃ ∪ S̃0) ∩ V0. We also say that the event E
holds if Uj ⊂ Vj for every j.

Claim 3.6.9. If Ej ∧ E holds, then the j’th signature will be accepted by the verifier with
probability at least 0.9− 0.1 = 0.8 over the randomness of the verifier.

Proof. The only way this won’t happen is that with probability at least 1/10, the verifier

makes a query in the (at most q-sized) set G̃ ∪ S̃0 \ V0. But if this happens, then there is a
query in that set that is queried first with probability at least 1/(10q), yet because E holds
that means that it will be contained in Uj ⊂ Vj, contradicting Ej.

For any specific 1 ≤ j < N , by Chernoff bound, the probability that the fraction of
times that we accept the generated signature for αj is 0.05 far from its real probability of
being accepted by the verifier is at most e−0.052q3

and by union bound, the probability that it
happens for some j is at most 220q2

e−q
3/400 = o(1). Now suppose Ej∧E holds for some j = j0.

So by Claim 3.6.1, firstly we will output a pair of message and signature, and secondly this
pair is accepted by the verifier with probability at least 0.7.

Claim 3.6.10. We have Pr[E] ≥ 1− o(1).

Proof. By the Chernoff bound, the probability that a particular member of Uj is not in Vj

is at most e−(1
20q

)2m = e−20q2
. By union bound over the members of Uj, and j we have

Pr[(2) fails for some j] ≤ 10q2220q2
e−20q2

= o(1).

Now that we know E holds almost always, it only remains to show that with high
probability Ej happens for some j. This time we define the four hybrid distributions
Hyb0,Hyb1,Hyb2,Hyb3 a bit different. Instead of putting in Hybi the query/answer pairs
that we received during one verification, we put in Hybi all such pairs that we get at some
point during the m times that we run the verification.

The proofs of Claims 3.4.4–3.4.7 also work basically in the same way as before:

• Claim 3.4.4 still holds with the same proof.

51

• Claim 3.4.5 still holds with the same proof because of the new smaller value of ε that
we used.

• Claim 3.4.6 still holds with the same proof.

• Claim 3.4.7 is still correct with the same proof because the condition q ≤
√
n/20

guarantees that there is enough room to choose N ≤ 2n different messages in the
attack.

So, our adversary asks at most Nmq +M +Nq3 = poly(q)2r = 2O(q2) queries, and with
probability 1−o(1) finds a pair of message/signature passing the verification with probability
at least 0.7.

We note that the combination of all the above extensions holds as well (e.g., we can imple-
ment in BPPNP an adversary that breaks any signature scheme with imperfect completeness
that is based on the ideal cipher).

Efficiency of the verifier Because the signing and verification algorithms are run more
often than the key generation, lower-bounds on their own efficiency is still meaningful. In
Section 3.5 we saw that the signing algorithm can be very efficient while the total number
of queries was almost optimal. Here we show that if we want to get an efficient verifier and
exponential security at the same time, it makes the total number of queries to be inefficient.

Theorem 3.6.11. For every one-time signature scheme for messages M with total q oracle

queries where, if the verification asks at most v, v ≤ q/2 oracle queries and |M| ≥ (qv)
λ

then

there is an adversary asking at most O(
q2(qv)
λδ2) queries that breaks the scheme with probability

at least 1− λ− δ.

Before going over the proof note that for any v, k ∈ N, where 3 ≤ v ≤ q
2

(i.e. 1 ≤ v−2 ≤ k
where v + k + 2 = q) the scheme of Section 3.5 can be simply changed to get a new scheme
in which the verifier asks v queries by revealing v − 2 sized subsets of xi’s as the signature
rather than ck sized ones. A similar proof to that of Theorem 3.5.1 shows that this new
scheme has security Ω(

(
k
v−2

)
) = Ω(

(
q−v−2
v−2

)
). So, if v = dq for constant d, the maximum

security S one can get by asking at most v = q/d queries in verification and q queries totally
is bounded as H(1

d−1
)(1 − 1/d) − o(1) ≤ logS

q
≤ H(1

d
) + o(1) where H(·) is the Shannon’s

entropy function and o(1) goes to zero with q.

Proof. (Theorem 3.6.11) The proof is almost the same as that of Theorem 3.4.1. The only
difference is in Claim 3.4.7 in which we have a restriction that |Vj| ≤ v, and we conclude
that K ≤

(
q
v

)
. The only difference in the proof of Claim 3.4.7 is that now the event Ai has

probability at least |Ui|!|Vi|!
(|Ui|+|Vi|)! = 1/

(|Ui|+|Vi|
|Vi|

)
≥ 1/

(
q
|Vi|

)
≥ 1/

(
q
v

)
because v ≤ q/2.

52

3.7 Lower-Bounds on Black-Box Constructions

In a construction for signature schemes, one might use a standard primitive (e.g., one way
function) rather than one with ideal security (e.g., random function). These constructions
could have different levels of “black-boxness” discussed thoroughly in [143]. What we will
call black-box, is called fully black-box in [143]. Here we give a more quantitative definition
of such constructions. For simplicity we only define the black-box constructions of signa-
ture schemes from hard one-way functions, and the definition of black-box constructions
from other primitives are similar. After giving the formal definitions we will prove strong
lower-bounds on the efficiency of signature schemes from symmetric primitives when the
construction is black-box.

Definition 3.7.1. Let F` denote the set of all functions f : {0, 1}` → {0, 1}` over ` bits. We
call a family of functions {f` | ` ∈ N, f` ∈ F`}, s-hard (to invert), if for any probabilistic
algorithm A running in time at most s(`), we have Pr

x
R←{0,1}`

[A(f(x)) ∈ f−1(f(x))] ≤ 1
s(`)

where the probability is over the choice of x and the coin tosses of A.

By S-hard functions, for a set of functions S, we mean all those which are s-hard for
some s ∈ S. (Think of S as the set of all the functions which are super-polynomial, quasi-
polynomial, exponential, etc.) We will keep the notation that the capital leter denotes a set
of functions.

For simplicity we use n, the length of the messages to be signed, as the security parameter
of the signature scheme (i.e, the efficient schemes will run in time poly(n) and for larger values
of n the scheme becomes more secure).

Definition 3.7.2. A black-box construction of one-time signature schemes for n-bit mes-
sages from S-hard one-way functions, with security parameter contraction `(n) is made of
the following two families of reductions for all n ∈ N (we don’t write the index n for the
reductions):

• The implementation reduction I = (Gen, Sign,Ver) has three components which are
algorithms running in time poly(n) (Gen is probabilistic) and If = (Genf , Signf ,Verf)
satisfies in Definition 3.3.1 by setting O = f for any f ∈ F`(n).

• We call A a If -breaker if A is a (not necessarily efficient) adversary who breaks the
security of If with non-negligible probability by playing in the game defined in Defini-
tion 3.3.2. The security reduction R is an algorithm running in time t(n) where: (1):
For any f ∈ F`(n) and any If -breaker A, Pr

x
R←{0,1}`(n)

[RA,f (f(x)) ∈ f−1(f(x))] ≥ 1
w(n)

where the probability is over the choice of x and the coin tosses of R and A, (2):
t(n)p(n) < s(`(n)) for any p(n) = poly(n), any s(·) ∈ S and and large enough n, and
(3): w(n) < s(`(n)) for any s ∈ S and large enough n.

The security parameter contraction factor `(n) in Definition 3.7.2 measures how small
the length of the function used in the reduction is (i.e., the security parameter of the prim-
itive used) compared to n (i.e., the security parameter of the signature scheme). The term

53

“security parameter expansion” is used in [82] for the inverse of the contraction parameter
here.

Note that having such a reduction, the existence of any efficiently computable family
of functions f : {0, 1}` → {0, 1}` which is s-hard to invert for some s ∈ S implies the
existence of (efficient) one-time signature schemes which are secure against polynomial-time
adversaries. That is because (1): We get an efficient implementation of the scheme by
efficiently implementing f for If , and (2): If A is a If -breaker running in time poly(n), the
reduction R combined with its subroutine A breaks the s-hardness of f which is not possible.

Now we prove a strong lower-bound on the efficiency of signature schemes relying on
the efficiency of strong one-way functions. Then we will show how it generalizes to any
symmetric primitive and also functions with many hard-core bits.

Theorem 3.7.3. Let E denote the set of functions E = {f(`) | f = 2Ω(`)}. Any black-
box construction of one-time signature schemes for n-big messages from E-hard one-way
functions with security parameter contraction `(n) needs to ask min(Ω(`(n)), n) queries from
the one-way function.

Before going over the proof we make two observations. First, if construction uses E-hard
functions, it means that we should have t(n) = 2o(`(n)) and w(n) = 2−o(`(n) in the security
reduction. Another point is that the existence of such a reduction regardless of how many
queries it asks, makes `(n) to be ω(log n) for otherwise the condition t(n) poly(n) < s(`(n))
in Definition 3.7.2 will be violated. Therefore without loss of generality, we assume that
q ≥ log n, because otherwise we can ask log n redundant queries in the key generation
algorithm without changing the condition q ≤ min(Ω(`(n)), n).

Proof. For sake of contradiction suppose that there is a black-box construction of signature
schemes (I, R) where I asks q ≤ n queries from the one-way function and log n ≤ q = o(`(n)).

The proof will go in two steps. We will first show that any such construction results in a
(computationally unbounded) adversary asking 2o(`) queries from a a random function f

R←F`
and inverting it on a random point with probability at least 2−o(`) (where this probability
is also over the choice of f). Then we will show that it is not possible to have such an
adversary, namely any adversary asking 2`/3 queries has chance of at most 2−`/3 for doing
so.

Step 1. Let A be the adversary of Corollary 3.4.2 for the implementation of the signature
scheme I (note q ≤ n) asking at most 2(1+o(1))o(`(n)) queries from the function f (note q ≤
o(`(n)) and breaking If with probability at least 1 − o(1) when f is chosen at random

f
R← F`(n) where o(1) goes to zero with q. For large enough `(n), n becomes large enough

too, and so does q (because q ≥ log n). Therefore A asks at most 2o(`(n)) queries from f and

breaks the scheme with probability at least 3/4 when f
R← F`(n) for large enough `(n). By

an average argument, with probability at least 1/2 over the choice of f , A breaks If with
probability at least 1/2 over its own randomness. We call such f ’s the good ones. Whenever
f is good, RAf ,f inverts f on a random point with probability at least 2−o(`(n)), and because

54

f is good with probability at least 1/2, RA,f inverts f on a random point with probability at

least 2−o(`(n)) for a randomly chosen f
R← F`(n) where the probability is over the choice of f ,

the choice of the image to be inverted, and the randomness of A. By merging the code of R
with A, we get an adversary B = RA who asks at most 2o(`(n))2o(`(n)) = 2o(`(n)) queries from
f

R←F`(n) and inverts it on a random point (i.e., y = f(x) for x
R←{0, 1}`(n)) with probability

at least 2−o(`(n)).

Step 2. Suppose B is an adversary asking 2`/3 queries from a random function f
R← F`

trying to find a preimage for f(x) where x
R←{0, 1}`. We can pretend that the value of f at

each point is determined at random whenever it is asked for the first time. So, at first x is
chosen, f(x) is chosen, and it is given to B. At first B does not have any information about
x, so the probability that B asks x in any of its 2`/3 queries is at most 2−2`/3. Assuming
it does not ask x, the probability that B receives the answer f(y) = f(x) by asking any
y 6= x is at most 2−2`/3. Assuming that none of the mentioned events happens, if it outputs
y differen from all queries it has asked from f , f(y) = f(x) happens with probability 2−`.
So its chance of winning is at most 2−2`/3 + 2−2`/3 + 2−` < 2−`/3 (for ` ≥ 4).

As it is clear from the theorem, our lower-bound becomes stronger for larger values of
`(n) which is also the case in the similar (unconditional) lower-bound results [82, 156].

In order to extend the lower-bound to other symmetric primitives (and functions with
many hard-core bits) we can follow the same steps of the proof of Theorem 3.7.3 using the
following lemma.

Lemma 3.7.4. Let P be a symmetric primitive (i.e, one-way function, one-way permutation,
collision resistent hash function, pseudorandom generator, pseudorandom function, message
authentication code, or block cipher) , or the primitive of functions f : {0, 1}` → {0, 1}` with
`/2 hard-core bits. Then, there is an implementation for P for security parameter ` with
access to either, random oracle, random permutation oracle, or ideal cipher oracle which asks
only a constant number of queries of length θ(`) from the oracle, and any (computationally
unbounded) adversary Adv who asks at most 2o(`) queries from the oracle has chance of at
most 2−Ω(`) of breaking it (over the randomness of Adv and the oracle used).

Proof. We will describe the natural implementations and will show the proof of security only
for the case that P is the primitive of functions with `/2 hard-core bits. The security proofs
for other implementations are also easy to get (in fact, we already gave the proof for the case
of one-way function in the proof of Theorem 3.7.3).

• One-way function using random oracle: To define the value of the function f on
input x ∈ {0, 1}`, we simply use the oracle’s answer: f(x) = O(x).

• One-way permutation using random permutation oracle: To define the value of the
permutation p on input x ∈ {0, 1}`, we simply use the oracle’s answer: p(x) = O(x).

55

• Collision resistent hash function using random oracle: The value of the hash
function h on input x ∈ {0, 1}` is made by using the first `/2 bits of the oracle’s
answer: h(x) = b1 . . . b`/2 where O(x) = b1 . . . b`.

• Pseudorandom generator using random oracle: The stretched output of the gen-
erator g on input x ∈ {0, 1}` is the output of the oracle on the padded query:
g(x) = O(x|0`).

• Pseudorandom function using random oracle: Using the key k ∈ {0, 1}` on input
x ∈ {0, 1}`, the output of the function will be the first ` bits of the oracle’s answer on
the query made by attaching k and x: fk(x) = b1 . . . b` where O(k|x) = b1 . . . b2`.

• Message Authentication Code using random oracle: Using the key k ∈ {0, 1}`, the
authentication code of the message x ∈ {0, 1}` is defined similar to that of pseudoran-
dom function. The verification is clear.

• Block cipher using ideal cipher oracle: Using the key k ∈ {0, 1}` and the input
x ∈ {0, 1}`, and the direction d we simply use the oracle’s answer O(k, x, d) as our
cipher.

• Function with `/2 hard-core bits using random oracle: The value of the function
f on input x = x1 . . . x` uses the oracle’s answer: f(x) = O(x) and the hard-core bits
for x will be the first `/2 bits of it: HC(x) = x1 . . . x`/2.

Now we prove the claim for the last primitive (i.e., functions with `/2 hard-core bits).
Suppose the adversary A asks at most 2`/4 queries from the function f . Again, we assume
that f chooses its answers randomly whenever asked for the first time. In order to break
the hard-core property of the function f , the adversary A needs to distinguish between two
experiments. In the first one she is given (f(x), U`/2) as in put, and in the second one she is

given (f(x), HC(x)), and in both of the experiments f
R← F` and x

R← {0, 1}` are chosen at
random. Note that as long as A does not ask x from the oracle, the two experiments are the
same. At the beginning A does not knows the second half of the bits of x. So the probability
that she asks x from the oracle in one of her 2`/4 queries is at most 2`/42−`/2 = 2−`/4. Hence,
if the probability that she outputs 1 in the experiment i is pi (for 1 ≤ i ≤ 2), we have
|p1 − p2| ≤ 2−`/4.

So by using Lemma 3.7.4 and following the steps of the proof of Theorem 3.7.3 we get
the following theorem:

Theorem 3.7.5. Let E denote the set of functions E = {f(`) | f = 2Ω(`)}, and P be either
a symmetric primitive or the primitive of functions with `/2 hard-core bits. Any black-box
construction of one-time signature schemes for n-bit messages from an E-hard primitive P
with security parameter contraction `(n) needs to ask min(Ω(`(n)), n/4) queries from the
primitive P .

56

3.8 Conclusions and Open Questions

We believe that lower-bounds of this form— the efficiency of constructing various schemes
using black box idealized primitives— can give us important information on the efficiency
and optimality of various constructions. In particular, three natural questions related to this
work are:

• Can one pinpoint more precisely the optimal number of queries in the construction
of one-time signature schemes based on random oracles? In particular, perhaps our
lower-bound can be improved to show that the variant of Lamport’s scheme given in
Section 3.5 is optimal up to lower order terms.

• What is the threshold d that whenever n ≤ dq, we can get signature schemes for
messages {0, 1}n using q oracle queries, and arbitrary large security? Again, it seems
that the variant of Lamport’s scheme given in Section 3.5 (working for log

(
k
ck

)
bit

messages without hashing) gives this threshold (i.e., d ≈ 0.812).

• Can we obtain a 2O(q)-query attack succeeding with high probability against signature
schemes with imperfect completeness?

• Are there stronger bounds for general (not one-time) signatures? A plausible conjecture
is that obtaining a T -time signature with black-box security S requires Ω(log T logS)
queries.

57

Part II

NP-Hard Cryptography

58

Chapter 4

Sampling with Size and Applications
to NP-Hard Cryptography

4.1 Introduction

The ability to sample from efficiently decidable sets (i.e., membership in such a set can
be decided efficiently, but sampling from the set might be hard) is an extremely powerful
computation resource, to the point that having such ability for any decidable set implies
P = NP. In this work we study less powerful samplers, which only agree to sample from
more carefully chosen sets. We show that while these samplers can be used to break cer-
tain cryptographic primitives, they seem not to be strong enough to decide arbitrary NP
languages. We then use this fact to give negative evidence on the possibility of basing such
primitives on NP hardness.

Consider the sampler that gets a circuit C over {0, 1}n as input, and outputs two random
values x and x′ in {0, 1}n conditioned that C(x) = C(x′). Such a sampler is known as a
“collision finder”, and breaks the security of any family of collision-resistant hash functions
[150].1 We consider the following generalization of the above sampler: the sampler Samd,
where d ∈ N, gets up to d recursive calls, each of the form (C1, . . . , Ci, x), where i ≤ d, each
of the Cj’s is a circuit over {0, 1}n and x ∈ {0, 1}n. Samd answers depth 1 calls, (C1, ·),
with a random element in {0, 1}n. For depth i > 1 calls, Samd first checks that it was
previously queried with (C1, . . . , Ci−1, ·) and answered with x (otherwise, it aborts). If the
check passes, then Samd answers with a random element in C−1

1 (C1(x)) ∩ . . . ∩ C−1
i (Ci(x)).

(Note that Sam2, is equivalent to the “collision finder” we described above). Such a sampler
is very powerful, as it can be used for breaking the binding of any d-round statistically hiding
commitments [86, 156].

Commitment schemes are the digital analogue of a sealed envelope. In such a scheme, a
sender and a receiver run an interactive protocol where a sender commits to a bit b. In case

1A family of collision resistant hash functions is a family of, efficient, compressing functions with the
following security guarantee: given a random function h in the family, it is hard to find x 6= x′ satisfying
h(x) = h(x′).

59

the commitment is statistically hiding, then the protocol guarantees that from the receiver’s
point of view there exists roughly equal chance that the sender has committed to b = 0 or
b = 1 (hence the bit b is hidden from the receiver information-theoretically). In addition,
the scheme guarantees that a computationally-bounded sender can only find one way to
decommit. Statistically hiding commitments are widely used throughout all of cryptography,
with applications including, but not limited to, constructions of zero-knowledge protocols
[12, 33, 66, 87, 125], authentication schemes [44], and other cryptographic protocols (e.g.,
coin-tossing [114]). Hence, it is highly important to study the minimal assumptions required
for building them. Since Samd breaks any d-round statistically hiding commitments, it is
very informative to learn what hardness assumptions Samd does not break (in particular,
we have little hope to base d-round statistically hiding commitments on such assumptions).
The following theorem shows that for a constant d, Samd is not “too powerful”.

We write L ∈ BPPO[k] to mean that L can be decided by AO, where A is a k-adaptive
(randomized) oracle algorithm using an oracle O: A makes k adaptive rounds of queries to
its oracle; each round may consist of many queries, but all of the queries in one round can
be computed without looking at the oracle responses to any of the other queries in the same
or later rounds. We say A is non-adaptive if k = 1.

Theorem 4.1.1 (Main theorem, informal). For any d = O(1) and any efficient oracle al-
gorithm A, there exists an interactive protocol AM−Sam with the following guarantee: either
the output of the efficient verifier is statistically close to the output of ASamd, or (if the
prover cheats) the verifier aborts with high probability. Furthermore, the round complexity of
AM−Sam is the same as the adaptivity of the oracle queries of A, and the honest prover strat-
egy has complexity BPPNP (while the protocol remains sound against unbounded cheating
provers).

We apply this theorem to understand what languages can be efficiently decided by ran-
domized oracle algorithms with oracle access to SamO(1), where the strength of the implica-
tion is a result of the adaptivity of the calls to SamO(1) made by the algorithm. Theorem 4.1.1

yields a k-round protocol for any language L ∈ BPPSamO(1)[k]. Since BPPSamO(1)[k] is closed
under complement, the above implies the following corollary.

Corollary 4.1.2 (Limits of languages decidable using oracle access to SamO(1)). It holds

that BPPSamO(1)[k] ⊆ AM[k] ∩ coAM[k]. In particular, every L ∈ BPPSamO(1)[k] has a k-
round interactive proof where the honest prover has complexity BPPNP. Furthermore, if L
is NP-complete, then the following consequences hold.

• k = poly(n): co-NP has a public-coin O(k)-round interactive proof with honest prover
complexity BPPNP.

• k = polylog(n): the quasipolynomial hierarchy collapses to its third level (by [136]).

• k = O(1): PH = Σ2 (by [30]).

60

Since the polynomial hierarchy is widely conjectured not to collapse, it follows that NP-
complete languages are unlikely to be in BPPSamO(1)[k=O(1)]. For k = polylog(n), the collapse
is less understood, but it is still reasonable to conjecture that such a collapse does not oc-
cur. For k = o(n) the consequence may not be implausible, but would nevertheless lead to
surprising progress on the long-standing open question of reducing the round complexity of
interactive proofs for co-NP [115]. Finally for k = poly(n), as pointed out to us by Holen-
stein [96], it would answer a long-standing open question of Babai et al. [9] about reducing
the complexity of the prover in interactive proofs for co-NP from BPP#P to BPPNP (in
fact this question is even open for multi-prover interactive proofs). Thus, depending on the
adaptivity k, Corollary 4.1.2 gives an indication of either the implausibility or the difficulty
of proving that NP-complete languages can be decided using the help of SamO(1).

4.1.1 Application to Basing Cryptography on NP-Hardness

Since SamO(1) breaks the security of d-round statically hiding commitments, it also breaks
the wide variety of cryptographic primitives that yield such commitments via constant-
adaptive black-box reductions. This list includes: collection of claw-free permutations with
an efficiently-recognizable index set [66], collision-resistant hash functions [46, 124], (singly)
homomorphic encryption [100], constant-round protocols for oblivious-transfer and private
information retrieval schemes where the security of one of the parties holds information the-
oretically [86], the average-case hardness of SZK [130], constant-round statistically binding
commitments secure against selective opening attacks [157], and constant-round inaccessible
entropy generators [88]. The following corollary states that if any of the above primitives
can be based on NP-hardness via a black-box reduction R, then RSamO(1) decides SAT.

Corollary 4.1.3 (Immediate by Corollary 4.1.2). Let P be a cryptographic primitive whose
security can be broken by SamO(1). Let R be a k-adaptive reduction that bases the existence
of P on NP-hardness. Then SAT ∈ AM[k] ∩ coAM[k], where the honest provers that
realize this containment are in BPPNP. The various consequences for different k given in
Corollary 4.1.2 also hold.

We remark that previous results studying the analogous question of basing (general)
one-way functions on NP-hardness were restricted to non-adaptive reductions [5, 27, 54].
Other works do consider adaptive reductions, but with respect to more structured primitives
[5, 31, 64]. See Section 4.1.3 for the description of previous works.

4.1.2 Main Tool—A New Sampling Protocol

Our main tool for proving Theorem 4.1.1, which is also our main technical contribution, is
a new constant-round public-coin sampling protocol that we believe to be of independent
interest. A distribution D is called efficiently samplable if it is the output distribution of
an efficient function f : {0, 1}n 7→ {0, 1}∗ (i.e., D = f(Un)). A distribution is efficiently
samplable with post-selection if D = f(US) where US is the uniform distribution over an
efficiently decidable set S ⊆ {0, 1}n. Such distributions have also been studied in the context

61

of randomized algorithms [91]. We emphasize that although S is efficiently decidable, it is
not necessarily possible to efficiently sample uniform elements of S.

Our “Sample With Size” protocol takes f,S, and a good approximation of |S| as input,
and enables an efficient verifier to sample a uniform y ∈ f(S), along with a good approxi-
mation of the value |f−1(y) ∩ S|.

Lemma 4.1.4. (Sampling With Size protocol, informal) There exists a constant-round public-
coin protocol SampWithSize, where the parties get as a common input an efficiently decidable
set S ⊆ {0, 1}n, an efficiently computable function f : S 7→ {0, 1}∗ and a good approximation
(i.e., within (1± 1

poly(n)
) factor) of |S|, and has the following guarantees:

Either VSWS outputs a pair (x, sx) such that 1. x is distributed (1/ poly(n))-statistically
close to the uniform distribution over S, and 2. sx is a good approximation for |f−1(f(x))∩S|
, or (if the prover cheats) the verifier aborts with high probability. Furthermore, the honest
prover has complexity BPPNP, while the cheating prover may be unbounded.

4.1.3 Related Work

NP-Hardness and Cryptography

Brassard [31] showed that if there exists a deterministic black-box reduction from NP-
hardness to inverting a one-way permutation, then NP= co-NP. Bogdanov and Tre-
visan [27], building on earlier work of Feigenbaum and Fortnow [54], showed that if there
exists a non-adaptive randomized black-box reduction from NP-hardness to inverting a
one-way function (or more generally, to a hard on the average problem in NP), then
NP ⊆ coAM/ poly, which is considered implausible since the polynomial hierarchy would
collapse to the third level [159]. Akavia et al. [5] improved this result for the case of reduc-
tions to inverting one-way functions, to show that the same hypothesis implies the uniform
conclusion NP ⊆ coAM, which implies that the polynomial hierarchy collapses to the
second level [30].

Goldreich and Goldwasser [64] showed that adaptive reductions basing public-key en-
cryption schemes with the special property that the set of invalid ciphertexts is verifiable
in AM, on NP-hardness would also imply that NP ⊆ coAM. Finally, Pass [135] takes
a different route and showed that if a specific type of witness-hiding protocol exists, then
an arbitrarily adaptive reduction from NP-hardness to the existence of one-way functions
implies that co-NP ⊆ AM∩coAM. As recently pointed out by Haitner et al. [89], however,
it is unlikely that known witness-hiding protocols are of the type required by [135].

We remark that while most cryptographic reductions we know of are non-adaptive, there
are a few notable exceptions. In particular, security reductions for building interactive
protocols [125], pseudorandom number generators [90, 92, 95], and certain lattice-based
cryptosystems [4, 121]. One may hope in particular that lattice problems might someday be
used to prove that P 6= NP implies one-way functions or collision-resistant hash functions,
since they already exhibit a worst-case to average-case hardness reduction.2 Previous work

2In particular, the adaptivity of the lattice-based schemes seems essential for giving the best known

62

such as [5, 27] do not rule out the possibility that any of these (or some other adaptive)
techniques may succeed.

The Oracle Sam

Simon [150] studied collision finders that break collision-resistant hash functions. In our
language of Sam, a collision finder is the same as Sam2, i.e., Sam where queries of at most
depth 2 are allowed. Simon [150] considered the sampler Samπ

2 — a generalization of Sam2

that gets circuits with π-gates, where π is a random permutation oracle. He showed that while
Samπ

2 breaks any collision-resistant hash functions relative to random permutation π (i.e., the
hash function is allowed to use π-gates), it cannot invert π. Continuing this line of research,
Haitner et al. [86] showed that Samπ

d breaks all d-round statistically hiding commitments,
even those implemented using π, but Samπ

d does not help to invert π if d = o(n/ log n). As a
consequence, the above results rule out the possibility of basing o(n/ log n)-round statistically
hiding commitments on the existence of one-way functions/permutations, using fully-black-
box reductions — a reduction from (the security of) a primitive to one-way function is
fully-black-box, if the proof of security is black-box (in the sense of Corollary 4.1.3), and
in addition the construction uses the one-way function as a black-box (i.e., as an oracle).
Note that these results are incomparable to the result stated in Corollary 4.1.3. On one
hand, they rule out all fully-black-box reductions unconditionally without restrictions on
adaptivity, and the reductions they consider are starting from one-way functions rather than
NP-hardness (and thus “harder” to refute). On the other hand, their results do not apply to
constructions that may use the code of the one-way function (or, in our case, the structure of
the NP-complete language). In contrast, Corollary 4.1.3 also applies to reductions where the
construction is non-black-box, which permits, for example, the construction to exploit the
fact that YES instances of NP languages have efficiently verifiable witnesses. In other words,
Corollary 4.1.3 only requires that the security analysis be black-box. We refer the reader to
Reingold et al. [143], which, although not focused on our case where the construction is non-
black-box but the security analysis is black-box, is useful for understanding the distinctions
between various notions of reductions.

Sam and zero-knowledge. In recent work, Gordon et al. [79] observe that our main result
is useful in the context of understanding zero-knowledge proofs. In particular, they prove
using Theorem 4.1.1 that if a language L has a constant-round black-box computational
zero-knowledge proof based on one-way permutations with a k-adaptive simulator, then
L ∈ AM[k]∩ coAM[k]. Their result suggests that reducing the round complexity of known
constructions of zero-knowledge proofs based on one-way permutations for NP (e.g., [22, 71])
(all of which have super-constant round complexity) to a constant number of rounds is
implausible (if the simulator must be O(1)-adaptive) or at least difficult to prove (regardless
of the simulator’s adaptivity).

approximation-ratio required in the worst-case hard lattice problem. Unfortunately, even in the best known
reductions the starting worst-case hard problem in the NP ∩ co-NP.

63

Efficiently Samplable Distributions with Post-Selection

Estimating statistics. Estimating statistical properties efficiently samplable distributions
has long been studied in theoretical computer science [2, 56, 68, 75, 129, 146]. Typically,
estimating interesting parameters of samplable distributions (and therefore also of samplable
distributions with post-selection) such as entropy or statistical difference is hard (e.g., SZK-
hard). Nevertheless, for samplable distributions it was known that an efficient verifier can
estimate various parameters in constant rounds with the help of an all-powerful prover.

Bounding set-size protocols. The constant-round public-coin lower-bound protocol of
Goldwasser and Sipser [75] can be used to lower-bound the size of efficiently decidable sets.
Namely, on input an efficiently decidable set S and a value s, the prover makes the verifier
accept iff |S| ≥ s. Fortnow [56] (see also Aiello and H̊astad [2]) gives a constant-round
protocol that upper-bounds the sizes of efficiently decidable sets S where in addition the
verifier has a uniform element of S that is unknown to the prover.

These protocols are related to our protocol SampWithSize. For example, one can estimate
with respect to D = f(Un) the integer sy = |f−1(y)| for a random y

R←D by lower-bounding
and upper-bounding the set |f−1(y)|. In particular, the upper-bound [2, 56] can be applied

in this case, since the verifier can sample x
R← Un, compute y = f(x) and ask the prover for

an upper-bound on the size of the set f−1(y) without revealing x. This is one way to prove
SampWithSize for the special case S = {0, 1}n.

We cannot necessarily apply, however, the upper-bounds of [2, 56] to do the same thing
with post-selected distributions D = f(US); even though f−1(y) is efficiently decidable,

it may not be possible to efficiently generate y
R← f(US) and x ∈ f−1(y) such that x is

hidden from the prover. As we discuss in Section 4.2.2, handling post-selected distributions
is necessary to obtain Theorem 4.1.1. Although one-sided lower-bound estimates can be
obtained from the lower-bound protocol of [75], it is unknown how to get two-sided estimates
using the upper-bound protocol of [2, 56], where the difficulty is to obtain secret samples
from US . In contrast, SampWithSize does guarantee a two-sided bound for |f−1(f(x)) ∩ S|
for a random x in US .

Sampling. Using an all-powerful prover to help sample is an old question in computer
science, dating at least to the works of Valiant and Vazirani [154] and Impagliazzo and
Luby [97]. In building SampWithSize, we use a sampling protocol from Goldreich et al. [74].
This constant-round public-coin protocol takes as input an efficiently decidable set S and
a good approximation of |S|, and outputs a nearly-uniform element of S. Our protocol
SampWithSize uses their sampling protocol and extends it by also giving set size information
about the sample that is generated.

Another protocol that seems related to SampWithSize is the random selection protocol
of Goldreich et al. [69]. Their protocol accomplishes a goal similar to the protocol of [74],
allowing a verifier to select a random element of a set. Their protocol, however, cannot be
applied in our context as it requires super-constant round complexity. Other related work

64

include random selection protocols arising in the study of zero-knowledge [45, 73, 147], but
none of these protocols provides the size information that is provided by SampWithSize.

4.1.4 SamO(1) vs. Sam2

It is worthwhile noting that Theorem 4.1.1 for non-recursive collision finders (i.e., Sam2),
can be proven via a straightforward application of the lower-bound protocol of Goldwasser
and Sipser [75] and the upper-bound protocol of [2, 56]. See Section 4.2.1 for an illustration
of these easier proofs.

Various evidence suggests, however, that SamO(1) is more powerful than Sam2. There
is no known way to “collapse” the depth (i.e., to show that Sam2 suffices to emulate Samd

for d > 2), and under various assumptions there exist problems solvable using SamO(1)

but not Sam2 (for example, the average-case hardness of SZK [130] and constant-round
parallelizable zero-knowledge proofs for NP [88], both imply constant-round statistically
hiding commitment, but not collision-resistant hash functions). Therefore, we do not focus
on the (admittedly simpler) proof of Theorem 4.1.1 for the case of Sam2, and rather we build
our machinery of SampWithSize in order to prove Theorem 4.1.1 for the case of SamO(1).

4.1.5 Contrast to Previous Work

Samd is in a sense a “canonical recursive collision finder”. Similarly, one could consider a
“canonical function inverter” that takes as input a circuit C and a value y and outputs
a random element of C−1(y). Such an oracle would break all one-way functions. One
could then ask whether it is possible to construct some kind of “AM-Inv” that emulates this
canonical inverter. Such a result would strengthen our main theorem, since an inverter can
in particular find collisions.

Unfortunately, it is not known how to build such an AM-Inv. The main difficulty is
handling cheating provers, who claim that the given query is not invertible. Notice that for
the problem of inverting a function, it is possible to ask queries (C, y) where y is not in the
image of C.3 In this case the oracle must say that the query is invalid. Since there is no
efficient way to verify that y is not in the image of C, a cheating prover can claim, say, that
none of the verifier’s queries are in the image of C even when some are valid queries. In
general, it is not known how to catch this kind of cheating, since proving that y is not in the
image of C is a co-NP statement.

As already mentioned in Section 4.1.3, various works have gotten around this difficulty
using additional restrictions either on the way the inverting oracle is called (e.g., non-
adaptivity) or on the kinds of functions that the oracle inverts (e.g., one-way permutations).
The main reason we are able to build AM−Sam whereas building “AM-Inv” seems out of
reach, is that in our setting, unlike the inverting oracle, Samd can never respond “failure” to
a query that passes the sanity checks (since these checks ensure that collisions always exist).

3Actually, as pointed out by [28], asking such queries might be very useful.

65

Organization

High level description of our techniques is given in Section 4.2. Notations, definitions and
basic lemmas can be found in Section 4.3 (this include formal statements of the set lower and
upper-bound protocols, and the uniform sampling protocol we discussed above). Our main
technical contribution (Lemma 4.4.1) is given in Section 4.4, where our main result (Theo-
rem 4.5.2) and its applications to understanding black-box reductions basing cryptography
on NP-hardness are given in Section 4.5.

4.2 Our Techniques

In this section we overview our proof for Theorem 4.1.1. As a warmup, we start with the
much simpler case of Sam2 (i.e., d = 2), and then move to any constant d.

This overviews presented here assume familiarity with the lower-bound protocol of [75],
the upper-bound protocol of [2], and the uniform-sampling protocol of [74] (see Section 4.3.5
for formal definitions).

4.2.1 The Case of Sam2

Given an efficient oracle algorithm A, we construct an AM protocol that emulates ASam2

as follows: the protocol’s high-level strategy is standard; the verifier tries to emulate the
execution of ASam2 by picking random coins for the reduction A, and whenever A asks an
oracle query to Sam2, the verifier engages the prover in a protocol such that the distribution
of the output is close to what Sam2 would output, or else the verifier rejects.

Depth 1 queries: a query (C1,⊥) is answered as follows:

1. The verifier samples x
R←{0, 1}n at random and send y = C1(x) to the prover.

2. The prover responds with s = |C−1
1 (C1(x))|.

3. Using the lower-bound protocol of [75] and the upper-bound protocol of [2], the verify
checks that s ≈ |C−1

1 (C1(x))|.4

4. The verifier stores (xi, si) in a lookup table, and returns x.

4Actually, the upper-bound protocol of [2] does not give a useful upper-bound for single query, but
only guarantees good upper-bound for most queries from a large enough set of queries. Nevertheless, the
above approach can be slightly modified to go through, by choosing many x’s, applying the set upper and
lower-bounds protocol on each of them, and finally picking one of them at random.

66

Depth 2 queries: On query (C2, x), the verifier checks that C1 was asked before and was
answered with x (if not it rejects). The it looks up the value of sx previously stored and uses
it to sample a random member of the set Sib(x) using the sampling lemma of [74]. It easily
follows that this sample is close to uniformly distributed in C−1

1 (C1(x)).
Assuming that the prover does not cause the verifier to reject with high probability, each

query of A (or rather each adaptive round of parallel queries) is answered correctly (up to
some small statistical deviation), and the proof follows.

4.2.2 The Case of SamO(1)

We start by showing how to generalize the above approach for using protocol SampWithSize
to implement protocol AM−Sam, and then give details on the implementation of protocol
SampWithSize itself.

Let us start with a more precise description of Samd. On input (C1, . . . , Ci, x), where
x ∈ {0, 1}n and each Cj is a circuit over {0, 1}n, Samd performs the following “sanity check”:
it checks that i ≤ d, and if i > 1 then it also checks that it was previously queried on
(C1, . . . , Ci−1, x

′) (for some x′ ∈ {0, 1}n) and answered with x. If any of these checks fail,
Samd returns “failure”. Otherwise, Samd returns a random element x′ in S(C1, . . . , Ci−1, x) :=
{x′ ∈ {0, 1}n : ∀1 ≤ j ≤ i− 1, Cj(x

′) = Cj(x)} (if i = 1, it returns a random x′ ∈ {0, 1}n).
Viewed differently, x′ is a random collision with x for depth i−1 with respect to C1, . . . , Ci−1

(since it satisfies Cj(x
′) = Cj(x) for every 1 ≤ j ≤ i− 1).

In protocol AM−Sam, the verifier chooses A’s random coins at random and then emulates
ASamd , while answering each query (C1, . . . , Ci, x) to Samd using the following subprotocol:
the verifier first performs (using the data stored during previous executions, see below) the
sanity check of Samd, and aborts and rejects in case any of these tests fail. Otherwise it does
the following:

In case i = 1: The verifier sets S = {0, 1}n, s = 2n, and f = C1 and runs SampWithSize to
get a random sample x1 ∈ {0, 1}n and an approximation

s1 ≈ |{x′ ∈ {0, 1}n : C1(x1) = C1(x′)}| .

The verifier stores an entry ((C1, x1), s1) in its memory, and returns x1 to A as the
query’s answer.

In case i > 1: The verifier looks up the entry ((C1, . . . , Ci−1, x), si−1) from its memory (the
sanity checks guarantee that such an entry must exist, since x was the answer for a
previous query (C1, . . . , Ci−1, ·)). Run SampWithSize on these parameters

S = Si = {x′ ∈ {0, 1}n : ∀1 ≤ j ≤ i− 1, Cj(x
′) = Cj(x)} , f = Ci, and si−1

in order to obtain xi ∈ S and the approximation si ≈ |{x′ ∈ S : Ci(xi) = Ci(x
′)}|. As

in the case i = 1, the verifier stores an entry ((C1, . . . , Ci, xi), si) in its memory, and
returns xi.

67

To see that AM−Sam indeed behaves like ASamd , we first note that Lemma 4.1.4 yields that
for depth 1 queries, SampWithSize returns x1 that is (close to) uniform in {0, 1}n, which is
what Samd would answer. In addition, SampWithSize outputs a good approximation s1 for
|C−1

1 (C1(x1))|, which can be used as input for depth 2 queries to AM−Sam. Since s1 is a
good approximation, this means that a depth 2 query will be answered by SampWithSize with
x2 where x2 is a near-uniform element of C−1

1 (C1(x1)), again, just as Samd would answer.
SampWithSize also outputs a good approximation s2 ≈ |C−1

2 (C(x2))|, which can be used for
depth 3 queries, and so on.

The above is done in parallel for each of the k adaptive rounds of oracle queries. The
approximation error of si grows as the depth increases, and from the formal statement of
Lemma 4.1.4 it follows that we can repeat the above process a constant number of times.
Unfortunately, the accumulated error becomes super-polynomial for any d = ω(1).

The Protocol SampWithSize

The underlying idea behind the soundness proof of SampWithSize is to force the prover to
behave “correctly”, by using an accurate estimate of the average preimage size of y

R←D :=
f(US). Here, the average preimage size is defined as µ(D) := E

y
R←f(US)

[log |f−1(y)|], where

f−1(y) := {x ∈ S : f(x) = y}. (Note that this is the average on the log-scale; using this scale
is crucial for the correctness of our protocol, see below).

The above estimate is then used to force the prover to give many tuples (yi, si) such

that yi
R← D and most of the si are good approximations for |f−1(yi)|. We let VerMean =

(PVM,VVM) denote the protocol that guarantees an accurate estimate of the average preimage
size, as stated in the following:

Lemma 4.2.1 (Verifying Average Preimage Size, informal). There is a constant-round
public-coin protocol VerMean that on input (f,S, s), as in the statement of Lemma 4.1.4,
and a real number µ′, guarantees the following assuming that s ≈ |S|:

Completeness: if µ′ = µ(D), then the verifier accepts (when interacting with the honest
prover) with high probability.

Soundness: if µ′ is far from µ(D), then the verifier rejects (when interacting with any
prover) with high probability.

Proving SampWithSize using VerMean: we first show how to use VerMean to prove SampWithSize,
then discuss how to prove VerMean in the next section. On input S, f and s, where s ≈ |S|,
the parties do the following:

1. The prover sends to the verifier a real number µ′. The parties run the VerMean protocol
to verify that µ′ is close to µ(D).

2. The verifier uses the sampling protocol of [74] to sample many uniform points x1, . . . , x`
in US , and sets yi = f(xi) for all i.

68

3. The prover sends s1 = |f−1(y1)|, . . . , s` = |f−1(y`)| to the verifier. The parties engage
in the [75] lower-bound to ensure that indeed |f−1(yi)| ≥ si for all i.

4. The verifier computes µ′′ = 1
`

∑`
i=1 log si and checks whether µ′ ≈ µ′′. If they are too

far apart, it aborts. Otherwise, it outputs (xi, si), for a random i ∈ [`].

Since completeness is straightforward to observe from the definition of the protocols, in the
following we focus on describing how to prove the soundness properties of the SampWithSize
using VerMean. Intuitively, the lower-bound in Step 3 means that if the prover wants to
cheat, it can only claim si to be smaller than |f−1(yi)|. On the other hand, by a Chernoff
bound we know that for large enough `, the empirical average 1

`

∑
` log |f−1(yi)| will be close

to µ(D) ≈ µ′. Therefore, if the prover consistently under-estimates |f−1(yi)| for many i,
then µ′′ will much smaller than µ′, and we will catch him in Step 4. Together, this implies
that si ≈ |f−1(yi)| for almost all i, and so outputting (xi, si) for a random i is good with
high probability.5

Verifying the Average Preimage Size

As a warmup, we first give such a verification protocol for the simple case of efficiently sam-
plable sets. We then give an high level description of the seemingly much more complicated
case of efficiently decidable sets.

Warmup: efficiently samplable sets. As already mentioned in Section 4.1.4, proving
VerMean for the case S = {0, 1}n, or more generally for an efficiently samplable S, is a
straightforward application of the lower-bound protocol of [75] and the upper-bound protocol
of [2, 56]). In particular, the following simple protocol suffices:

1. The verifier samples many uniform random samples x1, . . . , x` from S, computes yi =
f(xi) for all i, and he sends y1, . . . , y` to the prover.

2. The prover responds with s1, . . . , s`, where si = |f−1(yi)|.

3. In parallel for all i ∈ [`], the verifier engages the prover in the set lower and upper-
bound protocols to check that si ≈ |f−1(yi)|. Notice that the verifier is able to run the
upper-bound protocol because he has the secret sample xi.

4. If all the checks pass, then the verifier accepts iff µ′ is very close to 1
`

∑`
i=1 log si.

By a Chernoff bound we know that µ(D) ≈ 1
`

∑`
i=1 log |f−1(yi)| with high probability, and

so if the verifier accepts in the upper/lower-bound protocols, it then also holds that µ(D) ≈
1
`

∑`
i=1 log si with high probability. This implies that the verifier accepts if µ′ = µ(D) and

rejects if µ′ is far from µ(D).

5Here the log-scale is crucial. Assume that we would have defined µ(D) := E
y

R←f(US)
[|f−1(y)|]. In this

case, the standard deviation “allows” a Ω(2n/2) deviation from the expectation. Hence, the prover can under
count the value |f−1(y)| for all the (polynomially many) samples without being caught.

69

The general case: efficiently decidable sets. The above approach heavily relies on the
set upper-bound protocol, which requires a random secret sample from S. While obtaining
such a sample is easy for efficiently sample sets, it seems infeasible when the set in hand
in only efficiently decidable. Nevertheless, we manage handle the general case by asking
the prover for more infirmation about the distribution D = f(US). Namely, we show that
one can verify the histogram of D (see Section 4.2.3), and from this histogram the verify
compute the value µ(D) by itself. Finding a more direct protocol for estimating the mean,
is an interesting open problem.

4.2.3 Histograms

Let D be a distribution over {0, 1}n, let py = Pr
y′

R←D
[y′ = y], let ε ∈ (0, 1] and let

m = n/ε. The ε-histogram of D is a function hf : {0, . . . ,m} 7→ [0, 1], where hf (i) =
Pr

y
R←D

[
py ∈ (2−(i+1)ε, 2−iε]

]
. Namely, the histogram tells us the distribution of weights of el-

ements drawn from D. Note that the smaller the ε, the more informative hf is about D, but
hf ’s description is larger. Hence, we will consider histograms for small enough ε = 1/ poly(n).

In the following we define a distance between histograms with the following properties: (1)
it is feasible verify whether a claimed histogram is in small distance from the real histogram
(without using upper-bound protocols), (2) and given that the claimed histogram is of small
distance from the real one, the mean derived by this histogram is close to the real value.

Wasserstein Distance

We use the 1st Wasserstein distance W1 (also known as Kantorovich distance and Earth
Mover’s distance) as the distance measure between histograms. This distance is well studied
in probability theory [103, 104, 122] and also has application in computer science (e.g., in
the realm of image processing [145]). To understand this distance intuitively, think of a
histogram h as piles of “earth” on the discrete interval 0, . . . ,m, where the larger h(i) is, the
larger the pile at location i. W1(h, h′) is the minimal amount of work that must be done
to “push” the configuration of earth given by h to get the configuration given by h′. Recall
that in physics, work equals force times distance. For example, pushing a mass of weight
0.1 from bin 2 to bin 3 requires work 0.1 · (3− 2) = 0.1, where pushing the same mass from
bin 2 to bin 4 requires 0.1 · (4 − 2) = 0.2. The W1 distance for histograms over {0, . . . ,m}
is defined as:

W1(h, h′) =
1

m
·
∑

0≤i≤m

∣∣ ∑
0≤j≤i

(h(j)− h′(j))
∣∣

The intuition is that |
∑

0≤j≤i h(j) − h′(j)| captures the amount of mass “pushed” from
the interval {0 . . . , i} into the interval {i+ 1, . . . ,m}, and taking an integral over all these
amounts together gives us the total amount moved.

We first notice that the above distance has the second property we require above (i.e.,
small variation in the Wasserstein distance implies small difference in the mean), and then,

70

in Section 4.2.3, explain why is it feasible to verify that a claimed histogram is of small
Wasserstein distance from the real one.

From the above definitions it follows that

µ(D) =
∑

y∈Supp(D)

Pr[D = y] · log |f−1(y)|

= log |S| −
∑

y∈Supp(D)

Pr[D = y] · log |S|
|f−1(y)|

= log |S| −
∑

y∈Supp(D)

Pr[D = y] · log 1
Pr[D=y]

= log |S| −
∑

0≤i≤m∑
log

1
Pr[D=y]

∈(ε·(i−1),ε·i]

Pr[D = y] · log 1
Pr[D=y]

≈ log |S| −
∑

0≤i≤m

hf (i) · i
m
,

where the quality of ≈ is a function of ε, and Supp(D) := {y | Pr[D = y] > 0}. Given
an histogram h such that W1(hf , h) is small, the following says that the estimate µ′ =
log |S| −

∑
0≤i≤m h(i) · i is close to µ(D).

|µ(D)− µ′| ≈ 1

m
·
∣∣ ∑

0≤i≤m

(hf (i)− h(i)) · i
∣∣

=
1

m
·
∣∣ ∑

0≤i≤m

∑
0≤j≤i

(hf (i)− h(i))
∣∣

≤ 1

m
·
∑

0≤i≤m

∣∣ ∑
0≤j≤i

(hf (i)− h(i))
∣∣

= W1(hf , h).

Verifying Histograms

The above tells us that in order to find the mean µ(D), it suffices to give a protocol that
verifies that a histogram h is close to the true histogram hf of D in W1 distance. Such
protocol has to handle not only efficiently samplable distributions D = f(Un), but also
the efficiently samplable distributions with post-selection D = f(US), where S is efficiently
decidable, as long as the verifier is also given a good approximation of |S|. We prove the
following:

Lemma 4.2.2 (Verify histogram protocol, informal). There exists a constant-round public-
coin protocol VerHist, between a prover in BPPNP and an efficient verifier, where the parties

71

get as a common input an efficiently decidable set S ⊆ {0, 1}n, an efficiently computable
function f : S 7→ {0, 1}∗, a good approximation (i.e., within (1 ± 1

poly(n)
) factor) of |S| and

a claimed ε-histogram h : {0, . . . ,m} 7→ [0, 1] of the distribution D = f(US), and has the
following guarantees:

Completeness. If h = hf , then the verifier (when interacting with the honest prover) ac-
cepts with high probability.

Soundness. If h is far from hf in the 1st Wasserstein distance (as a function of ε), then
the verifier (when interacting with any cheating prover) rejects with high probability.

Previous work using histograms. Previous works have used histograms to estimate set
sizes, and a related protocol to VerHist appears in Goldreich et al. [74]. We emphasize that
their protocol accomplishes a different task that is incomparable to ours.6

Proving Soundness of VerHist.

Before handling the general case, let us consider the very special case of VerHist where f
that is promised to be a regular function over S (but with unknown regularity).

The case of regular functions. Assuming that f is k regular, it implies that |f(S)| =
s/k, and the only non-zero element of the histogram is h(k/s), which has value 1. To verify
a claimed value k′, the verifier does the following.

Preimage test: The parties run the lower-bound protocol of [75] to verify that k = |f−1(f(x))| ≥
k′ (here x is an arbitrary element in S).

Image test: The parties run the lower-bound protocol to check that s/k = |f(S)| ≥ s/k′.

From the guarantee of the lower-bound protocol, it follows that the preimage test prevents
the prover from claiming k′ � k. Similarly, the image test prevents the prover from claiming
k′ � k, as this would make |f(S)| = s/k � s/k′ and the lower-bound of the image test
would fail. Note that we are able to use the lower-bound protocol in the image test, since
f(US) is efficiently decidable.

The general case. The idea in the regular case above is that by giving a lower-bound on
the image of the function f , one obtains an upper-bound on the preimage. This idea extends
to f that are far from being regular, and we generalize the special case of regular functions
to a protocol with more image tests over many subsets of f(S).

6The protocol of [74] lower-bounds the size of a set S that is efficiently verifiable via a low-communication
interactive protocol, but not efficiently decidable using a circuit. To do so, they recursively refine the his-
togram such that the following holds: if the prover lies about |S| (and gives an over-estimate), then at the
base of the recursion the verifier catches the cheating by noticing that some parts of the histogram are empty.
The prover, however, must claim they are non-empty in order to be consistent with previous answers.

72

Define the sets Wi ⊆ f(S) given by Wi = {y ∈ f(S) : |f−1(y)| ≥ i}. As in the case of
regular functions, where the regularity k determines the size of the image |f(S)|, for the
general case we observe the histogram hf determines the sizes of |Wi| for all i. Let whi be
the estimate of |Wi| that is given by the histogram h. Note that using the lower-bound
protocol, one can efficiently verify membership inWi (given y, run the lower-bound to verify
that |f−1(y)| ≥ i). Therefore, the set sizes |Wi| can themselves be lower-bounded using (a
generalization of) the lower-bound protocol of [75].

In our VerHist protocol, given an input (S, f, s) and a claimed ε-histogram h for D =
f(US), the verifier first checks that h is a valid histogram (i.e.,

∑
0≤j≤m h(j) = 1), and then

the parties are engaged in the following two steps:

Preimage test:

1. The parties run the uniform sampling protocol of [74], to sample ` random ele-
ments y1, . . . , y` from D = f(US).

2. The prover sends s1 = |f−1(y1)| , . . . , s` = |f−1(y`)| to the verifier.

3. The parties run in the set lower-bound protocol of [75] to verify that |f−1(yi)| ≥ si
for all i.

4. The verifier constructs the histogram hemp induced by s1, . . . , s`, and aborts if
W1(h, hemp) is too large.

Image test: For i ∈ [m], the parties run the lower-bound protocol to verify that |Wi| ≥ whi .

To see why the above protocol has the desired properties see Section 4.4.

4.3 Preliminaries

4.3.1 Notation

We use calligraphic letters to denote sets and capital letters to denote random variables.
Given u ∈ Um+1, we denote the components of u as u = (u0, . . . , um), and let u≤i =

(u0, . . . , ui). For a random variable X, we write x
R←X to indicate that x is selected according

to X. Similarly, we write x
R← S to indicate that x is selected according to the uniform

distribution over the set S. Also recall that by US we denote the random variable whose
distribution is uniform over S. All the logarithms written as log in this thesis are in base 2.
For any m ∈ N, we let [m] = {1, . . . ,m} and (m) = {0, 1, . . . ,m}.

4.3.2 The Histogram of a Function

For any distribution D, let py = Pr
y′

R←D
[y = y′] be the weight of an element y under the

distribution D. The histogram of D is the probability distribution of weights of elements
drawn from D. Namely, a histogram h assigns to every p ∈ [0, 1] the probability h(p) =

73

Pr
y

R←D
[p = py]. We will discretize the histogram on the log-scale with an approximation

error ε to obtain the following definition.

Definition 4.3.1 (Histogram). Let S ⊆ {0, 1}n, let f be a function from S to {0, 1}∗, let
ε > 0 and let m = bn/εc. For i ∈ (m) we define the i’th “bin” as

Bi =

{
y : Pr

x
R←S

[f(x) = y] ∈ (2−(i+1)·ε, 2−iε]

}
.

Let Bin(x) := i iff f(x) ∈ Bi, and let h = (h0, . . . , hm) where hi = Pr
x

R←S
[Bin(x) = i]. We

call h the ε-histogram of the function f over S.

For simplicity, in the definition of a histogram, we always assume that ε is chosen in a
way that n/ε ∈ N and m = n/ε exactly. Notice that the bins with smaller numbers contain
“heavier” elements (namely for smaller i, the elements y ∈ Bi occur with larger probability).
The histogram h encodes the (approximate) regularity structure of the function f over the
domain S. For example let ε = 1 (which implies m = n) and S = {0, 1}n. Therefore a
1-to-1 function’s histogram has one non-zero entry hm = 1, a 2-to-1 function’s histogram
has one non-zero entry hm−1 = 1, while a constant function’s histogram has one non-zero
entry h0 = 1. Functions with more complex regularity structures would have more complex
histograms.

Histograms can also be defined for empirical samples drawn according to a distribution as
follows. Suppose we have a set of examples x1, . . . , x` all sampled from xi

R←S, and suppose
someone claims to us the weights of each of the f(xi). Namely, he gives to us a labeling
function v : [`] → (m) with the claim that f(xi) ∈ Bv(i). This labeling v induces a claimed
histogram as follows.

Definition 4.3.2 (Empirical histogram). For a labeling function v : [`] 7→ (m), define
hv = Hist(v) where hvj = Pr

i
R←[`]

[v(i) = j].

The following observations easily follow from Definition 4.3.1.

Proposition 4.3.3.

1.
⋃
i∈(m) Bi = S and

∑
i∈(m) hi = 1,

2. For every y ∈ Bi it holds that |f−1(y)| ∈ (|S| · 2−(i+1)ε, |S| · 2i·ε].

3. For every i ∈ (m) it holds that |Bi| ∈ [hi · 2iε, hi · 2(i+1)·ε).

4.3.3 Metrics over Distributions

Wasserstein Distance

The following metric measures how much “work” it takes to turn one distribution over U
into another one; where the amount of work is assumed to be amount of needed “moves” of

74

the probability masses times the distance by which they are moved. Our definition is for the
special case that the members of U form a one-dimensional array and their distance is the
normalized difference between their indices. For more general spaces it is known as the 1st
Wasserstein distance or the Kantorovich distance [103, 104, 122]. Also in the field of image
processing it known as the Earth Mover’s distance [145].

Definition 4.3.4 (1st Wasserstein distance over arrays). Given two distribution vectors x
and y over (m), for every i ∈ (m) we let ai =

∑
0≤j≤i xj and bi =

∑
0≤j≤i yj. We let

•
−→
W1(x, y) = 1

m
·
∑

i∈(m) : ai>bi
(ai − bi),

•
←−
W1(x, y) = 1

m
·
∑

i∈(m) : bi>ai
(bi − ai),

• W1(x, y) =
−→
W1(x, y) +

←−
W1(x, y),

where we call W1(x, y) the 1st Wasserstein distance between x and y, where
←−
W1(x, y) and

−→
W1(x, y) are called the left and right Wasserstein distance respectively.

The triangle inequalities are easy to verify.

Proposition 4.3.5. Let x, y and z be distributions vector over (m), then

1.
−→
W1(x, y) +

−→
W1(y, z) ≥

−→
W1(x, z),

2.
←−
W1(x, y) +

←−
W1(y, z) ≥

←−
W1(x, z),

3. W1(x, y) + W1(y, z) ≥ W1(x, z).

Proof Sketch: We only prove the first item. For i ∈ (m), let ai and bi be as in Definition 4.3.4
and similarly let ci =

∑
j∈(i) zj. Let i ∈ (m) be such that (ai − ci) > 0, we will show this

coordinate contributes at least as much to
−→
W1(x, y) +

−→
W1(y, z) as it does to

−→
W1(x, z) (this

concludes the proof, since only positive (ai−ci) contributes to
−→
W1(x, z)). Assuming that both

(ai−bi) and (bi−ci) are positive, then this coordinates contributes 1
m
· ((ai−bi)+(bi−ci)) =

1
m
·(ai−ci) to

−→
W1(x, y)+

−→
W1(y, z). In the case that one of (ai−bi) and (bi−ci) is positive and

the other is negative, then the only (positive) term that contributes to
−→
W1(x, y) +

−→
W1(y, z)

is larger than 1
m
· (ai − ci).

Shift Distance

Suppose we have a set of empirical examples x1, . . . , x`
R←S. Let u(i) = Bin(xi) and v(i) be

the “claimed” value for u(i) (which might differ from the honest bin labels Bin(xi) = u(i)).
Let hv be the histogram induced by the (possibly false) bin labels v(i), and let hu be the
histogram induced by the true bin labels Bin(xi) = u(i). While W1(hu, hv) captures the
minimal amount of work to move the histogram hu to the histogram hv. The following
“shift distance” captures the amount of work required by a specific way to move from one
histogram to another (and thus at least as large as W1(hu, hv)).

75

Definition 4.3.6 (Shift distance). Given two mappings u, v from [`] to (m), we define

the right shift distance as
−→
SH(u, v) = 1

m`
·
∑

i : u(i)<v(i)(v(i) − u(i)), the left shift distance as
←−
SH(u, v) = 1

m`
·
∑

i : u(i)>v(i)(u(i)−v(i)), and the shift distance as SH(u, v) =
−→
SH(u, v)+

←−
SH(u, v).

We will use the following simple proposition.

Proposition 4.3.7. The following holds for every two mappings u and v, from [`] to (m):

1. If u(i) ≤ v(i) + k for all i ∈ [`], then
←−
SH(u, v) ≤ k/m. Similarly if v(i)− k ≤ u(i) for

all i ∈ [`], then
−→
SH(u, v) ≤ k/m.

2. If SH(u, v) ≤ k/m, then for at least (1−δ) fraction of i ∈ [`] it holds that |u(i)−v(i)| ≤
k/δ.

3. It holds that
−→
SH(u, v) = 1

m`
·
∑

j∈(m) |{i : u(i) ≤ j ∧ v(i) > j}|, and similarly

←−
SH(u, v) =

1

m`
·
∑
j∈(m)

|{i : v(i) ≤ j ∧ u(i) > j}| .

Proof Sketch. The first part readily follows from Definition 4.3.6. For the second part note
that E

i
R←[`]

[|u(i) − v(i)|] = m · SH(u, v) ≤ k. So by the Markov inequality it holds that

Pr
i

R←[`]
[|u(i)− v(i)| > k/δ] ≤ δ. Finally, the third part holds because if v(i) > u(i), then the

index i contributes 1
m`
· (v(i) − u(i)) to

−→
SH(u, v) while it contributes 1

m`
to the right hand

side for each j such that u(i) ≤ j < v(i).

Shift Distance to Wasserstein Distance

The following lemma, relates the Shift distance of two samples, to the Wasserstein distance
of the two histograms induced by these samples.

Lemma 4.3.8 (Bounding W1 with SH). The following holds for every two mappings u and
v, from [`] to (m): let hu = Hist(u) and hv = Hist(v), then

1.
−→
W1(hu, hv) ≤

−→
SH(u, v) and

←−
W1(hu, hv) ≤

←−
SH(u, v) (and thus W1(hu, hv) ≤ SH(u, v)).

2.
−→
W1(hu, hv) ≥

−→
SH(u, v) −

←−
SH(u, v) and

←−
W1(hu, hv) ≥

←−
SH(u, v) −

−→
SH(u, v) (and thus

W1(hu, hv) ≥ |
−→
SH(u, v)−

←−
SH(u, v)|).

Proof of Lemma 4.3.8. Let Ju>v :=
{
j ∈ (m) :

∑
i∈(j) h

u
i >

∑
i∈(j) h

v
i

}
. By Definition 4.3.4

it holds that
−→
W1(hu, hv) =

1

m
·
∑

j∈Ju>v

(
∑
i∈(j)

hui −
∑
i∈(j)

hvi),

76

and by Definition 4.3.2 it holds that∑
i∈(j)

hui =
∑
i∈(j)

1

`
· |{k : u(k) = i}| = 1

`
· |{i : u(i) ≤ j}| .

The first part of the lemma (we only give here the proof for
−→
W1, where the proof for

←−
W1 is

analogous) holds since

−→
W1(hu, hv)

=
1

m`
·
∑

j∈Ju>v

(|{i : u(i) ≤ j}| − |{i : v(i) ≤ j}|)

=
1

m`
·
∑

j∈Ju>v

(|{i : u(i) ≤ j ∧ v(i) > j}| − |{i : v(i) ≤ j ∧ u(i) > j}|)

≤ 1

m`
·
∑

j∈Ju>v

|{i : u(i) ≤ j ∧ v(i) > j}|

≤ 1

m`
·
∑
j∈(m)

|{i : u(i) ≤ j ∧ v(i) > j}|

=
−→
SH(u, v) (by Proposition 4.3.7).

The second part holds since

−→
W1(hu, hv)

=
1

m`
·
∑

j∈Ju>v

(|{i : u(i) ≤ j}| − |{i : v(i) ≤ j}|)

≥ 1

m`
·
∑
j∈(m)

(|{i : u(i) ≤ j}| − |{i : v(i) ≤ j}|)

=
1

m`
·
∑
j∈(m)

(|{i : u(i) ≤ j ∧ v(i) > j}| − |{i : v(i) ≤ j ∧ u(i) > j}|)

=
1

m`
·
(∑
j∈(m)

|{i : u(i) ≤ j ∧ v(i) > j}| −
∑
j∈(m)

|{i : v(i) ≤ j ∧ u(i) > j}|
)

=
−→
SH(u, v)−

←−
SH(u, v).

The last equality is due to Proposition 4.3.7.

4.3.4 Efficient Provers for AM Protocols

In this section we show that the prover in any AM[O(1)] protocol can be replaced by a
BPPNP prover, with a loss in the completeness error that depends on the round complexity.

77

First we review a result of [11] about amplifying the soundness and reducing the rounds to
two, in any AM[O(1)] protocol.

The definition above assumes that the probability a YES instance is accepted is ≥ 1−2−n

and the probability that a NO instance is accepted is ≤ 2−n. This is equivalent to YES
instances being accepted with probability ≥ 2/3 and NO instances being accepted with
probability ≤ 1/3 for by the following well-known lemma.

Lemma 4.3.9 (Error reduction for AM protocols, [11]). Let M = (P,V) be a AM[O(1)]
protocol which there is no condition on the probability of accepting or rejecting the inputs by
the verifier, and let α = α(n) < 1, β = β(n) < 1 be such that α − β > 1/ poly(n). Suppose
we define the sets Yα and N β as follows.

• Yαn = {x ∈ {0, 1}n : Pr[V accepts in 〈P,V〉 (x)] ≥ α}.

• N β
n = {x ∈ {0, 1}n : ∀P∗, Pr[V accepts in 〈P∗,V〉 (x)] ≤ β}.

Then there exists an AM protocol M′ = (P′,V′) (with an efficient verifier) such that for all
n the following holds

• ∀x ∈ Yαn , Pr[V′ accepts in 〈P′,V′〉 (x)] ≥ 1− 2−2n.

• ∀x ∈ N β
n ,∀P∗, Pr[V′ rejects in 〈P∗,V′〉 (x)] ≥ 1− 2−2n.

The following lemma says that the prover in any AM[O(1)] protocol can be replaced by a
BPPNP prover, with a loss in the completeness error that depends on the round complexity.

Lemma 4.3.10 (BPPNP provers for AM protocols). Let M = (P,V) be an AM[2k] protocol
(with no input) for k = O(1) such that

Pr[V accepts in 〈P,V〉] ≥ 1− δ,

for δ ≥ 1/ poly(n). Then there is a BPPNP prover strategy P′ such that

Pr[V accepts in 〈P′,V〉] ≥ 1− 2kδ1/2k .

In order to prove prove Lemma 4.3.10 we start with the following lemma.

Lemma 4.3.11. Let M = (P,V) be a AM[O(1)] protocol, δ ≥ 1/ poly(n), and the following
set is not empty:

Y1−δ
n = {x ∈ {0, 1}n : Pr[〈P,V〉 (x) accepts] ≥ 1− δ},

then there exists a BPPNP strategy that with probability ≥ 1 − 2−n/2 finds an element
x ∈ {0, 1}n such that Pr[〈P,V〉 (x) accepts] ≥ 1− 2δ.

Proof. Define the set N 1−2δ
n = {x ∈ {0, 1}n : Pr[〈P,V〉 (x) accepts] ≤ 1 − 2δ}, and let

M′ = (P′,V′) be the “amplified” two-round protocol that Lemma 4.3.9 yields with respect
to M = (P,V) with parameters α = 1− δ and β = 1− 2δ. Thus,

78

• for every x ∈ Y1−δ
n , it holds that Pr[〈P′,V′〉 (x) accepts] ≥ 1− 2−2n, and

• for every x ∈ N 1−2δ
n , it holds that Pr[〈P′,V′〉 (x) accepts] ≤ 2−2n.

Let ω denote the random coins of V′ for inputs of length n. By a union bound, it holds that

Pr
ω

[∃x ∈ N 1−2δ
n , 〈P′,V′〉 (x;ω) accepts] ≤ 2−n (4.3.1)

The BPPNP algorithm claimed in the theorem simply does the following: choose ω
uniformly at random, and use the NP oracle to find x such that V′(x;ω) = 1. Notice that
since Y1−δ

n 6= ∅, therefore with probability at least 1− 2−2n such x exists. Furthermore, by
Inequality 4.3.1 the probability that x ∈ N 1−δ

n is at most 2−n.
Therefore, with probability 1 − 2−n − 2−2n ≥ 1 − 2−n/2 we output x /∈ N 1−δ

n , namely it
will hold that Pr[〈P,V〉 (x) accepts] ≥ 1− 2δ.

Proof of Lemma 4.3.10. For any sequence of i messages w = (r1,m1, r2, . . .) exchanged be-
tween V and P we can always define a AM[k− i] game (Pw,Vw) with respect to w where the
fist i messages are fixed to be w and the parties continue interacting as if they are (P,V).
For any sequence of messages w we define ρ(w) = Pr[Vw accepts in 〈Pw,Vw〉].

Suppose r1 is the first message of the verifier V. By an average argument it holds that
Pr[ρ(r1) ≥ 1 −

√
δ] ≥ 1 − 2

√
δ. The prover strategy P′ pretends that ρ(r1) ≥ 1 −

√
δ

holds and uses Lemma 4.3.11 where the input x of Lemma 4.3.11 will be the response of
P′ to the message r1. Lemma 4.3.11 yields that if ρ(r1) ≥ 1 −

√
δ then with probability

1 − neg(n), P′ finds a message x = m1 such that ρ(r1,m1) ≥ 1 − 2
√
δ. Inductively if

ρ(r1,m1, . . . , ri−1,mi−1) ≥ 1− 2δ1/2i , then it holds that

Pr[ρ(r1,m1, . . . , ri−1,mi−1, ri) ≥ 1− δ1/2i+1

] ≥ 1− 2δ1/2i+1

and if ρ(r1,m1, . . . , ri−1,mi−1, ri) ≥ 1−δ1/2i+1
, then the prover can use the BPPNP strategy

of Lemma 4.3.11 to find mi such that ρ(r1,m1, . . . , ri−1,mi−1, ri,mi) ≥ 1− 2δ1/2i+1
. If at the

end P′ achieves ρ(r1, . . . ,mk) > 0 he succeeds. By a union bound the latter happens with
probability at least 1− 2

∑
i∈[k] δ

1/2i > 1− 2kδ1/2k .

4.3.5 Set Size Estimation and Sampling Protocols

We call a family of sets {Sn} (non-uniformly) efficiently decidable, if there exist a family
of polynomial size circuits Boolean {Cn} such that Sn = {x | Cn(x) = 1}. When it is clear
from the context we simply write S instead of Sn.

The following fundamental lemma by [75] provides a protocol to lower-bound the size of
efficiently decidable sets up to small multiplicative factor.

Lemma 4.3.12 (Set lower-bound protocol [75]). There exists an AM protocol SetLB =
(PLB,VLB), where the parties get as input an efficiently decidable set S ⊆ {0, 1}n,7 s (as size

7S can be represented as its deciding circuit, or in case of more succinct representations (PLB,VLB) can
directly depend on the deciding algorithm of S when it is uniform.

79

of S), ε (as the approximation parameter), the verifier runs in time poly(n, 1/ε) and the
following holds.

Completeness. If |S| ≥ s, then Pr[VLB accepts in 〈PLB,VLB〉 (S, s, ε)] ≥ 1− 2−n.

Soundness. If |S| ≤ (1− ε) · s, then for every prover P∗, it holds that
Pr[VLB accepts in 〈P∗,VLB〉 (S, s, ε)] < 2−n.

We will need a variation of the protocol of Lemma 4.3.12 over the promise languages. In
fact the exact same protocol given in [75] (with the help of the amplification of Lemma 4.3.9)
proves both Lemma 4.3.12 and the following Lemma 4.3.13. The protocol of [75] is described
for an AM set S which clearly contain the efficiently decidable S’s (i.e. Lemma 4.3.12) as a
special case. However the same protocol (and in fact even the same analysis) given in [75],
when considered over AM promise languages yields the following.

Lemma 4.3.13 (Generalized set lower-bound protocol [75]). Let M = (P,V) be an AM
protocol with YES instances {Yn} and non-promise instances {Tn}. Then there exists an
AM protocol GenSetLB = (PGLB,VGLB), where the parties get as input s (as size of Yn),
ε (as the approximation parameter), the verifier runs in time poly(n/ε) and the following
holds.

Completeness. If |Yn| ≥ s, then Pr[VGLB accepts in 〈PGLB,VGLB〉 (M, s, ε)] ≥ 1− 2−n.

Soundness. If |Yn ∪ Tn| ≤ (1− ε) · s, then for every prover P∗, it holds that
Pr[VGLB accepts in 〈P∗,VGLB〉 (M, s, ε)] < 2−n.8

The following lemma and its proof are an adaptation of those of [74, Lemma A.2] for the
setting where we are only given an approximation of the size of the set to be sampled from.
([5] also describes a candidate protocol without the proof.)

Lemma 4.3.14 (Uniform sampling protocol, [5, 74]). There exists an AM protocol UnifSamp,
between an PNP prover PUS and an efficient verifier VUS, whose parties get as input, an ef-
ficiently decidable set S ⊆ {0, 1}n, s ∈ N, and an error parameter δ < 1, such that the
following holds: assuming that s ∈ [(1 ± δ/32) · |S|], then the verifier runs in poly(n, 1/δ)
and either rejects by outputting x = ⊥ or outputs an element x ∈ S such that:

Completeness. VUS rejects in 〈PUS,VUS〉 (S, s, δ) with probability at most δ.

Soundness. ∆(x, US) ≤ Pr[VUS rejects in 〈P∗,VUS〉 (S, s, δ)]+δ, for any (unbounded) prover
P∗.

Since the full proof of Lemma 4.3.14 is not available in the literature, here we give a proof
for completeness.

8Note that M is not really an extra input and the protocol GenSetLB implicitly depends on M, but we
still indicate it as so for the sake of clarity.

80

Proof of Lemma 4.3.14.

Protocol 4.3.15. Set k = log(5/δ) and ` =
⌊
log((δ/5)3s

2k2)
⌋

. Let Hn,` be an efficient family of

2k-wise independent hash functions mapping n bits to ` bits. Set t = 1−δ/5
1+δ/32

· s
2`

.

1. VUS picks h
R←Hn,` and sends h to PUS.

2. PUS computes distinct x1, . . . , xt ∈ S ∩h−1(0) and sends them to the verifier (or aborts
if such x1, . . . , xt do not exist).

3. VUS checks that she has received distinct x1, . . . , xt and that xi ∈ S ∩ h−1(0) for all

i ∈ [t] and reject if any of the checks does not hold. If not rejected, pick i
R← [t] and

output xi.

. .

Completeness. The only case where the honest prover might cause the verifier to abort
is if there do not exist t distinct elements in |S ∩ h−1(0)|, which we call the bad event W .
For every x ∈ S define ζx to be the random variable that is 1 if h(x) = 0 and zero otherwise,
and let ζx = ζx − 2−` such that E[ζx] = 0. We derive:

Pr[W] = Pr[
∑
x∈S

ζx < t]

= Pr[
∑
x∈S

ζx <
1−δ/5
1+δ/32

· s
2`

]

≤ Pr[
∑
x∈S

ζx < (1− δ/5)|S|/2`] by the promise s ∈ [(1± δ/32)|S|]

≤ Pr

[∑
x∈S

ζx < −(δ/5)|S|2−`
]

≤
E
[(∑

x∈S ζx
)2k
]

((δ/5)|S|2−`)2k
raise to 2k power and use Markov

=
E
[∑

x1,...x2k∈S
∏2k

i=1 ζxi

]
(δ/5)2k|S|2k2−2k`

=

∑
x1,...x2k∈S E

[∏2k
i=1 ζxi

]
(δ/5)2k|S|2k2−2k`

.

By 2k-wise independence, all terms in the numerator of the last expression above given by
tuples (x1, . . . , x2k) where one of the xi is unique will contribute 0 to the sum. Therefore it
suffices to count such tuples where no xi is unique.

81

Claim 4.3.16. ∑
x1,...,x2k∈S

E

[
2k∏
i=1

ζxi

]
≤ |S|kk2k2−k`.

By Claim 4.3.16 we conclude that

Pr[W] ≤ |S|kk2k2−k`

(δ/5)2k|S|2k2−2k`
≤
(

k22`

(δ/5)2|S|

)k
≤ (δ/10)k < δ,

as claimed.

Proof. (of Claim 4.3.16) There are
(|S|
i

)
ways of choosing i elements out of |S|, and there

are at most i2k ways of arranging these elements (with duplicates) when there are 2k total
elements. For all c ≥ 2, the expectation E[(ζx)

c] ≤ 2−`. Therefore, the sum of expectations
over all tuples with exactly i non-unique elements is bounded by ≤

(|S|
i

)
i2k2−i`. The entire

sum is bounded by
∑k

i=1

(|S|
i

)
i2k2−i` (we do not sum i > k as these terms have duplicate xi’s

and so therefore their expectation is 0). By Stirling’s approximation the maximum term is
for i = k, therefore the sum of all elements is bounded by k

(|S|
k

)
·k2k2−k` ≤ |S|k ·k2k2−k`.

Soundness. Since a random sample from S is never the failure symbol ⊥ while the protocol
might output ⊥, it follows that

∆(x,S) = max
T⊆S∪{⊥}

{Pr[x ∈ T]− Pr[S ∈ T]}

= Pr[x = ⊥] + max
T⊆S
{Pr[x ∈ T]− Pr[S ∈ T]} .

Therefore, it suffices (and is actually equivalent) to show that for all T ⊆ S, it holds that

Pr[x ∈ T] ≤ |T |
|S|

+ δ.

Now fix any T ⊆ S, and if |T | < (δ/4)|S| then simply pad T with extra elements until
we have |T | = (δ/4)|S|. Let WT be the event that |h−1(0) ∩ T | > (1 + δ/5)2−`|T | elements.
Let ζx, ζx be defined as in the case of completeness.

Pr[WT] = Pr[
∑
x∈T

ζx > (1 + δ/5)2−`|T |]

= Pr[
∑
x∈T

ζx > (δ/5)2−`|T |]

≤
∑

x1,...,x2k
E[
∏2k

i=1 ζxi]

(δ/5)2k2−2k`|T |2k

≤
(

k22`

(δ/5)2|T |

)k

82

Using the assumption |T | ≥ (δ/5)|S| and the definition of `, k, we have that k22`

(δ/5)2|T | ≤ 1/2

and so the probability that WT occurs is ≤ δ/5. Assuming WT did not occur, we have that

|T ∩ h−1(0)| ≤ (1 + δ/5)2−`|T |

=
(1 + δ/5)(1 + δ/32)

1− δ/5
· |T |
s
· t

≤ (1 + δ/5)(1 + δ/32)

(1− δ/5)(1− δ/32)
· |T |
|S|
· t

≤ (1 + δ/2) · |T |
|S|
· t.

Therefore the probability of sampling an element of T is δ/4 + (1 + δ/2) |T ||S| , where the first
term is the probability of the bad event WT occurring while the second is the probability
that conditioned on the bad event not occurring, we sample an element of T . If T was not
padded then it holds that

δ/4 + (1 + δ/2) |T ||S| ≤
|T |
|S| + δ/2(1/2 + |T |

|S|) ≤
|T |
|S| + 3δ/4.

In case T was padded, we again get that the probability is at most

δ/4 + (1 + δ/2)δ/4 ≤ 3δ/4 ≤ |T |
|S| + 3δ/4

Lemma 4.3.17 (Set upper-bound protocol[2]). There exists a two-round public-coin protocol
SetUB = (PSUB,VSUB), where the parties get as input an efficiently decidable set S ⊆ {0, 1}n,
s (as size of S), δ, ε0, the verifier gets in addition a secret random sample x from S (unknown
to the prover) and runs in time poly(n, 1/δ, 1/ε), and the following hold:

Completeness. If |S| ≤ s, then Pr[VSUB accepts in 〈PSUB,VSUB(x)〉 (S, s, δ, ε)] ≥ 1− δ.

Soundness. If |S| ≥ s(1 + ε), then for every prover P∗, it holds that
Pr[VSUB accepts in 〈P∗,VSUB〉 (S, s, δ, ε)] < 1− ε/5 + δ.

4.4 Sampling with Size and Verifying The Histogram

In this section we formally state and prove Lemma 4.1.4 (SampWithSize), its extension to the
multi-query case (see discussion below) and Lemma 4.2.2 (VerHist). We first prove a “weak”
version of Lemma 4.2.2 (see Lemma 4.4.5), use this weak version for proving Lemma 4.1.4
and its multi-query case (formally stated as Lemma 4.4.1 and Lemma 4.4.2), and then
prove Lemma 4.2.2 (stated as Lemma 4.4.4) using Lemma 4.4.2. In order to keep the text
simple, we state the lemmas with respect to PSPACE provers, and only give a variant of
Lemma 4.4.2 (Corollary 4.4.3) with a BPPNP prover. The very same approach, however,
can be applied to give similar variant of all other lemmas in this section. Let us start with
the formal statements of the main lemmas and of Corollary 4.4.3.

83

Lemma 4.4.1 (Restating Lemma 4.1.4). There exists an AM[O(1)] protocol SampWithSize =
(PSWS,VSWS), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, an accu-
racy parameter δ ≥ 1/ poly(n), s ∈ N (as size of S) and an efficiently computable function
f : S 7→ {0, 1}∗. At the end of the protocol VSWS either rejects (signified by outputting a
special symbol x = ⊥), or it outputs a pair (x, sx). Assuming that s ∈ [(1 ± γ) · |S|] for
γ := (δ

10n
)8, then the following conditions hold:

Completeness: VSWS accepts when interacting with PSWS with probability at least 1−δ, and
if not rejecting it holds that sx = |f−1(f(x))|.

Soundness: For all provers P∗, the following hold:

• Pr[VSWS does not reject in 〈P∗,VSWS〉 ∧ sx 6∈ [(1± δ) · |f−1(f(x))|]] ≤ δ,

• ∆(x, US) ≤ δ + Pr[VSWS rejects in 〈P∗,VSWS〉].

For proving Theorem 4.1.1 we need to handle multiple queries to protocol SampWithSize
simultaneously, using a single constant round protocol, while enforcing independence between
the verifiers’ outputs in the different calls. While applying Lemma 4.4.1 independently in
parallel for each of the queries does not guarantee such independence (nothing prevents
outputs of the different calls to be dependant), a bit more careful usage of this lemma does
yield the desired guarantee, which is formally state as the next lemma.

Lemma 4.4.2 (Multi-query variant of Lemma 4.4.1). There exists an AM[O(1)] proto-
col MultSampWithSize = (PMSWS,VMSWS), whose parties get as input a tuple of k triplets
((S1, s1, f1), . . . , (Sk, sk, fk)), where each Si ⊆ {0, 1}ni is efficiently decidable, an accuracy
parameter δ ≥ 1/ poly(n) for n =

∑
i ni, si ∈ N and each fi : Si 7→ {0, 1}∗ is an efficiently

computable function. At end of the protocol VMSWS either rejects (signified by outputting a
special symbol ⊥) or outputs ((x1, sx1), . . . , (xk,)). Assuming that si ∈ [(1±γ) · |Si|] for every
i ∈ [k], where γ := 1

8k
· (δ

20n
)8, then the following holds:

Completeness: VMSWS accepts when interacting with PMSWS with probability at least 1− δ,
and if not rejecting it holds that sxi =

∣∣f−1
i (fi(xi))

∣∣ for every i ∈ [k].

Soundness: The following holds for any (unbounded) prover P∗:

• Pr
[
〈P∗,VMSWS〉 6= reject ∧ ∃i ∈ [k] : sxi /∈ [(1± δ) ·

∣∣f−1
i (fi(xi))

∣∣]]< δ,

• SD((US1 , . . . , USk), (x1, . . . , xk)) ≤ δ + Pr[VMSWS rejects in 〈P∗,VMSWS〉].

Corollary 4.4.3 (Lemma 4.4.2 with BPPNP prover). Let ((S1, s1, f1), . . . , (Sk, sk, fk)) and δ
be as in Lemma 4.4.2. There exists an AM[O(1)] protocol MultSampWithSize = (PMSWS,VMSWS),
where PMSWS in BPPNP, whose parties get as input
((S1, s1, f1), . . . , (Sk, sk, fk)) and δ, at end of the protocol VMSWS either rejects or outputs
((x1, s

′
1), . . . , (xk, s

′
k)), and the following holds for a universal constant c > 1. Assuming that

si ∈ [(1± γ) · |Si|] for every i ∈ [k], where γ := δc

ckn8 , then

Completeness: VMSWS accepts when interacting with PMSWS with probability at least 1− δ.

84

Soundness: The following holds for any (unbounded) prover P∗:

• Pr
[
〈P∗,VMSWS〉 6= reject ∧ ∃i ∈ [k] : sxi /∈ [(1± δ) ·

∣∣f−1
i (fi(xi))

∣∣]]< δ,

• SD((US1 , . . . , USk), (x1, . . . , xk)) ≤ δ + Pr[VMSWS rejects in 〈P∗,VMSWS〉].

Proof. Let c′ be the number of rounds of Protocol MultSampWithSize of Lemma 4.4.1, and

let δ′ be such that δ = 2c′δ′1/2
c′

. Lemma 4.4.1 yields that if γ ≤ 1
8k
· (δ′

20n
)8 then both the

completeness and the soundness conditions hold with a PSPACE prover and the accuracy
parameter δ′. Lemma 4.3.10 yields that we can get a BPPNP prover that makes the verifier

accept with probability 1−2c′δ′1/2
c′

= 1−δ. Therefore the honest prover can be implemented
in BPPNP if γ is small enough:

γ ≤ 1

8k
· (δ′

200n
)8 =

1

8k
·
(

(δ/2c′)2c
′

20n

)8

which is implied by γ ≤ δc

ckn8 for a large enough constant c.

Lemma 4.4.4 (Restating Lemma 4.2.2). There exists an AM[O(1)] protocol VerHist =
(PVH,VVH), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, s ∈ N (as size
of S), an efficiently computable function f : S 7→ {0, 1}∗, the histogram parameter 0 < ε < 1
and a (claimed) ε-histogram h ∈ [0, 1]m+1 for m = n/ε such that the following holds. Let
hf ∈ [0, 1]m+1 be the (real) ε-histogram of f with respect to S. If s ∈ [(1 ± γ) · |S|] for
γ = (ε

10n
)40 then:

Completeness: If h = hf , then VVH accepts when interacting with PVH with probability at
least 1− 2−n.

Soundness: If W1(hf , h) > 20/m = 20ε/n, then (for any unbounded prover) VVH rejects
with probability at least 1− 2−n.

We are also using the following “supporting lemmas” whose proofs are given in Sec-
tion 4.4.1.

Supporting Lemmas

The following protocol is similar to protocol VerHist of Lemma 4.4.4, but provides a weaker

guarantee: the prover cannot convince the verifier that
−→
W1 is much larger than

←−
W1.

Lemma 4.4.5 (Weak Verify Histogram). There exists an AM[O(1)] protocol WeakVerHist =
(PWVH,VWVH), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n, s ∈ N (as
size of S), an efficiently computable function f : S 7→ {0, 1}∗, the histogram parameter
ε = 1/ poly(n) and a (claimed) histogram h ∈ [0, 1]m+1 for m = n/ε such that the following
holds. Let hf ∈ [0, 1]m+1 be the true ε-histogram of f with respect to S. Given the promise
that s ∈ [(1± ε)|S|] the following holds.

85

Completeness: If h = hf , then (when interacting with PWVH) VWVH accepts with probability
at least 1− 2−n/2.

Soundness: If
−→
W1(hf , h) > 4 ·

←−
W1(hf , h)+100ε, then (when interacting with any unbounded

prover) VWVH rejects with probability at least 1− 2−n/2.

The following lemma states that there exists a protocol that verifies that a claimed
empirical labeling is close to a true labeling in the shift distance.

Lemma 4.4.6 (Verify Empirical Labeling). There exists an AM[O(1)] protocol VerEmpLabel =
(PVEL,VVEL), whose parties get as input an efficiently decidable set S ⊆ {0, 1}n (where
n ≥ 20), an efficiently computable function f : S 7→ {0, 1}∗, an histogram parameter
ε = 1/ poly(n) and a (claimed) histogram h ∈ [0, 1]m+1. In addition, the protocol takes
as input empirical samples x1, . . . , x` ∈ S along with a (claimed) labeling u : [`] 7→ (m).
Let hf be the (true) histogram of f over the set S. Let uf be the (true) labeling of xi (i.e.,
uf (i) = Bin(xi)) and let hu

f
= Hist(uf) (i.e., the induced histogram of uf).

Assuming that s ∈ [(1 ± ε)|S|],
−→
W1(h, hf) < 4 ·

←−
W1(h, hf) + 100ε and W1(hu

f
, hf) ≤ ε,

then the following hold:

Completeness: If u = uf and W1(hu, h) ≤ ε, then VVEL accepts when interacting with PVEL

with probability at least 1− 2−n/2.

Soundness: If SH(u, uf) > 111ε, then (for any unbounded prover) VVEL rejects with proba-
bility at least 1− 2−n/2.

Note about the proofs Throughout our proofs we use the fact that 22ε > 1+ε > 2ε/2 and
2−ε/2 > 1− ε > 2−2ε for small ε > 0. Namely, for small ε enough the range [1− ε, 1 + ε] is the
same as [2−2ε, 22ε] up to a factor of 2 over ε. Therefore we will freely replace expressions of
the form s ∈ [(1±ε)|S|] with expressions of the form s ∈ [2±ε ·|S|] (and sometimes vice versa)
to make the manipulations simpler, with the understanding that this affects the statement
of our theorems by introducing an inconsequential loss of constant factor 2 in parameters.

The formal proofs of Lemma 4.4.1 (protocol SampWithSize) and Lemma 4.4.4 (protocol
VerHist) are somewhat different than the overview given in Section 4.2. The idea, however,
remains the same: for SampWithSize, the prover will claim to us a histogram for D whose
correctness we check using image and preimage tests, and then if it is correct we sample
many elements plus their sizes from D, check that the empirical histogram of the samples
is close to what the prover claimed, and if so output one of them. Instead of using VerHist
to perform the image and preimage tests, we will define SampWithSize to explicitly use
VerEmpLabel to do the preimage tests and WeakVerHist to do the image tests. (In fact, we
will then use SampWithSize to prove VerHist. There will be no circularity since WeakVerHist
and VerEmpLabel do not depend on VerHist). It turns out that for the formal proof, this
alternative is cleaner to present, and in fact allows us to achieve better parameters, than
proving things in the order presented in Section 4.2.

We now move to proving the main lemmas of this section.

86

Proof of Lemma 4.4.1. We first a give an implementation of SampWithSize and its multi-
query case with a PSPACE prover. Since they are both constant round protocols Lemma 4.3.10
yields that there exist an BPPNP prover for Protocols SampWithSize and MultSampWithSize
with slightly weaker guarantee which are good enough for our purposes to prove Theo-
rem 4.1.1.

Protocol SampWithSize is defined as follows.

Protocol 4.4.7.
SampWithSize = (PSWS,VSWS).

Common input: An efficiently decidable set S ⊆ {0, 1}n, accuracy parameter δ = 1/ poly(n),
an efficiently computable function f : S 7→ {0, 1}∗ and a size estimation s (for |S|).

Description: In the following let ε = δ2/(1000n) and ` = n/ε2.

1. Sampling random points from S. The parties interact, in an execution of the
Uniform Sampling Protocol of Lemma 4.3.14, on input (S`, s`, δ/9), where PSWS and
VSWS play the role of the prover and the verifier respectively. Let (x1, . . . , x`) denote
VUS’s output in this execution.

2. Compute the histogram and labeling. PSWS computes h ∈ [0, 1]m+1 the ε-histogram
of f with respect to S as well as the labeling u : [`] 7→ (m), where u(i) = Bin(xi) (see
Definition 4.3.1 for the definition of Bin(xi)). PSWS sends h, u to VSWS.

3. Verify the claimed histogram (image tests). The parties interact in the WeakVerHist
protocol (of Lemma 4.4.5) on input (S, s, f, ε, h) where PSWS and VSWS play the role of
PWVH and VWVH respectively.

4. Verify the samples (preimage tests). PSWS,VSWS engage in the VerEmpLabel
protocol (of Lemma 4.4.6) on input (S, s, f, ε, h, x1, . . . , x`, u). If VerEmpLabel rejects,
then VSWS rejects as well.

5. Choose output. VSWS chooses i
R← [`] and outputs (xi, s · 2−ε·u(i)).

. .

We next prove the completeness and soundness of Protocol 4.4.7. Recall our notation that
uf is the honest labeling of the examples x1, . . . , x`, h

uf = Hist(uf) denotes the empirical
histogram given by the honest labeling uf , hu = Hist(u) denotes the empirical histogram
given by the claimed labeling u, and hf denotes the honest histogram of f over S. The
intuition of the proof roughly follows in three steps, described below.

1. x1, . . . , x` are sampled almost uniformly in S, so we can apply a Chernoff bound to
argue that W1(hu

f
, hf) is small.

2. The WeakVerHist protocol guarantees that the claimed histogram h satisfies
−→
W1(h, hf) <

4
←−
W1(h, hf) + 100ε, therefore the VerEmpLabel protocol guarantees that SH(u, uf) is

small.

87

3. We apply the following lemma that states that if SH(u, uf) is small, then by pick-

ing a random i
R← [`] we get an output (xi, s2

−ε·u(i)) which has the requirements of
Lemma 4.4.1.

Lemma 4.4.8. Suppose that SH(u, uf) ≤ 111ε, then

Pr
i
R←[`]

[
si · 2−ε·u(i) ∈

[
|f−1(f(xi))| · 2±δ

]]
≥ 1− δ/9.

Proof. The promise that SH(u, uf) ≤ 111ε = 111n/m together with Proposition 4.3.7 (item
2) yield that Pr

i
R←[`]

[|uf (xi)− u(xi)| ≤ 111n/(δ/9)] ≥ 1− δ/9, and we conclude that

s · 2−ε·u(i)

∈ 2±ε · |S| · 2ε·uf (xi) · 2±ε·(999n/δ) since s ∈ [2±γ · |S|]
⊆ 2±ε · 2±ε · |f−1(f(xi))| · 2±ε·(999n/δ) by Proposition 4.3.3

= |f−1(f(xi))| · 2±ε·(2+999n/δ)

⊆ |f−1(f(xi))| · 2±ε·(1000n/δ)

= |f−1(f(xi))| · 2±δ.

Thus with probability 1−δ/9 we pick a good i satisfying the requirement of Lemma 4.4.1.

We now use Lemma 4.4.8 to formally prove that SampWithSize is complete and sound (with
an unbounded prover).

Completeness. If s ∈ [2±γ · |S|], then s` ∈ [2±γ` ·
∣∣S`∣∣]. Now note that since `γ < (δ/9)/30,

therefore s satisfies the promise of the Uniform Sampling protocol used in Step 1. By the
completeness of Lemma 4.3.14 the verifier rejects in Step 1 with probability at most δ/9.

Moreover, the uniformity condition of Lemma 4.3.14 implies that for all sets T ⊆ S`, it
holds that

Pr[(x1, . . . , x`) ∈ T] (4.4.1)

= (Pr[(x1, . . . , x`) ∈ T] + Pr[VSWS rejects]− Pr[US` ∈ T]) + Pr[US` ∈ T]− Pr[VSWS rejects]

= (Pr[(x1, . . . , x`) ∈ T ∪ {⊥}]− Pr[US` ∈ T ∪ {⊥}]) + Pr[US` ∈ T]− Pr[VSWS rejects]
(4.4.2)

≤ ∆((x1, . . . , x`), US`) + Pr[US` ∈ T]− Pr[VSWS rejects] (4.4.3)

≤ Pr[US` ∈ T] + δ/9 (4.4.4)

In the above, the probability is over the (x1, . . . , x`) sampled by VSWS as in Step 1, which can
possibly be ⊥ if VSWS rejects. In Inequality 4.4.2 we use the fact that samples from US never
equal ⊥. Inequality 4.4.3 follows by the definition of statistical distance. Inequality 4.4.4
follows by the uniformity condition of Lemma 4.3.14.

The following claim asserts that the empirical histogram of uniform samples from US`
are close to the true histogram with high probability.

88

Claim 4.4.9. Let T ⊆ S` be the set of tuples (x1, . . . , x`) such that the true empirical
histogram hu

f
satisfies W1(hu

f
, hf) > ε. Then

Pr[US` ∈ T] < m2−n

Proof. It follows that for each j ∈ (m− 1) that

Pr
x

R←S
[Bin(x) ≤ j] =

∑
i∈(j)

hfi

Let Xj
i be the random variable such that Xj

i = 1 if Bin(xi) ≤ j, and Xj
i = 0 otherwise. Since∑

i∈(j) h
uf

i = 1
`
·
∑

i∈[`] X
j
i , applying a Chernoff bound yields that

Pr

∣∣∣∣(∑
i∈(j)

hu
f

i

)
−
(∑
i∈(j)

hfi

)∣∣∣∣ > ε


= Pr

∣∣∣∣1` ∑̀
i=1

Xj
i −

(∑
i∈(j)

hfi

)∣∣∣∣ > ε


≤ 2e−`ε

2

= 2e−n < 2−n.

It follows that

Pr[US` ∈ T]

= Pr[W1
(
hu

f

, hf
)
> ε] = Pr

∑
j∈(m)

∣∣∣∣(∑
i∈(j)

hu
f

i

)
−
(∑
i∈(j)

hfi

)∣∣∣∣ > mε


≤

 ∑
j∈(m−1)

Pr

[∣∣∣∣(∑
i∈(j)

hu
f

i

)
−
(∑
i∈(j)

hfi

)∣∣∣∣ > ε

] ≤ m2−n.

Since the prover is honest, h = hf and therefore it follows by the completeness of
WeakVerHist that VSWS rejects in Step 3 the with probability at most 2−n/2.

Since the prover is honest, h = hf and u = uf . Therefore by Claim 4.4.9 and Inequal-
ity 4.4.4, it holds that Pr[(x1, . . . , x`) ∈ T] ≤ m2−n + δ/9. Therefore, suppose (x1, . . . , x`) /∈
T , which implies that W1(hu

f
, hf) ≤ ε. Along with the promise that s ∈ [2±γ ·|S|] ⊆ [2±ε ·|S|]

holds, and the fact that h = hf , we can apply the completeness of Lemma 4.4.6 to deduce
that the verifier rejects in Step 4 with probability at most 2−n/2.

So if the prover is honest the verifier does not reject in any of the steps with probability
≤ 2δ/9 + 2 · 2−n/2 < δ.

89

Soundness. Fix a cheating prover P∗. Let BadSize be the bad event that si2
−εu(i) /∈

[2±δ|f−1(f(xi))|] and let NoReject be the event that VSWS does not reject. Let NoRejecti be
the event that VSWS does not reject in Steps 1, . . . , i (but may possibly reject in later steps),
and finally let BadHist be the event that (x1, . . . , x`) ∈ T as defined in Claim 4.4.9. Our goal
is to bound Pr[BadSize ∧ NoReject]. It holds that

Pr[BadSize ∧ NoReject] (4.4.5)

≤ Pr[BadSize ∧ NoReject1]

= Pr[BadSize ∧ NoReject1 ∧ BadHist] + Pr[BadSize ∧ NoReject1 ∧ BadHist]

≤ Pr[BadHist] + Pr[BadSize | NoReject1 ∧ BadHist] (4.4.6)

As in the analysis of completeness, Claim 4.4.9 and Inequality 4.4.4 yield that Pr[BadHist] ≤
m2−n+δ/9. In order to bound the second probability in Inequality 4.4.6, it suffices to bound
the sum of the probabilities of the following events conditioned on NoReject1 ∧ BadHist:

1. The probability that
−→
W1(hf , h) > 4

←−
W1(hf , h) + 100ε and WeakVerHist accepts.

2. Conditioned on all previous events not occurring, the probability that SH(u, uf) > 111ε
and VerEmpLabel accepts.

3. Conditioned on all previous events not occurring, the probability that the output
si2
−εu(i) /∈ [2±δ|f−1(f(xi))] (i.e., BadSize occurs).

By conditioning on NoReject1 ∧ BadHist, all the promises required by Lemma 4.4.5 are sat-
isfied, therefore by the soundness of Lemma 4.4.5 the first item occurs with probability
< 2−n/2. Then, in the second item the promises of Lemma 4.4.6 are satisfied, so the sound-
ness of Lemma 4.4.6 implies that this event occurs with probability < 2−n/2. Finally, the
Correctness Lemma 4.4.8 implies that the last event occurs with probability δ/9. Therefore
the conditional probability in Inequality 4.4.6 is bounded by 2−n/2+1 + δ/9, and the entire
probability in Inequality 4.4.6 is bounded by m2−n + 2δ/9 + 2−n/2+1 < δ.

For the second part of the soundness, let Reject = NoReject and Rejecti = NoRejecti. By
the uniformity guarantee of Lemma 4.3.14, it holds for every i, that

∆(xi, US) ≤ Pr[Reject1] + δ/9

and it particular it holds if i is chosen at random. Note that Rejecti ∩ Rejectj = ∅ for any

i 6= j. Therefore if as a mental experiment we choose i
R← [`] at the beginning (rather than

the last step), the final output x satisfies:

∆(x, US) = ∆(xi, US) + Pr[Reject2 ∨ Reject3 ∨ Reject4]

≤ Pr[Reject1] + δ/9 + Pr[Reject2 ∨ Reject3 ∨ Reject4]

= δ/9 + Pr[Reject]

= p+ δ/9,

which concludes the proof.

90

Next, we prove the multiple-query version of the above lemma.

Proof. (of Lemma 4.4.2) Protocol MultSampWithSize is defined as follows.

Protocol 4.4.10.
MultSampWithSize = (PMSWS,VMSWS).

Common input: An accuracy parameter δ, and for every i ∈ [k] : an efficiently decidable set
Si, efficiently computable function fi : Si 7→ {0, 1}∗ and a size estimation si.

Description: In the following let S = S1×· · ·×Sk ⊆ {0, 1}n, let g(x1, . . . , xk) := (f1(x1), . . . , fk(xk))
and let s = s1 · · · sk.

1. Sampling points jointly. The parties interact in an execution of the SampWithSize
protocol of Lemma 4.4.1 on input (S, s, g, δ/2), where PSWS and VSWS play the role of
the prover and the verifier respectively. Let (x = (x1, . . . , xk), sx) denote VSWS’s output.

2. Sending the sibling sizes. PMSWS sends sxi = |f−1
i (fi(xi))| for every i ∈ [k] to

VMSWS, and VMSWS rejects if sx 6= sx1 · · · sxk .

3. Lower-bound test. For every i ∈ [k] in parallel, the parties interact in an execution
of the lower-bound protocol of Lemma 4.3.12 on input (f−1

i (fi(xi)), sxi , δ/8k), where
PSWS and VSWS play the role of the prover and the verifier respectively.

4. Output. VSWS outputs ((x1, sx1), . . . , (xk, sxk)).

. .

Since si ∈ [(1± γ) · |Si|] ⊆ [2±2γ · |Si|] for every i ∈ [k], it follows that s ∈ [2±2kγ · |S|] ⊆
[(1 ± 8kγ) · |S|]. Therefore, s satisfies the promise of Lemma 4.4.1 for accuracy parameter
δ/2 (recall that γ := 1

8k
· (δ

20n
)8).

Completeness. When interacting with the honest prover, Lemma 4.4.1 yields that VMSWS

rejects in Step 1 with probability at most δ/2. Clearly, VMSWS does not reject in Step 2,
and Lemma 4.3.12 and a union bound yield that VMSWS rejects in Step 3 with probability
at most k · neg(n) = neg(n). Therefore, the probability that VMSWS rejects is bounded by
δ/2 + neg(n) < δ.

Soundness. In the following we assume without loss of generality that sx = sx1 · · · sxk (as
otherwise VSWS rejects). Lemma 4.4.1 yields that

Pr[E1 ∧ VSWS does not reject at Step 1] < δ/2, (4.4.7)

where E1 is the event that sx ∈ (1± δ/2) · |g−1(g(x))|, and Lemma 4.3.12 yields that

Pr[E2 ∧ VSWS does not reject at Step 3] ≤ neg(n), (4.4.8)

where E2 is the event that sxi ≤ (1 + δ/8k) · |f−1
i (fi(xi))| for every i ∈ [k].

91

When E2 occurs, then for every i ∈ [k] it holds (using the fact that (1 + δ/(8k))k−1 ≤
1 + δ/2) that

Πj 6=isxj ≤ (1 + δ/2) · Πj 6=i|f−1
j (fj(xj))|

Since |g−1(g(x))| = Πi|f−1
i (fi(xi))|, therefore the following holds for all i ∈ [k] when E1 ∧E2

occurs:

sxi =
sx∏
j 6=i sxi

≥
(1− δ/2) ·

∏k
j=1 |f

−1
j (fj(xj))|

(1 + δ/2)
∏

j 6=i |f
−1
j (fj(xj))|

≥ (1− δ)|f−1
i (fi(xi))| (4.4.9)

Hence it follows that:

Pr[∃i : sxi · (1± δ) · |f−1
i (fi(xi))| ∧ VSWS does not reject]

≤ Pr[VSWS does not reject ∧ E1 ∧ E2]

≤ δ/2 + neg(n) < δ.

For the second part of the soundness proof, Lemma 4.4.1 yields that

SD((US1 , . . . , USk), (x1, . . . , xk)) ≤ δ/2 + Pr[VMSWS rejects in Step 1].

As in the proof ofLemma 4.4.1, since the event that VMSWS rejects in later steps is disjoint
from the event that VMSWS rejects in Step 1, it follows that

SD((US1 , . . . , USk), (x1, . . . , xk)) ≤ δ/2 + Pr[VMSWS rejects]

Proof. (of Lemma 4.4.4) The protocol VerHist described below only achieves completeness
and soundness O(ε). This this can be easily amplified, however, to error below 2−n via
parallel repetition.

Protocol 4.4.11. VerHist = (PVH,VVH).

Common input: An efficiently decidable set S ⊆ {0, 1}n, an efficiently computable function
f : S 7→ {0, 1}∗, a size estimation s (for |S|), the histogram parameter 0 < ε < 1 and a
(claimed) ε-histogram h of f with respect to S.

Description: Note that it holds that m = n/ε where h ∈ [0, 1]m+1. In the following let ` =
100m2n = 100n3/ε2.

1. Sample ` random elements from S. The parties interact in an execution of the
parallel SampWithSize protocol of Lemma 4.4.2, on input (ε, (S1, s, f), . . . , (S`, s, f)),
where Si = S for all i ∈ [`] and PVH and VVH play the role of PMSWS and VMSWS

respectively. Let ((x1, sx1), . . . , (x`, sx`)) be the result of the interaction.

2. Approximate the histogram. For i ∈ [`], let u(i) = b(log(sxi/s))/εc. Let hu =
Hist(u) be the empirical histogram concluded from the mapping u according to Defini-
tion 4.3.2.

92

3. Verify the claim. Reject if W1(h, hu) ≥ 10/m, and accept otherwise.

. .

Let h = hf , let uf (i) = Bin(xi) indicate the real bin number of xi according to Defini-
tion 4.3.1, and let hu

f
be the empirical histogram concluded from uf .

Notice that γ � 1
8`
· (δ

20n
)8 and so s is in the right range to be used for MultSampWithSize

protocol in Step 1.
We will show that for any prover strategy with high probability either the verifier rejects

or hu is a “good” approximation for hf in the 1st Wasserstein distance. Then comparing hu

to h to decide accept or reject (Step 3) works properly.
Let T1 ⊂ (S × N)` be the “bad set” of tuples ((x1, sx1), . . . , (x`, sx`)) where there exist

i ∈ [`] such that sxi 6∈ [2±ε|f−1(f(xi))|].
In the following we assume without loss of generality that the xi’s are elements of S.

Claim 4.4.12. If ((x1, sx1), . . . , (x`, sx`)) /∈ T1 then W1(hu, hu
f
) ≤ 6/m.

Proof. If ((x1, sx1), . . . , (x`, sx`)) /∈ T1 then for all i ∈ [`] it holds that sxi ∈ [2±ε|f−1(f(xi))|].
Therefore

u(i) = b(log(sxi/s))/εc
∈ [(log(sxi/s))/ε± 1]

⊆ [(log(2±ε|f−1(f(xi))|/s))/ε± 1]

= [±1 + (log(|f−1(f(xi))|/s))/ε± 1]

⊆ {Bin(xi)± 3} .

But if u(i) ∈ {Bin(xi)± 3} for all i ∈ [`], then by Proposition 4.3.7 and Lemma 4.3.8 it
holds that

W1(hu, hu
f

) ≤ SH(u, uf) =
←−
SH(u, uf) +

−→
SH(u, uf) ≤ 3/m+ 3/m = 6/m. (4.4.10)

Let T2 ⊆ S` be another “bad set”, the set of tuples (x1, . . . , x`) such that W1(hu
f
, hf) >

1/m. The following claim can be proven similar to Claim 4.4.9:

Claim 4.4.13. Pr[US` ∈ T2] < m2−n = neg(n).

In the following let NoReject1 be the event that VVH does not reject in Step 1, let Reject1

be the event that VVH rejects in Step 1, and let Reject be the event that VVH rejects in some
step.

Claim 4.4.14. Let ((x1, sx1), . . . , (x`, sx`)) be the result of Step 1. Then it holds that

Pr[NoReject1 ∧W1(hu, hf) ≥ 10/m] ≤ 3ε

93

Proof. Note that if ((x1, sx1), . . . , (x`, sx`)) /∈ T1 and (x1, . . . , x`) /∈ T2 then by the definition
of T2 and Claim 4.4.12 it holds that

W1(hu, hf) ≤ W1(hu, hu
f

) + W1(hu
f

, hf) ≤ 1/m+ 6/m < 10/m.

So it holds that:

Pr[NoReject1 ∧W1(hu, hf) ≥ 10/m]

≤ Pr[NoReject1 ∧ (((x1, sx1), . . . , (x`, sx`)) ∈ T1 ∨ (x1, . . . , x`) ∈ T2)]

≤ Pr[NoReject1 ∧ ((x1, sx1), . . . , (x`, sx`)) ∈ T1] + Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2].

Now Claim 4.4.14 will follow by proving the following inequalities.

Pr[NoReject1 ∧ ((x1, sx1), . . . , (x`, sx`)) ∈ T1] ≤ ε (4.4.11)

Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2] ≤ ε+ neg(n) (4.4.12)

The soundness of Lemma 4.4.2 yields that

Pr[VMSWS does not reject ∧ ∃i ∈ [`] : sxi 6∈ [2±ε|f−1(f(xi))|] ≤ ε

which is equivalent to Inequality 4.4.11.
The soundness of Lemma 4.4.2 also yields that

SD(US` , (x1, . . . , x`)) ≤ ε+ Pr[VMSWS rejects]. (4.4.13)

By using Lemma 1.3.4 over Inequality 4.4.13 with parameters Y = US` , X = (x1, . . . , x`), T =
T2 and δ = ε we get that

Pr[NoReject1 ∧ (x1, . . . , x`) ∈ T2] ≤ ε+ Pr[US` ∈ T2].

But Claim 4.4.13 yields that Pr[US` ∈ T2] ≤ neg(n) and so Inequality 4.4.12 follows.

Now we will prove that Protocol VerHist is complete and sound as described in Lemma 4.4.4
(we prove this for completeness/soundness error O(ε), but this can be amplified to 2−n by
repeating in parallel).

Completeness. Let the prover be honest and h = hf . By Claim 4.4.14 it holds that

Pr[Reject1 ∨W1(hu, hf) ≤ 10/m] ≥ 1− 3ε.

By the completeness of Lemma 4.4.2, VVH rejects in Step 1 with probability at most δ = ε
and so

Pr[W1(hu, hf) ≤ 10/m] ≥ 1− 4ε.

But if W1(hu, hf) ≤ 10/m, then VVH does not reject in Step 3. Therefore by a union bound:

Pr[Reject] ≤ ε+ 4ε = 5ε.

94

Soundness. Suppose W1(hf , h) > 20/m.
By Claim 4.4.14 it holds that

Pr[Reject1 ∨W1(hu, hf) ≤ 10/m] ≥ 1− 3ε.

But if W1(hf , hu) < 10/m, then it would hold that

W1(hu, h) > W1(hf , h)−W1(hf , hu) > 20/m− 10/m = 10/m.

So it holds that
Pr[Reject1 ∨W1(hu, h) > 10/m] ≥ 1− 3ε.

Finally since W1(hu, h) > 10/m makes the verifier reject in Step 3 therefore:

Pr[Reject] ≥ 1− 3ε.

4.4.1 Proving Supporting Lemmas

In this section we prove Lemma 4.4.5 and Lemma 4.4.6.

Proof of Lemma 4.4.5

Proof. We will use the following definition:

Definition 4.4.15 (Exponential sum). Given x ∈ Rj+1 and ε > 0, we define the exponential

sum of x as ESε(x) =
∑

i∈(j) xi · 2iε and the normalized exponential sum of x as ẼSε(x) =

ESε(x)/2jε. When ε is clear from the context, we omit ε from the notation.

Let hf be the ε-histogram of a function f over {0, 1}n, Proposition 4.3.3 yields that
ESε(h

f
≤j) ≤ |

⋃
i∈(j) Bi| ≤ 2εESε(h

f
≤j).

Protocol 4.4.16. WeakVerHist = (PWVH,VWVH).

Common input: An efficiently decidable set S ⊆ {0, 1}n, a size estimation s (for |S|), a
function f : S 7→ {0, 1}∗, a histogram parameter ε = 1/ poly(n), and h a (claimed) ε-
histogram of f over S.

Description: For simplicity we assume that f(S) ⊆ {0, 1}n.9 For each j ∈ (m), let Mj be
the following protocol: on input y ∈ {0, 1}n, if y 6∈ f(S), the verifier rejects. Otherwise,
the parties engage in the Set-Lower-Bound protocol of Lemma 4.3.12 with input (f−1(y), s ·
2−ε·(j+2), ε). Protocol WeakVerHist is defined as follows:

1. The parties interact for every j ∈ (m), in parallel, in an execution of the of Lemma 4.3.13,
on input (1n,Mj,ESε(h≤j), ε), where VWVH and PWVH play the role of VGLB and PGLB

respectively.

9Since f is efficiently computable, it holds that f(S) ⊆ {0, 1}poly(n) and all the proof can easily be adapted
to this case as well.

95

2. VWVH accepts if VGLB accepts in all the above embedded executions.

. .

We next prove the completeness and soundness of Protocol 4.4.16. In the following we
fix S, f , n, s and ε, let Bj’s be as in Definition 4.3.1 with respect to to this fixing. Also let
(Yj,N j, T j) be, in order, the YES, NO, and non-promise inputs of length n for the protocol
Mj according to Definition 1.3.6 (since n is fixed, we will not write the index n). Finally,
let GenSetLBj be the j’th execution of the Generalized Set-Lower-bound protocol done in a
random execution of WeakVerHist.

Claim 4.4.17. It holds that:

1.
⋃
i∈(j) Bi ⊆ Yj, and

2. Yj ∪ T j ⊆
⋃

1≤i≤j+3 Bi.

Proof. Let y ∈ Bi. First consider the case that i ≤ j. Proposition 4.3.3 yields that |S| ·
2−ε·(j+1) ≤ |S|·2−ε·(i+1) < |f−1(y)|, and by the promise on s it holds that s·2−ε·(j+2) ≤ |f−1(y)|.
The completeness of Lemma 4.3.12 yields that verifier accepts in Mj with probability at least
1− 2−n and therefore Bi ⊆ Yj.

Now let i ≥ j+4. Proposition 4.3.3 yields that |f−1(y)| ≤ |S| ·2−εi ≤ |S| ·2−ε·(j+4). Since
|S| ≤ s·2ε, it holds that |f−1(y)| ≤ 2−ε(s·2−ε·(j+2)). Therefore, the soundness of Lemma 4.3.12
yields that the verifier rejects in Mj with probability at least 1 − 2−n, which implies that
Bi ⊆ N j. Also note that by the definition of Mj, it holds that {0, 1}n \ f(S) ⊆ N j, and
therefore

Yj ∪ T j ⊆ f(S) \
⋃

j+4≤i≤m

Bi =
⋃

1≤i≤j+3

Bi.

Completeness. Assuming that h = hf , Proposition 4.3.3 and Claim 4.4.17 yield that
ES(h≤j) = ES(hf≤j) ≤ |

⋃
i∈(j) Bi| ≤ |Yj|. Therefore, the completeness of Lemma 4.3.13

yields that the verifier accepts in GenSetLBj with probability at least 1 − 2−n, and by the
union bound VWVH accepts in all of the m+1 instances of GenSetLBj’s (simultaneously) with
probability at least 1− (m+ 1)2−n > 1− 2−n/2.

Soundness. The following lemma carries the heart of the proof.

Lemma 4.4.18. Let d and d′ be two probability distributions over [0, 1]m+1 and let ε, λ ∈
(0, 1). Assume that

1. m · ε ≥ 1 and

2. ESε(d
′
≤j) ≤ 2λ · ESε(d≤j) for all j ∈ (m),

then
−→
W1(d, d′) ≤ 16λ+ 4

←−
W1(d, d′).

96

Before proving Lemma 4.4.18, we first use it to show the soundness of Protocol 4.4.16.
Let m′ = m + 3, d′ = (d′0, . . . , d

′
m′) = (0, 0, 0, h) and d = (d0, . . . , dm′) = (hf , 0, 0, 0) (notice

that we are using Lemma 4.4.18 with dimension m′ + 1 rather than m + 1). Since m′ε >
mε = n ≥ 1, the first condition of Lemma 4.4.18 is satisfied. The following claim yields that
(d, d′) also satisfies the second condition of Lemma 4.4.18 for the suitable choice of λ.

Claim 4.4.19. For any j ∈ (m) and any prover P∗, either ES(h≤j) ≤ 22ε · ES(hf≤j+3) or

VWVH rejects in GenSetLBj with probability at least 1− 2−n (where we let hfi = 0 for i > m).

Proof. Assuming that ES(hf≤j+3) < 2−2ε · ES(h≤j), Claim 4.4.17 together with Proposi-
tion 4.3.3 yield that

|Yj ∪ T j| ≤

∣∣∣∣∣∣
⋃

i∈(j+3)

Bi

∣∣∣∣∣∣ < 2ε · ES(hf≤j+3) < 2ε2−2ε · ES(h≤j) = 2−εES(h≤j).

Therefore, Lemma 4.3.13 yields that VWVH rejects in GenSetLBj with probability at least
1− 2−n.

For j ∈ {0, 1, 2} and any λ > 0, it holds that ES(d′≤j) = 0 ≤ 2λ · ES(d≤j). Claim 4.4.19
yields that either VWVH rejects with probability at least 1− 2−n or it holds that

ES(d′≤j) = 0 + 23ε · ES(h≤j−3) ≤ 23ε22εES(hf≤j) = 25εES(d≤j),

for 3 ≤ j ≤ m′. Hence, the second requirement of Lemma 4.4.18 holds for λ = 5ε. Below, by−→
W1m′(h

f , h) we mean the 1st Wasserstein distance when the dimension is increased m′ (by
adding three zeros in coordinates m+1,m+2,m+3). Note m′ ·W1m′(h

f , h) = m ·W1(hf , h)
and that W1m′(d

′, h) ≤ 3/m < 3ε. We conclude that

−→
W1(hf , h)

= (m′/m)
−→
W1m′(h

f , h) change m→ m′

≤ (m′/m)(
−→
W1(hf , d) +

−→
W1(d, d′) +

−→
W1(d′, h)) by Proposition 4.3.5

≤ (m′/m)(0 + 16λ+ 4
←−
W1(d, d′) + 3ε) by Lemma 4.4.18

≤ (m′/m)(16(5ε) + 4(
←−
W1(d, hf) +

←−
W1m′(h

f , h) +
←−
W1(h, d′)) + 3ε) by Proposition 4.3.5

= (m′/m) · (83ε) + 4
←−
W1(hf , h) change m′ → m

≤ 100ε+ 4
←−
W1(hf , h). for m ≥ n > 15

97

Proof of Lemma 4.4.18. For the duration of the proof, set m′ = 2m − 1. We first increase
the dimension of d and d′ from m + 1 to m′ + 1 = 2m, by padding them with trailing
zeros. Namely, we let d = (d0, . . . , dm, dm+1 = 0, . . . , dm′ = 0) and d′ = (d′0, . . . , d

′
m, d

′
m+1 =

0, . . . , d′m′ = 0) (both vectors are now in [0, 1]m
′+1). For j ∈ (m′), let aj =

∑
i∈(j)(di − d′i)

and let a = (a0, . . . , am′) (note that aj = 0 for m ≤ j ≤ m′). Also we let aj = 0 for j /∈ (m′)
(in particular, ES(a≤j) = 0 for j < 0). The following claim characterizes the difference
ES(d′≤j)− ES(d≤j) in terms of the vector a.

Claim 4.4.20. For every j ∈ (m′) it holds that ES(d′≤j)−ES(d≤j) = (2ε−1)·ES(a≤j−1)−2jεaj.

Proof. An intuitive proof is as follows. Consider the process that changes d≤j into d′≤j by
“pushing” the amount ai’s from di to di+1 for every i ∈ (j). The effect of these changes for
i < j on ES(d′≤j)− ES(d≤j) is equal to −ai2iε + ai2

(i+1)ε = (2ε − 1)ai2
iε (ai is removed from

di and is added to di+1, where these changes get multiplied by 2iε and 2(i+1)ε respectively in
the exponential sums). For i = j the change to ES(d′≤j)− ES(d≤j) is just the negative part
−ai2iε (ai is “pushed out” of (d1, . . . , di)). Formally, the proof goes as follows.

(2ε − 1) · ES(a≤j−1)− aj2jε

=
(∑
i∈(j−1)

(2ε − 1)ai2
iε
)
−aj2jε

=
(∑
i∈(j−1)

(2ε − 1)2iε ·
∑
k∈(i)

(dk − d′k)
)
−2jε ·

∑
k∈(j)

(dk − d′k)

=
(∑
k∈(j−1)

(dk − d′k)((2ε − 1) ·
∑

k≤i≤j−1

2iε)
)
−
∑

k∈(j−1)

(dk − d′k)2jε − (dj − d′j)2jε

=
(∑
k∈(j−1)

(dk − d′k)((2ε − 1) · 2jε − 2kε

(2ε − 1)
)
)
−
∑

k∈(j−1)

(dk − d′k)2jε − (dj − d′j)2jε

=
∑

k∈(j−1)

(dk − d′k)(2jε − 2kε − 2jε)− (dj − d′j)2jε

=
∑
k∈(m)

(dk − d′k)(−2kε) = −(ES(d≤j)− ES(d′≤j)) = ES(d′≤j)− ES(d≤j).

Note that the second promise of Lemma 4.4.18 implies that ES(d′≤j)−ES(d≤j) can not be
“too large” because it is bounded by ≤ (2λ−1) ·ES(d≤j). The next claim, roughly speaking,
asserts that if effect of (a1, . . . , aj−1) in ES(d′≤j)− ES(d≤j) (which is captured by ES(a≤j−1))
is large enough, then aj that has a negative effect in ES(d′≤j)− ES(d≤j) should also be large
to compensate the effect of (a1, . . . , aj−1) for ES(d′≤j)− ES(d≤j) and keep it ‘small”. On the
other hand, if aj is large enough then this in turn keeps ES(a≤j) large. The claim proves the
above intuition for the normalized exponential sums.

98

Claim 4.4.21. The following holds for every j ∈ (m′):

1. aj ≥ (1− 2−ε) · ẼS(a≤j−1)− λ · ẼS(d≤j), and

2. ẼS(a≤j) ≥ ẼS(a≤j−1)− λ · ẼS(d≤j).

Proof. For every j ∈ (m′), the second promise of Lemma 4.4.18 implies that ES(d′≤j) −
ES(d≤j) ≤ (2λ − 1) · ES(d≤j) < λ · ES(d≤j). Therefore, Claim 4.4.20 yields that (2ε − 1) ·
ES(a≤j−1)− 2jεaj < λ · ES(d≤j), and thus by normalizing the exponential sums we have

aj ≥ 2−ε(2ε − 1) · ẼS(a≤j−1)− λ · ẼS(d≤j),

which proves the first part of the claim.
The second part of the claim also holds since

ẼS(a≤j)

= 2−ε · ẼS(a≤j−1) + aj by definition of ES(·) and ẼS(·)

≥ 2−ε · ẼS(a≤j−1) + (1− 2−ε) · ẼS(a≤j−1)− λ · ẼS(d≤j) by the first part of Claim 4.4.21

= ẼS(a≤j−1)− λ · ẼS(d≤j),

It is clear that ẼS(d≤j) ≤ 1. Trivially it then holds that
∑

j∈(m′) ẼS(d≤j) ≤ m′ + 1. The
following claim strengthens this trivial bound.

Claim 4.4.22. It holds that
∑

j∈(m′) ẼS(d≤j) ≤ 2/(2ε − 1).

Proof. ∑
j∈(m′)

ẼS(d≤j)

=
∑
j∈(m′)

1

2jε
·
∑
i∈(j)

di2
iε =

∑
i∈(m′)

∑
i≤j≤m′

di2
(i−j)ε

=
∑
i∈(m′)

di ·
∑

k∈(m′−i)

2−kε <
∑
i∈(m′)

di ·
∑
k∈(∞)

2−kε = 2ε/(2ε − 1) < 2/(2ε − 1).

Recall that Claim 4.4.21 informally states that if ẼS(a≤j) is large for some j, then for

j′ > j, aj′ and ẼS(a≤j′) are relatively large as well. Looking from the other direction, since

eventually we get to the point that am′ = 0, none of the ẼS(a≤j)’s can be too large. This
intuition is formalized in the following claim.

99

Claim 4.4.23. For every j ∈ (m′), it holds that ẼS(a≤j) < 4λ/(2ε − 1).

Proof.

ẼS(a≤j)− 4λ/(2ε − 1)

< ẼS(a≤j)− λ ·
(∑
j≤i<m′−1

ẼS(d≤i)
)
−2λ/(2ε − 1) Claim 4.4.22

≤ ẼS(a≤m′−1)− 2λ/(2ε − 1) induction over Claim 4.4.21

≤ ẼS(a≤m′−1)− λ2ε

(2ε − 1)
· ẼS(d≤m′) by 2ε < 2 and ẼS(d≤m′) ≤ 1

≤ ẼS(a≤m′−1)− λ

(1− 2−ε)
· ẼS(d≤m′)

≤ am′/(1− 2−ε) = 0. the first part of Claim 4.4.21

Recall that the conclusion of Lemma 4.4.18 states that if
−→
W1(d, d′) =

∑
ai>0 ai is large,

then
←−
W1(d, d′) = −

∑
ai<0 ai is large too. In Claim 4.4.23, we showed that ẼS(a≤j)’s cannot

be too large. Roughly speaking (see the calculation below), large
∑

ai>0 ai makes ẼS(a≤j)

large, where large −
∑

ai<0 ai makes ẼS(a≤j) small. Thus, in order for the claimed bound on

ẼS(a≤j) to hold, −
∑

aj<0 aj should cancel
∑

aj>0 aj. Formally, we first show that:∑
j∈(m′)

ẼS(a≤j) =
∑
j∈(m′)

∑
i∈(m)

ai2
(i−j)ε =

∑
i∈(m′)

ai ·
∑

k∈(m′−i)

2−kε

Therefore from Claim 4.4.23 and the fact that m′ = 2m− 1 we conclude that∑
i∈(m′)

ai ·
∑

k∈(m′−i)

2−kε ≤ 4m′λ(2ε − 1) < 8mλ(2ε − 1) (4.4.14)

On the other hand, since we assumed mε ≥ 1, for every 0 ≤ i < m we can get the following
upper and lower-bounds for

∑
k∈(m′−i) 2−kε (i.e. the coefficient of ai in Equation 4.4.14):

1

2(2ε − 1)
<

(2ε − 2−mε)

(2ε − 1)
=
∑
k∈(m)

2−kε ≤
∑

k∈(m′−i)

2−kε <
∑
k∈(∞)

2−kε =
2ε

2ε − 1
<

2

(2ε − 1)

(4.4.15)

By substituting the coefficient of the ai’s in Equation 4.4.14 with the proper upper and
lower-bound of Equation 4.4.15 (the positive ai’s with 1/2(2ε−1) and the negative ones with
2/(2ε− 1)), we get that 1

2(2ε−1)

∑
aj>0 aj + 2

(2ε−1)

∑
aj<0 aj < 8mλ/(2ε− 1), which yields that∑

aj>0

aj + 4 ·
∑
aj<0

aj < 16mλ. (4.4.16)

100

We conclude that:

−→
W1(d, d′) =

1

m
·
∑
aj>0

aj ≤ 16λ− 4

m
·
∑
aj<0

aj = 16λ+ 4 ·
←−
W1(d, d′).

Proof of Lemma 4.4.6

Proof. The Protocol VerEmpLabel is defined as follows.

Protocol 4.4.24. VerEmpLabel = (PVEL,VVEL).

Common input: An efficiently decidable set S ⊆ {0, 1}n, an efficiently computable function
f : {0, 1}n → {0, 1}∗, a claimed size s for S, the histogram parameter ε, a claimed histogram
h of f over S, the empirical samples x1, . . . , x`, and claimed bins for the empirical samples
u.

Description:

1. VVEL verifies that x1, . . . , x` ∈ S.

2. (Preimage tests) The parties interact for every i ∈ [`], in parallel, in an execution of
the Set Lower-Bound protocol of Lemma 4.3.12, on input (f−1(f(xi)), s · 2−ε·(u(i)+2), ε),
where PVEL and VVEL play the role of PiLB and Vi

LB respectively.

3. Let hu = Hist(u) (see Definition 4.3.2). The verifier rejects if W1(h, hu) > ε (and
accepts if not rejected so far).

. .

Let SetLBj be the j’th execution of the set Lower-bound protocol in a random execution
of VerEmpLabel. In the following we prove the completeness and soundness properties of
Protocol 4.4.24.

Completeness. Suppose that the prover is honest (namely u = uf and h = hf), it
follows that

• VVEL always accepts in Step 1.

• Proposition 4.3.3 yields that |f−1(f(xi))| ≥ |S| · 2−ε·(u(i)+1), and the promise on s
yields that |S| ≥ 2−εs. Therefore we have |f−1(f(xi))| ≥ s · 2−ε·(u(i)+2) and by the
completeness of Lemma 4.3.12 Vi

LB accepts with probability at least 1 − 2−n. Hence
VVEL does not reject in Step 2 with probability at least 1−m2−n.

• VVEL always accepts in Step 3.

Therefore VVEL accepts with probability at least 1−m2−n > 1− 2−n/2.
Soundness. We claim that uf (i) ≤ u(i) + 3 for all i ∈ [`] or otherwise VVEL rejects

with probability at least 1 − 2−n. Let assume that uf (i) ≥ u(i) + 4 for some i ∈ [`].

101

Then Proposition 4.3.3 yields that |f−1(f(xi))| ≤ |S| · 2−ε·u
f (i) ≤ |S| · 2−ε·(u(i)+4). Now since

|S| ≤ s · 2ε, it follows that ∣∣f−1(f(xi))
∣∣ ≤ 2−ε(s · 2−ε·(u(i)+2)) (4.4.17)

Hence, by the soundness of Lemma 4.3.12, Vi
LB (and thus VSWS) rejects with probability least

1− 2−n, in which case we are done.
So in the following we assume that uf (i) ≤ u(i) + 3 for all i ∈ [`], which by Proposi-

tion 4.3.7 yields that

←−
SH(uf , u) ≤ 3/m. (4.4.18)

Using the promise W1(hu
f
, hf) ≤ ε and that W1(hu, h) ≤ ε (since otherwise VVEL would

reject in Step 3), we conclude that

SH(uf , u) (4.4.19)

=
←−
SH(uf , u) +

−→
SH(uf , u) Definition 4.3.6

≤
←−
SH(uf , u) + (

←−
SH(uf , u) +

−→
W1(hu

f

, hu)) Lemma 4.3.8

≤ 6/m+
−→
W1(hu

f

, hf) +
−→
W1(hf , h) +

−→
W1(h, hu) Equation 4.4.18

and Proposition 4.3.5

≤ 6/m+ W1(hu
f

, hf) +
−→
W1(hf , h) + W1(h, hu) Definition 4.3.4

≤ 6/m+ ε+
−→
W1(hf , h) + ε Promise and Step 3

≤ 6/m+ 2ε+ (100ε+ 4
←−
W1(hf , h)) Promise

≤ 6/m+ 102ε+ 4(
←−
W1(hf , hu

f

) +
←−
W1(hu

f

, hu) +
←−
W1(hu, h)) Proposition 4.3.5

≤ 6/m+ 102ε+ 4(W1(hf , hu
f

) +
←−
SH(uf , u) + W1(hu, h))) Lemma 4.3.8

and Definition 4.3.4

≤ 6/m+ 102ε+ 4(ε+ 3/m+ ε) Equation 4.4.18

and Step 1 and Step 3

≤ 18/m+ 110ε ≤ 111ε. for mε = n ≥ 18

(4.4.20)

4.5 Applications

In this section we use the sample with size protocol described in Section 4.4 for proving our
main result. We first formally defined the interactive sampler, Sam, inspired by the sampler
of Haitner et al. [86].

102

Definition 4.5.1 (Sam oracle). For d ∈ N, the randomized stateful oracle Samd is defined
as follows: on input (C1, . . . , Ci, x), where x ∈ {0, 1}m and each Cj is a circuit over {0, 1}m,

1. Samd returns ⊥ if either

• i > d, or

• it was not previously asked on (C1, . . . , Ci−1, x
′) (for some x′ ∈ {0, 1}m) and

answered with x.

2. Otherwise, Samd returns a random element in

S(C1, . . . , Ci−1, x) := {x′ ∈ {0, 1}m : ∀j ∈ (i− 1) : Cj(x
′) = Cj(x)} ,

where Samd uses fresh randomness for each call.

Given an oracle (random) algorithm A and x ∈ {0, 1}∗, we let ASamd(x) be the output
distribution of ASamd on input x (this distribution is induced by the random coins of A and
Samd). We say that ASamd(x) is k-adaptive, for k ∈ N, if A(x) makes at most k parallel
calls to Samd, where a parallel call consist of arbitrary many different inputs to Samd (i.e.,
(q1 = C1,1, . . . , C1,j1 , x1), . . . , qt = (Ct,1, . . . , Ct,jt , xt))).

Given the above definition, we can formally state our main result.

Theorem 4.5.2 (Restating Theorem 4.1.1). For any d = O(1), let A be an efficient oracle
algorithm and let x ∈ {0, 1}∗. If ASamd(x) is k-adaptive, then there exists an AM[O(k)]
protocol AM−Sam = (P,V) whose parties get as input x ∈ {0, 1}∗ and an accuracy parameter
δ > 1/ poly(|x|), the prover P is in ∈ BPPNP, and the following hold:

Completeness: V accepts in 〈P,V〉 (δ, x) with probability at least 1− δ.

Soundness: For every prover P∗ it holds that

SD(ASamd(x), 〈P∗,V〉V (δ, x)) ≤ Pr[〈P∗,V〉V (δ, x) =⊥] + δ,

where ASamd(x) denotes the output of A on input x, and 〈P∗,V〉V (δ, x) denotes the
output of V at the end of the interaction with P∗ on input (δ, x) (equals ⊥ if V aborts).

The above theorem yields the following classification.

Corollary 4.5.3. Let A be a k-adaptive efficient oracle algorithm such that ASamd decides a
language L ⊆ {0, 1}n — for every x ∈ {0, 1}n it holds that Pr[ASamd(x) = 1L(x)] ≥ 1

2
+ δ for

δ > 1/ poly(n). Then L ∈ AM[k] ∩ coAM[k], with provers in BPPNP.

Proof. In order to keep the text simple, we assume that A makes no parallel queries. Let
` < poly(|x|) be an upper-bound on the running A on inputs of length |x|. We consider the
following protocol for the emulation of ASamd(x):

103

Protocol 4.5.4.
AM−Sam = (P,V).

Common input: An accuracy parameter δ and x ∈ {0, 1}∗.
Description: For i ∈ [d] let δi = (δi+1)c/c · `8, where δd = δ/2` and c is the constant stated in
Corollary 4.4.3.10

1. V chooses, uniformly at random, random coins for A, and initialized a table Prefix
(initially empty).

2. V emulates ASamd(x), while doing the following each time A makes a query q =
(C1, . . . , Ci, x) to Samd:

(a) If i > d, or i > 1 and st = (C1, . . . , Ci−1, x) /∈ Prefix, then V returns ⊥ to A as
the answer of Samd.

(b) Otherwise, P and V are engaged in a random execution of protocol SampWithSize
from Corollary 4.4.3 on input (δi,S(st),Prefix(st), Ci),11 where V and P act as the
verifier and prover respectively.

Let (x′, s) be the output of the verifier in the above execution, V stores
Prefix(C1, . . . , Ci, x

′) = s and returns x′ to A as the answer of Samd.

3. V rejects if it has rejected in one of the above executions.

. .

It is clear that the complexity of the above protocol matches the statement of the theorem
(recall that the prover in SampWithSize is in BPPNP). We will prove the completeness and
soundness of the protocol using induction. In the following we assume that V never sets
Prefix(C1, . . . , Ci, x) = s for s /∈ [(1± δi) · |S(C1, . . . , Ci−1, x)|] (i.e., we assume a variant of V
that aborts if the original verifier is about to store an invalid value). Corollary 4.4.3 yields
that by doing that we increase the rejecting probability of V by at most δ/2.

Let Viewj
Samd

denote the view of A after the j’th query to Samd. For a prover P∗, we

let Viewj
P∗ denote the view of A after the j’th query in the emulation done in 〈P∗,V〉 (δ, x)

(where we set it to ⊥ is V has rejected). Assume that the following for j ∈ (`):

Completeness: V rejects with probability at most jδ/2` when interacting with P up until
and including the j’th emulated query.

Soundness: For any (unbounded) prover P∗ it holds that SD(Viewj
Samd

,Viewj
P∗) ≤ ρj +

jδ/2`, where ρj is the probability that V rejects in the first j queries of 〈P∗,V〉 (δ, x).

Since the output of the verifier at the end of the emulation is a function of A’s view, the
above for j = ` yields the proof of the lemma. For proving the case j+1, fix any non-rejecting
view v for the first j steps of A. Since ` bounds the domain of the set parameter S in any

10Since d is constant, all these values are inverse polynomials of |x| and 1/δ.
11Where we view a circuit C with m input wires, as a function over {0, 1}m.

104

query made by A(x), Corollary 4.4.3 yields that the following with respect to the j+1 query
of A(x):

1. V reject with probability at most δ/2` when interacting with P, and

2. SD((Viewj+1
Samd
| v), (Viewj+1

P∗ | v)) ≤ ρv + δ/2`, where ρv is the probability that V reject
in the j + 1 query, conditioned on v.

The completeness for the (j+ 1) step follows immediately from the above and the induction
hypothesis. For the soundness, note that ρj+1 = ρj+(1−ρj)·Ev

R←Viewj
P∗

[ρv | v 6=⊥]. Similarly,

the triangle inequality yields that

SD(Viewj+1
Samd

,Viewj+1
P∗) ≤

SD(Viewj
Samd

,Viewj
P∗) + (1− ρj) · E

v
R←Viewj

P∗

[SD((Viewj+1
Samd
| v), (Viewj+1

P∗ | v)) | v 6=⊥]

≤ ρj+1 + (j + 1)δ/2`.

4.5.1 Lower-Bounds on Statistically Hiding Commitments

In this section we use Theorem 4.5.2 to derive a lower-bound on the possibility of basing
constant-round statistically hiding commitments on the assumption that P 6= NP. Statisti-
cally hiding commitments are defined in Section 4.5.1. In Section 4.5.1 we show that Samd

can be used to break any d rounds statistically hiding commitment, and define a reduction
from statistically hiding commitments to deciding a language in Section 4.5.1. Finally, we
state and prove the result of this section in Section 4.5.1.

Statistically Hiding Commitments

Definition 4.5.5 (Statistically hiding commitments). A (bit) commitment scheme (Send,Rec)
is an efficient two-party protocol consisting of two stages.12 Throughout, both parties receive
the security parameter 1n as input.

Commit. The sender Send has a private input b ∈ {0, 1}, which she wishes to commit to
the receiver Rec, and a sequence of coin tosses r. At the end of this stage, both parties
receive as common output a commitment z.

Decommit. Both parties receive as input a commitment z. Send also receives the private
input b and coin tosses r used in the commit stage. This stage is non-interactive: Send
sends a single message to Rec, and Rec either outputs a bit (and accepts) or rejects.

Definition 4.5.6. A commitment scheme (Send,Rec) is statistically hiding if

12Sice we are interested in lower-bounds, we only present the definition for bit commitments.

105

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that Send gets as
private input, Rec accepts and outputs b at the end of the decommitment stage.

Statistical Hiding. For every unbounded strategy Rec∗, the distributions
ViewRec∗(Send(0),Rec∗) and ViewRec∗(Send(1),Rec∗) are statistically indistinguishable.

Computational Binding. For every efficient Send∗, Send∗ succeeds in the following game
(breaks the commitment) with negligible probability in n:

– Send∗ interacts with an honest Rec in the commit stage, which yields a commit-
ment z.

– Send∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1, Rec on
input (z, τb) accepts and outputs b.

Sam and Statistically Hiding Commitments

Haitner et al. [86] (following Wee [156]) showed that Sam can be used for breaking any
statistically hiding commitment. Since there are slight differences between the definition of
Sam considered above and the one considered in [86], we restate their result according to our
formulation and sketch its proof.

Lemma 4.5.7 (implicit in [86]). For any d-round statistically hiding commitment (Send,Rec),
there exists a deterministic oracle adversary A such that ASamd break the binding of (Send,Rec)
with save but negligible probability.

Proof Sketch. We assume without loss of generality that Rec speaks first, and let m be the
number of random coins used by Send. We also assume that Send gets its random coins, r,
as an additional input (i.e., we view Send’s input as a pair x = (b, r), where b is the secret
bit of Send).

Let x0 :=⊥. In the commit stage, A behaves as follows: given a query qi from Rec, it
queries Samd on (Ci, xi−1) to get an answer xi, where Ci is the following circuit: on input
x ∈ {0, 1}m+1, it outputs the message of Send(x) on the i’th round, given that Rec’s first i
messages are q1, . . . , qi. Finally, A sends Ci(xi) to Rec (as its i’th message).

In the decommitment stage, A queries Samd n times on (C ′, xd), where C ′ is an arbitrary
circuit over {0, 1}n, to get outputs {(bi, ri)}i=1,...,n. If there exists i 6= j such that bi 6= bj
then A outputs ((bi, ri), (bj, rj)), otherwise A aborts.

The definition of Samd yields that each (bi, ri) is a random valid decommitment. Hence,
the statistically hiding property of (Send,Rec) yields that, with save but negligible proba-
bility, there exist bi 6= bj and A successfully produces decommitments to both 0 and 1.13

Therefore, ASamd breaks the binding of (Send,Rec) with save but negligible probability.

13The statistically hiding property yields that given a random transcript of the commitment, essentially
half of Send’ possible input pairs that are consistent with the transcript are of the form (0, ·), and the other
half are of the form (1, ·).

106

Black-Box Reductions

We now formally define the notion of black-box reductions from deciding a language to
(breaking the binding of) commitment schemes.

Definition 4.5.8 (Black-box reduction). A black-box reduction from deciding a language
L to breaking the binding of a commitment protocol (Send,Rec) is an oracle algorithm
(Send,Rec) with the following guarantee: given as oracle a deterministic and stateless adver-
sary O that breaks the binding of (Send,Rec), RO decides L (i.e., , Pr[RO(x) = 1L(x)] ≥
1− 2−n). We say that R is k-adaptive if it makes k adaptive rounds of queries to its oracle;
each round may consist of many queries, but all of the queries in one round can be computed
without looking at the oracle responses to any of the other queries in the same round.

On Basing Statistically Hiding Commitments on NP-hardness

Given the above definitions, we can formally state result about reducing the security of
statistically hiding commitment on the decidability hardness of a given language.

Corollary 4.5.9. Suppose that there exists an efficient k-adaptive black-box reduction R
from deciding a language L to breaking the binding of a statistically hiding commitment.
Then L ∈ AM[k] ∩ coAM[k] with provers in BPPNP.

Proof. Let R and (Send,Rec) be the assumed reduction and statistically hiding commitment
respectively. Let ASamd be the algorithm guaranteed by Lemma 4.5.7 for breaking the binding
of (Send,Rec). We would like to argue that RASamd decides L, but the problem is that ASamd

is randomized and stateful. Nevertheless, the following lemma readily follows from Haitner
et al. [86].

Lemma 4.5.10 (implicit in [86]). Let (Send,Rec), R and L be as in Definition 4.5.8. The

there exists an efficient oracle algorithm R̃ such that R̃Õ decides L for any randomized and
stateful oracle Õ, which breaks the binding of (Send,Rec) with save but negligible probability.

Proof Sketch. We present an efficient algorithm R̃ and a family of deterministic and stateless
oracles {Oλ} such that the following hold: 1. with save but negligible probability over the

choice of λ, it holds that Oλ breaks the binding of (Send,Rec), and 2. the execution of R̃Õ(x)

and ROλ are statistically close, over the randomness of R̃, R, Õ and a random choice of λ.
Showing that will conclude the proof, since the grantees about {Oλ} yields that ROλ decides

L correctly for most λ’s, and theretofore R̃Õ decided L.
Following [86], we first consider a stateless version Ô of Õ that lets the caller hold its state

— on each query, the caller provides O with a state parameter (encoded as string), where
at the end of the call O returns the updated state to the caller (in addition to its original

output). We would like to claim that whatever can be done with Ô could be done with

Õ. The problem is, however, that a “user” of Ô can get additional power by providing fake
states. Following [86], this problem is solved by letting Ô sign its states using information

theoretic signature (i.e., the output of a random function that Ô keeps in its belly), and

107

verify the validity of the signature in each call. Finally, we let Oλ be the oracle Ô whose
random coins (including the one used for the signatures) fixed to λ.14

Since Ô breaks the binding of (Send,Rec) with save but negligible probability, item 1
holds with respect to {Oλ}. Moreover, the signature mechanism we employ, tell us that,
with save but negligible probability over the choice of λ and the random coins of R, invalid
calls made by R (i.e., with fake states) are answered with ⊥.

On input x algorithm R̃ emulates ROλ(x) as follows: it forwards the oracle calls of R to Õ
(stripped from the state parameter), and returns Õ answers to R, along with the state of Õ
and a signature of the state (R̃ computes both parameters by itself, where for the signature
it simply returns a random string). In addition, if the state given in the call is invalid (was

not return by a previous call), R̃ returns ⊥ as the answer to the call.15 Finally, it answers
identical queries with identical answers (as a stateless oracle should do).

Assuming that R never gets non ⊥ answers to invalid queries, the distribution of R̃Õ(x)
and ROλ are identical. Thus, item 2 follows by the above observation about the guarantee
of the signature mechanism.

Lemma 4.5.10 yields that R̃ASamd decides L. Since A is efficient, it follows that there exists
an efficient oracle algorithm R′ such that R′Samd decides L. Hence, Corollary 4.5.3 yields
that L ∈ AM[k] ∩ coAM[k] with provers in BPPNP.

14Since the running time of R is bounded, the size of λ is bounded as well.
15Note that R̃ does not need to use the signature mechanism to ensure validity, since R̃ is stateful and can

keep track on the execution.

108

Chapter 5

More on NP-hard Cryptography,
Randomized Reductions, and
Checkability of SAT

5.1 Introduction

In this chapter we study various complexity classes under randomized oracle (i.e., Cook)
reductions. Such a reduction is an efficient randomized algorithm with access to an oracle,
and the algorithm is allowed to ask the oracle multiple questions, even adaptively (using
the oracle’s answers to generate new questions). The closure of a complexity class C under
randomized oracle reductions, denoted BPPC, is the class of languages (or, more generally,
promise problems) that are decidable using efficient randomized algorithms with access to
an oracle solving a problem in C.

The closure of many complexity classes under randomized oracle reductions is poorly
understood. For example, the following questions remain completely open (i.e., resolving
them in either direction would be consistent with standard conjectures about complexity
classes, such as P 6= NP):

1. Let PrSZK denote the class of promise problems having statistical zero-knowledge
proofs. How big is the class BPPPrSZK? For example, does it contain NP-complete
languages like SAT?

2. Is it possible to use an algorithm computing Nash equilibrium to solve SAT?

3. Is it possible to base one-way functions on NP-hardness?

4. Is it possible to prove that P 6= NP implies the existence of a hard-on-average problem
in NP?

In this chapter, we make the following progress on these questions:

1. BPPPrSZK ⊆ AM ∩ coAM. Therefore, SAT /∈ BPPPrSZK unless PH = Σ2 [30].

109

2. If SAT ∈ BPPTFNP, then SAT has an instance checker. (Recall that computing Nash
equilibrium is in TFNP [134]).

3. If there is a black-box reduction basing one-way functions on NP-hardness, then SAT
has an instance checker.

4. If there is a black-box worst-case to average-case reduction for any relation (or lan-
guage) R ∈ NP, then R has a non-uniform instance checker.

Our result about PrSZK improves on the previously known facts that PrSZK is closed
under NC1 truth-table reductions [146] and that PPrSZK ⊆ AM ∩ coAM [152] (where
PPrSZK denotes the closure of PrSZK under deterministic oracle reductions, see Theo-
rem 5.1.3).

Regarding our other results, we use the notion of instance checking (also known as pro-
gram checking) as defined by Blum and Kannan [24]. Intuitively a problem Π is checkable
if there is an efficient randomized algorithm C that uses any program P that purportedly
solves Π, such that for every instance x, CP either decides x correctly or outputs “I don’t
know” (with very high probability).

One of the open questions posed by Blum and Kannan [24] was whether SAT has an
instance checker. This question has remained open for twenty years, and our results imply
that, in order to build a reduction that solves SAT using a TFNP oracle or using an inverting
oracle for a one-way function, one would along the way come up with an instance checker
for SAT. Although there is no widely held belief about whether or not SAT is checkable,
nevertheless given that this problem has remained unresolved for over twenty years our
theorems can be viewed as evidence that solving SAT using a TFNP oracle or using an
inverting oracle will be “hard to prove” via standard techniques. We credit Holenstein [96]
with the observation that connecting the hardness of various problems to the checkability of
SAT is a meaningful statement.

5.1.1 Difficulties with Randomized Reductions

We first illustrate the difficulties of understanding randomized oracle reductions. Let AM∩
coAM denote the class of promise problems Π such that both Π and Π have AM proof
systems. Suppose we try to prove that BPPAM∩coAM ⊆ AM ∩ coAM. (Actually this
claim is false unless NP ⊆ coAM, but we discuss it anyway as it illustrates well the
issues involved.)1 Since BPPAM∩coAM is closed under complement, it suffices to prove the
statement that for every Π ∈ BPPAM∩coAM, Π is also contained in AM.

The natural strategy. For every Π ∈ BPPAM∩coAM, Π is decidable by an efficient oracle
algorithm A with access to an oracle solving some Π′ ∈ AM ∩ coAM. To prove Π ∈ AM

1The claim is false because Even et al. [52] observed that there is even a deterministic oracle reduction A
that can decide SAT using only an oracle which decides a promise problem in NP∩co-NP ⊆ AM∩coAM.
This implies that NP ⊆ BPPAM∩coAM. This claim is false precisely because of the issues discussed above.

110

the natural idea is to construct an AM protocol for Π where on input z, the prover and
verifier do the following:

1. The verifier samples random coins ω for A and sends these to the prover.

2. The prover uses ω to emulate the execution of A. The prover answers any oracle queries
“x ∈ Π′?” that the reduction asks. Since Π′ is a promise problem, the prover is allowed
to respond “x does not satisfy the promise”. The prover then sends back these oracle
queries/answers back to the verifier.

3. The verifier checks that, using ω and the oracle answers claimed by the prover, the
execution of A is correct.

4. Since Π′ ∈ AM ∩ coAM, this means both Π′ = (Π′Y ,Π
′
N) and its complement Π′ =

(Π′N ,Π
′
Y) have AM proofs. Therefore, for every query x satisfying the promise, the

verifier asks the prover for proofs that x ∈ Π′Y or x ∈ Π′N , depending on what the
prover claimed previously.

5. If all the checks pass, the verifier outputs whatever A outputs, otherwise the verifier
rejects.

One could then hopefully use the correctness of the reduction A to prove completeness
and soundness of this protocol. However to prove the soundness of such a protocol one must
ensure that a cheating prover cannot trick the verifier into accepting NO instances. This is
problematic for the following two reasons:

1. Prover can falsely claim that a query does not satisfy the promise. Since
the prover can respond “x does not satisfy the promise”, and since the verifier cannot
check whether or not x satisfies the promise, the cheating prover may possibly respond
“x does not satisfy the promise” even on queries x that do satisfy the promise.

2. Prover can generate responses depending on A’s random coins. There may
be queries x /∈ Π′Y ∪ Π′N such that the prover is able to falsely claim both x ∈ Π′Y
and x ∈ Π′N without being caught. Namely, when the verifier runs the AM proof to
verify that x ∈ Π′Y or y ∈ Π′N , the prover is able to make the verifier accept in both
cases. In this case, the prover may choose to claim that x is a YES or NO instance
depending on the random coins of A. But this means that we cannot use the correctness
of the reduction A to argue that the verifier obtains the correct answer, because the
correctness of A only holds with respect to oracles whose responses are independent of
A’s random coins.

Our results overcome these difficulties in two ways. For PrSZK we use additional struc-
ture of PrSZK to force the prover first never to answer “x does not satisfy the promise”,
and second to answer in a way that is independent of A’s random coins. Our results for
checkability aim for the more modest goal of constructing an instance checker for Π, which
turns out to be easier than constructing an AM protocol for Π.

111

5.1.2 Complexity of Real-Valued Functions Verifiable in AM

Our first main theorem (which will imply our result about PrSZK as a corollary) studies the
power of randomized oracle reductions that use oracle access to a class of real-valued functions
that we call R-TUAM (denoting “real-valued total unique AM”, see Definition 5.2.5). To
understand R-TUAM, we begin by discussing the well-known class TFNP [117]. The class
TFNP is the following class of search problems: given input x, find y such that (x, y) satisfy
a relation R, with the condition that R is efficiently decidable and R is total, namely for
every x, there exists y such that (x, y) ∈ R.

TFAM is a natural relaxation of TFNP. We still require that R is total, but now we
allow R also to be just verifiable in AM (and not necessarily decidable in P). For functions
where in addition y ∈ R and y is unique up to some small error, we say that the function is
in R-TUAM (see Definition 5.3.1).

Although to the best of our knowledge this class of functions is not well-studied, many
natural problems can be decided given a R-TUAM oracle. For example, consider the prob-
lem of Entropy Difference ED, which is complete for the class PrSZK [68]. An instance
of this problem is a pair of circuits (X1, X2) that we think of as samplers: the distribution
sampled by the circuit X : {0, 1}m 7→ {0, 1}n is given by the output distribution X1(Um)
on uniform input bits. We write H(X) to denote the Shannon entropy of the distribution
sampled by X. A YES instance of ED satisfies H(X1) ≥ H(X2) + 1, while a NO instance
satisfies H(X2) ≥ H(X1) + 1. It is clear that being able to approximate the function
f(X1, X2) = H(X1)−H(X2) is sufficient to decide ED. It turns out that the entropy of dis-
tributions sampled by circuits can be verified using an AM protocol [2, 56] (see Lemma 5.3.4)
and therefore this function f is in the class R-TUAM.

Our main theorem about R-TUAM is the following:

Theorem 5.1.1. BPPR-TUAM ⊆ AM ∩ coAM.

Application to PrSZK. Theorem 5.1.1 and the above discussion showing that the PrSZK-
complete problem ED can be decided using an R-TUAM oracle imply the following.

Corollary 5.1.2. BPPPrSZK ⊆ AM ∩ coAM.

We note that if randomness is not allowed in the oracle algorithm which uses the PrSZK
oracle then it is easier to show that we are bound to be in AM ∩ coAM.

Theorem 5.1.3 (Vadhan, Theorem 5.4 in [63]). Let Π = (ΠY ,ΠN) be such that there
exist sets SY , SN satisfying SY ∪ SN = {0, 1}∗, ΠY ⊆ SY , ΠN ⊆ SN , (SY ,ΠN) ∈ NP,
(SN ,ΠY) ∈ NP. Then it holds that PΠ ⊆ NP ∩ co-NP.

This result can be proven the following way (this differs from the proof given in [63]).
Consider problems Π that “extend” to a TFNP search problem in the following way: there
exist disjoint SY , SN containing ΠY ,ΠN respectively such that the relation

(x, bw) ∈ R ⇔ (b = 1 ∧ (x,w) ∈ SY) ∨ (b = 0 ∧ (x,w) ∈ SN)

112

Problem Problem is NP-
hard

Problem in PrSZK
via Karp reduction

Can construct one-way
function

GapSVPγ γ any constant [106] γ ≥
√
n/ log n [65] γ ≥

√
n/ log n

GapCVPγ γ = n1/ log logn [49] γ ≥
√
n/ log n [65] γ ≥

√
n/ log n

GapSIVPγ γ any constant [21] γ ≥ ω(
√
n log n) [137] γ ≥ ω(

√
n log n)

Table 5.1: Hardness of various lattice problems

is in TFNP. This is equivalent to the hypothesis of Theorem 5.1.3, and solving R imme-
diately implies solving Π. Now combined with the fact that PTFNP ⊆ NP ∩ co-NP one
obtains Theorem 5.1.3.

This definition naturally generalizes to problems Π that “extend” to TFAM problems.
As we argue in Proposition 5.3.5, the PrSZK-complete problem entropy difference can be
extended to the TFAM problem of computing f(X1, X2) = H(X1)−H(X2). For the same
reason that PTFNP ⊆ NP ∩ co-NP, it also holds that PTFAM ⊆ AM ∩ coAM (Vadhan
[152] proved this using a proof along the lines of the proof of Theorem 5.1.3 given in [63]).
Therefore, one concludes that

PPrSZK = PED ⊆ PTFAM ⊆ AM ∩ coAM.

Proof technique: Theorem 5.1.1 is proven using the strategy of Section 5.1.1. A R-TUAM
function is total so the prover can never respond that a query does not satisfy the promise.
To prevent the prover from answering in a way that depends on the random coins chosen by
the verifier to emulate the BPPR-TUAM algorithm, the verifier adds some additional noise
to the prover’s responses to make them “independent” of the random coins.

Application to basing cryptography on lattice problems: much exciting recent work
in cryptography is based on the hardness of various lattice problems. The problems most
often studied are GapSVPγ, GapCVPγ, and GapSIVPγ, where γ = γ(n) is an approximation
factor. We refer the reader to [120], for example, for precise definitions of these problems.

Here, we simply note that the hardness of these problems depends critically on the value
of γ. This is illustrated in Table 5.1.

Understanding the hardness of these problems is partly motivated by the goal of bas-
ing cryptography on NP-hardness. Namely, one might hope to show that there is some
function γ such that say GapSVPγ is NP-hard, and furthermore that we can construct a
one-way function based on the hardness of GapSVPγ. This would be a great breakthrough in
cryptography, since all known cryptosystems are based on much stronger assumptions than
NP-hardness.

[65] proved negative evidence suggesting that this goal is unattainable. They observed
that all known constructions of one-way functions from GapSVPγ require γ(n) >

√
n/ log n.

[65] then showed that it is unlikely to prove that GapSVPγ is NP-hard under Karp reductions

113

because since GapSVPγ ∈ PrSZK, this would imply NP ⊆ PrSZK ⊆ coAM (which is
conjectured to be false since it would imply that PH = Σ2 [30]). However, [65] does not
preclude the possibility of proving that GapSVPγ is NP-hard under randomized reductions.
[65, 137] provide similar evidence for GapCVPγ and GapSIVPγ.

Our result strengthens the negative evidence to also rule out the use of randomized reduc-
tions: notice that saying that GapSVPγ is NP-hard under randomized oracle reductions is

equivalent to saying that NP ∈ BPPGapSVPγ . Since GapSVPγ ∈ PrSZK for γ ≥
√
n/ log n,

our Corollary 5.1.2 implies that proving GapSVPγ is NP-hard under randomized oracle re-

ductions for any γ ≥
√
n/ log n would imply that NP ⊆ coAM, and is therefore unlikely.

On the other hand, for γ(n) <
√
n/ log n, it is unknown whether GapSVPγ ∈ coAM even

if we are considering only Karp reductions.

5.1.3 Randomized Reductions, Checkability, and Testability

Although we are able to overcome the difficulties discussed in Section 5.1.1 to prove The-
orem 5.1.1 for the case of R-TUAM, we do not know how to bypass both difficulties in
general.

In the following, we will instead assume that the cheating prover is a static, fixed (but
possibly faulty) oracle. This by definition prevents the prover from responding in a way that
depends on the random coins the verifier sends, and in the settings we study the prover does
not benefit by answering “x does not satisfy the promise”. The interesting point is that even
achieving soundness only against such a severely restricted static prover will imply that the
language is “checkable”.

Checkability was defined by Blum and Kannan [24] and intuitively guarantees the fol-
lowing: C is an instance checker for a problem Π if, when C is given an instance x and a
program P , if P decides Π correctly (for all inputs, not just x), then C(P, x) outputs the
correct answer for x with high probability, while if P decides x incorrectly then with high
probability C(P, x) either outputs “error” or finds the correct answer despite the incorrect-
ness of P (x). Most instance checkers C require only oracle access to P and not the code of
P .

It was already observed by Blum and Kannan [24] that Π is checkable (with C using only
oracle access to P) if and only if Π and Π have interactive proofs where the prover answers
only queries of the form “x ∈ Π?” and soundness is only required to hold against static
cheating provers of the kind described above.

An Application of Beigel’s Theorem

Theorem 5.1.4 (Beigel, as cited in [24]). Suppose Π is decidable by a randomized reduction
A with oracle access to Π′, and conversely Π′ is decidable by a randomized reduction A′ with
oracle access to Π. Then Π is checkable if and only if Π′ is checkable.

Proof. Let CΠ be a checker for Π. In order to check Π′, given the input x, the checker
algorithm CΠ′ first runs the reduction A′(x) and for any query like y that A′(x) wants to

114

ask from its R oracle, CΠ′ does the following. CΠ′ runs the checker algorithm CΠ(y) over the
“oracle” AO. If it leads to reject, CΠ rejects as well, but if it did not reject and returned the
output z, CΠ′ safely uses the answer z for the query y and continues running the reduction
A′(x). It is easy to see CΠ’s completeness and soundness of follow from those of CΠ′ and the
definition of reductions A and A′.

By definition TFNP relations are checkable: given an oracle O, check that (x,O(x)) ∈ R
indeed holds. Because the relation is total, O(x) can never claim that no solution exists.

TFNP contains important problems such as Nash equilibrium [134]. Megiddo and Pa-
padimitriou [117] observed that PTFNP ⊆ NP∩ co-NP and therefore no TFNP oracle can
be used to decide SAT under deterministic oracle reductions unless NP = co-NP. Conse-
quently, it is unlikely that problems such as finding Nash equilibrium are NP-hard under
deterministic oracle reductions. Since TFNP is trivially reducible to NP, as a corollary of
Theorem 5.1.4 we observe the following about the hardness of TFNP:

Corollary 5.1.5. If SAT ∈ BPPTFNP, then SAT is checkable.

As discussed above, one consequence is that if finding Nash equilibrium can be used to
solve SAT via a randomized oracle reduction, then SAT is checkable. Corollary 5.1.5 can
be interpreted as an incomparable version of the theorem of Megiddo and Papadimitriou
[117], where our version handles randomized reductions but arrives at a different (weaker)
conclusion.

Extending Beigel’s Theorem to Testability

So far we have considered worst-case to worst-case reductions, but equally interesting are
worst-case to average-case randomized oracle reductions. Such a reduction is an efficient
oracle algorithm A that is guaranteed to decide Π correctly (on all inputs) given oracle access
to O that decides Π′ on average over an input distribution D, namely when Prx←D[O(x) 6=
Π(x)] ≤ 1/ poly(n).

A notion of checkability for average-case problems also exists which following Blum et al.
[26] is called testability. We say that C is a tester for Π′ with respect to the input distribution
D if the following holds: whenever C is given a program P that correctly decides all x then
C must also decide all x. If C is given access to P such that Prx←D[P (x) 6= Π(x)] ≥ δ
for some error parameter δ, then C outputs “error” with high probability. This can even
be extended to a notion of testability for search problems; see Definition 5.2.7 for a formal
definition. We remark that we allow C to run in time depending on the input length, while
the related notion of property testing [26, 72] typically considers testing algorithms that run
in time depending only on 1/δ. Also, typically C will only use oracle access to P .

Our first observation is that Beigel’s theorem can be extended to encompass testability:

Theorem 5.1.6 (Extended Beigel’s theorem, informal). Suppose Π is decidable by a worst-
case to average-case randomized reduction A with oracle access to Π′, and conversely Π′ is
decidable by a (worst-case to worst-case) randomized reduction A′ with oracle access to Π.
Then if Π′ is testable, then both Π and Π′ are checkable.

115

Application to basing one-way functions on NP-hardness. One of the main goals of
theoretical cryptography is to base the existence of cryptographic primitives on reasonable
assumptions. P 6= NP is a minimal assumption, and it would be ideal if one could construct
one-way functions from this assumption. Such a result might be proved by giving an efficient
reduction A that uses an oracle O that inverts a (candidate) one-way function in order to
decide SAT. However, it has been shown in a series of works [5, 27, 54, 135] that such a
hope is most likely false if A is non-adaptive, since it would imply that NP ⊆ coAM.

We know less about whether or not one can base one-way functions on NP-hardness via
an adaptive reduction. There are certain cryptographic [4, 92, 121] and complexity-theoretic
[10, 55, 94] settings where adaptivity in the reduction buys more power, and so it is important
to understand whether adaptive reductions basing one-way functions on NP-hardness are
possible. Brassard [31] showed that one-way permutations cannot be based on NP-hardness
unless NP ⊆ coAM. Pass [135] showed that if (general) one-way functions can be based
on NP-hardness, then certain witness-hiding protocols do not exist. However Haitner et al.
[89] showed that it is unlikely that known witness-hiding protocols are of the type studied
by [135].

Here we show using different techniques that an adaptive reduction that bases the ex-
istence of a one-way function on the hardness of SAT would imply that SAT is checkable.
The observation is that a one-way function is testable (for a suitable notion of testability for
search problems), and therefore we can apply Theorem 5.1.6.

Corollary 5.1.7 (Joint with Thomas Holenstein). If there is a randomized oracle reduction
that uses an oracle O which inverts a one-way function in order to decide SAT, then SAT
is checkable.

We note that the proof that was joint with Holenstein was direct and did not go through
the formalism of testability developed here.

Application to basing hardness of learning on NP-hardness. It was shown in [6] that if
there exists a reduction uses a PAC learning algorithm to decide SAT (in other words, it bases
the hardness of PAC learning on NP-hardness), then there also exists a reduction that uses an
algorithm that inverts auxiliary-input one-way functions [131] into an algorithm that solves
SAT. In the same way that inverting a one-way function is testable, so is inverting auxiliary-
input one-way functions. Therefore, using Theorem 5.1.6, we can deduce the following:

Corollary 5.1.8. If there is a randomized oracle reduction that uses an oracle solving the
PAC learning problem in order to decide SAT, then SAT is checkable.

Application to worst-case to average-case reductions for SAT Bogdanov and Tre-
visan [27] prove that non-adaptive worst-case to average-case randomized reductions for NP
imply that NP ⊆ co-NP/ poly. The latter implies that PH = Σ3 which is considered
implausible. We will consider the same problem but allow adaptive reductions. Using a
technique of [54] we observe that:

Theorem 5.1.9. Every language L ∈ NP is testable by a non-uniform tester.

116

Theorem 5.4.3 states this formally. Combined with Theorem 5.1.6 this will imply the
following.

Corollary 5.1.10 (Informal). Suppose there is a (possibly adaptive) worst-case to average-
case oracle reduction for the relation R ∈ NP (where R is not necessarily NP-complete).
Namely the reduction uses an oracle O solving R on average in order to decide R on all
inputs (with high probability). Then R has a non-uniform instance checker.

As pointed to us by one of the anonymous reviewers, the original Nisan’s proof to show
that Permanent has a two-prover proof system can be used to eliminate the needed advice in
Corollary 5.1.10 for R = SAT if the worst-case to average-case reduction for R is of a special
form. Namely if the language R is downward self-reducible (which is the case for SAT) and
also has a worst-case to average-case reduction where the reduction never asks queries y of
length |y| > n, then R has a uniform instance checker (see Observation 5.4.6.)

5.1.4 Randomized vs. Deterministic Reductions

As already noted throughout the introduction, if we restrict our attention to deterministic
oracle reductions then all of the results we prove are already known (and indeed in most
cases stronger conclusions hold). We remark that, although it is commonly conjectured
that P = BPP [25, 99, 127, 158], the techniques used to prove derandomization under
commonly held hardness assumptions do not necessarily say that for some oracle O, it holds
that PO = BPPO. Indeed, there are examples of O where PO 6= BPPO. Thus one cannot
apply the general derandomization theorems above to the previously known results about,
say, PPrSZK and PTFNP to derive our results. We will argue directly about BPPPrSZK,
BPPTFNP, etc. without relying on derandomization assumptions.

5.2 Preliminaries

5.2.1 Promise Problems and Relations

A promise (decision) problem Π = (ΠY ,ΠN) consists of two disjoint sets ΠY ∩ΠN = ∅ from
ΠY ∪ ΠN ⊂ {0, 1}∗.

For every promise problem Π = (ΠY ,ΠN) we write Π(x) = 1 if x ∈ ΠY and Π(x) = 0 if
x ∈ ΠN . A language L is simply a promise problem (L,L), where L is the complement of L.
To extend promise decision problems to search problems, we work with promise relations.

Definition 5.2.1 (Promise relations). Let R = (RY , RN) where RY ⊆ {0, 1}∗ × {0, 1}∗ and
RN ⊆ {0, 1}∗×{0, 1}∗ such that RY ∩RN = ∅. We call R a promise relation and sometimes
write for shorthand (x, y) ∈ R to mean (x, y) ∈ RY . We say R is a standard relation if
RY = RN .

For any promise relation R = (RY , RN), define R(x) = {y | (x, y) ∈ RY }. A relation R is
total if for every x, R(x) 6= ∅. Note that the decision problem for total relations is trivial,

117

but the search problem may still be hard. In the following, we will consider ∅ to also denote
a special symbol signifying the empty set, so that search algorithms are allowed to output
∅ to mean that the algorithm cannot find a solution. We will also abuse notation slightly
and allow A(x) ∈ R(x) to be a true statement if R(x) is empty and A(x) outputs the special
symbol “∅”.

We say an algorithm A solves the language L (resp., the relation R) if for all x, it holds
that A(x) = L(x) (resp., A(x) ∈ R(x)). If the algorithm A is randomized, the latter should
hold with overwhelming probability (for all x’s).

Definition 5.2.2 (NP Relation). A standard relation R ⊆ {0, 1}∗×{0, 1}∗ is an NP relation
if the set R is accepted by an efficient algorithm, and for all (x, y) ∈ R, |y| ≤ poly(|x|).

Definition 5.2.3 (TFNP). A standard relation R ⊆ {0, 1}∗×{0, 1}∗ is in the class TFNP
if R is an NP relation and R is total.

By PrSZK we denote the promise version of SZK. Misusing the notation, when clear
from the context, we use AM also to denote its promise version.

AM Promise Relations

Definition 5.2.4 (AM relations). For a promise relation R = (RY , RN), define the promise
problem MR = {MR

Y ,M
R
N} where MR

Y = {(x, y) | (x, y) ∈ RY } and MR
N = {(x, y) | (x, y) ∈

RN}. R is an AM relation if MR ∈ AM, and also ∀(x, y) ∈ RY it holds that |y| ≤ poly(|x|).

Definition 5.2.5 (TFAM). A promise relation R = (RY , RN) is in TFAM if R is a total
relation and also an AM relation.

Since our definition is for promise problems, instances (x, y) /∈ RY ∪ RN can behave
arbitrarily. It follows immediately from the definitions that TFNP ⊆ TFAM.

When are AM (promise) relations interesting? In contrast to NP, not every AM
decision problem has an interesting search version. This is because an AM decision problem
might not have well-defined witnesses. For example, consider the standard Graph Non-
Isomorphism (GNI) protocol, where given (G1, G2) the verifier picks random bit b and sends
a random permutation of Gb to the prover, who must then respond with b. There is no fixed
“witness” of the non-isomorphism, so the natural AM relation of Graph Non-Isomorphism
is trivial, ((G1, G2), y) ∈ RGNI iff (G1, G2) ∈ GNI, and the value y is ignored. On the other
hand, some interesting problems not known to be in NP (such as Entropy Difference ED) do
have interesting witnesses that are only known to be verifiable using randomized protocols
and not deterministically (see Section 5.3).

5.2.2 Checkability and Testability

Definition 5.2.6 (Checkability). A relation R is checkable if there exists an efficient ran-
domized oracle algorithm A such that for all oracles O, the following holds.

118

• Completeness: Suppose for all x it holds that O(x) ∈ R(x). Then for all x, AO(x) ∈
R(x) with overwhelming probability.

• Soundness: For any x such that O(x) /∈ R(x), AO(x) with overwhelming probability
either outputs some y ∈ R(x) or outputs a special error symbol ⊥, which indicates
O(x) may be wrong.

This definition coincides with the definition of [24] for checkability of promise problems
Π if one considers the relation (x, y) ∈ R iff Π(x) = y, where y ∈ {0, 1}.

It is known [24, 58] that for any k ≥ 2 and any language L, L is checkable if and only if
both L and L have an interactive proof system with k provers where the provers are asked
only L queries.

An average case notion of checkability was defined by Blum et al. [26], which they called
“program testing”. (In the following we keep the convention that Dn is a distribution over
{0, 1}n.)

Definition 5.2.7 (Testability). A relation R is δ-testable over the ensemble of distributions
D = {Dn} if there exists an efficient randomized oracle algorithm A such that for all oracles
O the following holds.

• Completeness: If O(x) ∈ R(x) for all x, then AO(1n) accepts with overwhelming
probability.

• Soundness: If Prx←Dn [O(x) 6∈ R(x)] > δ, then AO(1n) outputs ⊥ with overwhelming
probability, indicating that O may not (1− δ)-solve R.

As with checkability, the definition of program testing for decision problems Π follows
immediately by considering the relation (x, y) ∈ R iff Π(x) = y.

5.2.3 Worst-Case to Average-Case Reductions

Let Dn be a distribution over {0, 1}n. We say that the ensemble of distributions D = {Dn}
is samplable if there is an efficient randomized algorithm S which the output of S(1n) is
distributed according to Dn. For ρ = ρ(n), we say that an oracle O ρ-solves the relation R
over D if for every n it holds that Prx←Dn [O(x) ∈ R(x)] ≥ ρ.

Definition 5.2.8 (Worst-case to average-case reductions.). Let ρ = ρ(n), and let D be an
ensemble of distributions. We say that the relation R reduces to ρ-solving the relation R′

over D if there is an efficient randomized oracle algorithm A such that Pr[AO(x) ∈ R(x)] =
1− neg(n) for every x ∈ {0, 1}n whenever O ρ-solves the relation R′ over D.

Definition 5.2.9 (Worst-case to average-inverting reductions). Let

f = {fn : {0, 1}n → {0, 1}n}

be a family of functions. We say that the relation R reduces to ρ-inverting f if R reduces to ρ-
solving the relation Rf over the ensemble of distributions Df where Rf = {(y, x) : f(x) = y}
and Df

n = f(Un).

119

Note that in both Definitions 5.2.8 and 5.2.9, the reduction is allowed to ask oracle queries
y of larger length |y| = poly(|x|) where x is the input to the reduction.

5.3 Real-Valued Total Functions

5.3.1 Definitions and Preliminaries

We begin by defining the class of relations R-TUAM, which intuitively captures functions
f : {0, 1}∗ → R such that given (x, y), it is possible to verify using an AM protocol that
|y − f(x)| is small.

Definition 5.3.1 (R-TUAM). A function f : {0, 1}∗ → R is in R-TUAM (denoting “real-
valued total unique AM”) if for every ε ≥ 1/ poly(n), the following relation R = (RY , RN)
is in AM:

1. RY = {(x, f(x)) | x ∈ {0, 1}∗}

2. RN = {(x, y) | x ∈ {0, 1}∗, y ∈ R s.t. |y − f(x)| > ε}

We let BPPR-TUAM denote the class of promise problems that are decidable by a random-
ized oracle algorithm given oracle access to a real-valued function whose output is verifiable
in AM, formalized as follows.

Definition 5.3.2 (BPPR-TUAM). Π ∈ BPPR-TUAM if there exists an f ∈ R-TUAM,
an oracle algorithm A, and an ε(n) = 1/ poly(n) such that for all oracles O satisfying
∀x, |f(x)−O(x)| ≤ ε(|x|), it holds for all z ∈ ΠY ∪ΠN that AO(z) = Π(z) with overwhelming
probability over the random coins of A.

Our main interest in studying R-TUAM is its relationship to PrSZK. We will char-
acterize PrSZK by its complete problem: Entropy Difference ED. See e.g., [153] for an
introduction and other definitions of PrSZK.

Definition 5.3.3 (PrSZK and ED, [68]). A promise problem Π is in PrSZK if and only if
it is Karp-reducible to the following promise problem ED = (EDY ,EDN). Instances of ED
are pairs of circuits (X1, X2) where each circuit X : {0, 1}m 7→ {0, 1}n is identified by its
output distribution X(Um). Let H(X) = H(X(Um)) denote the Shannon entropy of X(Um).
Then:

1. (X1, X2) ∈ EDY iff H(X1) ≥ H(X2) + 1.

2. (X1, X2) ∈ EDN iff H(X2) ≥ H(X1) + 1.

We first recall that the entropy can be estimated using an AM protocol.

Lemma 5.3.4 ([2, 56, 68]). For every ε > 1/ poly(n), there is an AM protocol that on input
(X, y) accepts if H(X) = y and rejects if |H(X)− y| > ε.

120

Proof. We give a simple proof for completeness. Recall the following facts. For two circuits
Y1 and Y2 sampling distributions, let their concatenation Y1Y2 be the joint circuit sampling
the product distribution. For all ε > 0, it is possible given any y > 0 to construct in
poly(n, 1/ε) time a circuit Zy such that |H(Zy)− y| < ε/100.

It is known that ED can be reformulated so that the gap between X1 and X2 is ε/2 rather
than 1, and still the problem remains complete for PrSZK, so let us assume this. Since
ED ∈ PrSZK ⊆ AM [2, 68], therefore given input (X, y), the verifier can run in parallel
the AM protocol for ED on inputs (XZ1, Zy) and (Zy+1, X) and accept iff both executions
accept.

Proposition 5.3.5. BPPSZK ⊆ BPPR-TUAM

Proof. We show how to implement an ED oracle using a R-TUAM oracle for any ε < 1.
Consider the function f(X1, X2) = H(X1)−H(X2). This function is in R-TUAM because
by Lemma 5.3.4 the entropy of a circuit can be approximated using an AM protocol.

We claim that given any oracle O that solves (the search problem of) the relation R with
up to ε error, one can decide ED: given (X1, X2), query (X1, X2) fromO to get y = O(X1, X2)
and accept iff y > 0. Since we are guaranteed that |(H(X1)−H(X2))− y| ≤ ε, it therefore
holds that if H(X1) > H(X2) + 1 then y > 1 − ε > 0 and if H(X1) < H(X2) − 1 then
y < −1 + ε < 0.

5.3.2 Power of R-TUAM

We now prove Theorem 5.1.1: BPPR-TUAM ⊆ AM ∩ coAM.

Proof of Theorem 5.1.1. Fix any Π ∈ BPPR-TUAM, then by definition there exists f ∈
R-TUAM, an efficient oracle algorithm A, and a parameter ε ≥ 1/ poly(n) satisfying Def-
inition 5.3.2. We will follow the natural strategy outlined in Section 5.1.1, but in order to
make it work we need to overcome the two difficulties outlined there. The first difficulty
is overcome simply because R-TUAM is total, and therefore the prover can never respond
that a query x does not satisfy the promise. To overcome the second difficulty, we will
exploit the fact that R-TUAM is a unique relation. By adding some noise to the prover’s
responses, which we can check is close to the unique true answer using the AM proof for the
R-TUAM relation, we will prevent it from making its answers dependent on the verifier’s
random coins. We now explain how this is done.

Define the (randomized) oracle Oε as follows. Oε(x) first chooses a uniformly random

αx
R← [−ε/2,+ε/2] which we call the “randomizer” of the query x and takes y = f(x) + αx.

Then Oε(x) will round y and output byeε where byeε denotes the integer multiple of ε that
is closest to y. Note that it always holds that Oε ∈ [f(x)± ε], and so by the definition of A
and Oε, it holds that

Pr
Oε,A

[AOε(z) = Π(z)] ≥ 1− n−ω(1) (5.3.1)

for all z ∈ ΠY ∪ ΠN (where Π(z) = 1 if z ∈ ΠY and Π(z) = 0 if z ∈ ΠN). The reason is
that one can choose and fix the randomness of Oε first and then Inequality 5.3.1 holds by

121

the definition of A. In the following, let p(n) = poly(n) be an upper-bound on the number
of oracle queries made by A and let ω denote random coins used to run A. Without loss of
generality we assume that A does not ask any query x more than once. We also write Oε(x)
more explicitly as Oε(x, αx) to denote the value of the randomizer αx used for the answer to
the query x.

To prove that Π ∈ AM it suffices to show an AM protocol where either the verifier
catches the prover cheating and rejects or (if the prover is honest) the output of the verifier
is statistically close to the output of AOε . This way the verifier either catches the cheating
prover or gets a good emulation of AOε which she can use to take her final decision and
choose to accept or reject.

The intuition. The idea is that the verifier will select random coins ω for the execution of
A along with real numbers α1, . . . , αp(n) drawn uniformly at random from [±ε/2] and send
these to the prover, and the prover will use ω to run A responding oracle queries according to
Oε while using αi as the randomizer for the i’th query xi. The prover sends back all the f(xi)
to the verifier, who checks for all i ∈ [p(n)] using f(xi) and αi that the responses bf(xi) + αieε
give a consistent and accepting execution of the reduction. Furthermore, we assumed that
f ∈ R-TUAM, so let R be the corresponding relation guaranteed by Definition 5.3.1. Since
R is an AM relation, we will also require that the prover give a proof that all f(xi)’s are
correct up to some error δ.

Completeness of this strategy is clear because the honest prover can always prove that
(x, f(x)) ∈ R, and so each oracle query x is answered with the same distribution as AOε .
Soundness follows as well. The reason is that the only time the prover can bias the value
bf(xi) + αieε is when (f(xi) + αi mod ε) ≈ ε/2 for some i, i.e., by slightly perturbing f(xi)
the prover can cause f(xi)+αi to be rounded either up or down. But it is easy to see that this
bad situation is unlikely, namely for each query, Prαi [(f(xi) +αi mod ε) ∈ [ε/2± δ]] = 2δ/ε.
By taking δ/ε � 1/p(n), where p(n) is the total number of queries, the verifier gets an
emulation of the reduction which is statistically close to an honest emulation and therefore
the soundness of the protocol follows from the definition of the reduction.

The AM protocol for the problem Π.

Protocol 5.3.6. Common input: instance z.

1. The verifier VA sends a random seed ω that will be used to execute A. VA also sends
random numbers α1, . . . , αp(n)

R← [−ε/2,+ε/2].

2. The prover PA emulates the execution of A using random coins ω, where the prover
answers the i’th oracle query xi with byi + αieε. The prover sends back to the verifier
the values (xi, yi) for all i ∈ [p(n)]. (An honest prover sets yi = f(xi).)

3. In parallel for all i ∈ [p(n)], the verifier engages the prover in the AM protocol that
f(xi) = yi with approximation error δ = ε

np(n)
. If any of these protocols reject, then the

verifier rejects.

122

4. The verifier checks for i = 1, . . . , p(n) that emulating A with the i’th query xi answered
by byi + αieε leads to A asking the i + 1’st query xi+1, and so on, and accepts iff A
accepts.

. .

Since BPPR-TUAM is closed under complement, proving that the above protocol decides
Π suffices to prove Theorem 5.1.1.

Completeness. For any z ∈ ΠY and for any query xi, the honest prover computes yi =
f(xi) and uses byi + αieε as the response to xi. Therefore the oracle answers are distributed
identically to Oε(xi, αi), and so by Inequality 5.3.1 the verifier accepts with overwhelming
probability.

Soundness. Fix any z ∈ ΠN , and let P ′ be a possibly cheating prover. For each query xi
let yi be the claim of P ′ for f(xi). If for any i ∈ [p(n)] it holds that |yi− f(xi)| > ε

np(n)
, then

with overwhelming probability one of the AM protocols in Step 3 will fail by the soundness
condition of the R-TUAM relation, and so VA will reject.

So let us suppose that the strategy of P ′ is restricted to always claim some yi such that
|yi − f(xi)| ≤ ε

np(n)
. Now look at the oracle answer by1 + α1eε used for the first query x1 in

the emulation of the reduction. If it holds that (f(x1) + α1 mod ε) /∈ [ε/2± δ], then for all
y1 satisfying |y1 − f(x1)| ≤ δ, it holds that by1 + α1eε = bf(x1) + α1eε and so in this case
the prover is unable to control the value of by1 + α1eε. But since α1 was chosen at random
from [±ε/2], it holds that:

Pr
α1

R←[±ε/2]

[(f(x1) + α1 mod ε) ∈ [ε/2± δ]] = 2δ/ε .

It means that with probability ≥ 1− 2δ/ε over the choice of α1
R← [±ε/2] the prover does

not have any control over the first oracle answer used in the emulation of the reduction. The
same argument holds for the i’th query for any i ∈ [p(n)].

It follows by the union bound that the total statistical distance between the set of
query/answer pairs generated by AOε and the query/answer pairs generated by (P ′, VA)
is bounded by at most 2

n
. Therefore, the probability that (P ′, VA) accepts is bounded by at

most ≤ 2/n+ n−ω(1). By repeating the overall protocol in parallel one can reduce this error
to be negligible.

Theorem 5.1.1 and Proposition 5.3.5 yield Corollary 5.1.2: BPPPrSZK ⊆ AM∩ coAM.

5.4 Reductions that Imply Checkability of SAT

We saw in Section 5.1.3 that a result of Beigel as cited in [24] (Theorem 5.1.4) along with
the fact that TFNP is trivially checkable implies the following theorem (see Definition 5.2.3
for a formal definition of TFNP).

123

Theorem 5.4.1. For any relation R ∈ TFNP, if SAT can be reduced to (the search problem
of) R through a randomized reduction, then SAT is checkable.

5.4.1 Extending Beigel’s Theorem to Testability

We will prove Theorem 5.4.2 a variant of Theorem 5.1.4 for the case in which one of the
reductions in the hypothesis has the extra feature of being worst-case to average case (see
Definition 5.2.8). From this stronger assumption we conclude a stronger consequence as
follows.

Theorem 5.4.2 (Restating Theorem 5.1.6, formally). Let δ = δ(n), let R and R′ be two
relations, and let D be an ensemble of distributions. Suppose that solving R reduces to (1−δ)-
solving R′ over D, and also suppose that there is a randomized (worst-case to worst-case)
reduction from R′ to R. Then if R′ is δ-testable over D (resp., non-uniformly), then R and
R′ are both checkable (resp., non-uniformly).

Proof. (of Theorem 5.4.2) We first prove the theorem for the uniform case when there is no
advice.

Let AR be the randomized oracle reduction from solving R to (1− δ)-solving R′ over D
and let ` = poly(n) be an upper-bound on the length of the oracle queries of AR. Notice
that, in particular, AR is also a worst-case to worst-case reduction from R to R′. Let AR′ be
the randomized (worst-case to worst-case) reduction from R′ to R. By Theorem 5.1.4 and
the fact that AR is also a worst-case to worst-case reduction from R to R′, it follows that R
is checkable if and only if R′ is checkable. Therefore in the following it suffices to show that
R is checkable.

One can think of O′ = AOR′ as an oracle which hopefully solves the relation R′ correctly.
Given a perfect oracle O for R, by running the reduction AR′ with oracle access to O one
can efficiently simulate the oracle O′ which solves the relation R′. Suppose w.l.o.g. that
` = poly(n) is also an upper-bound on the length of the oracle queries of AR′ .

Suppose that TR′ is a δ-tester for R′. Given the input x, and having access to the oracle
O (which is supposed to solve R′) the instance checker COR (x) for the relation R does the
following.

• For all i ∈ [`(n)], CR runs the δ-tester TR′ over the oracle O′ = AOR′ to make sure that
it decides R′ with probability at least 1 − δ over Di for the input length i. COR (x)
outputs ⊥ if TO

′

R′ (1
i) outputs ⊥ for any i ∈ [`].

• Otherwise, CR(x) outputs whatever AO
′

R (x) outputs.

The completeness of CR is immediate, because if O is a perfect oracle for R′ then for each
query y, AOR′(y) ∈ R′(y) holds with overwhelming probability. In this case with overwhelming
probability TR′ will accept also and CR will output z ∈ R(x).

The soundness of CR holds by the soundness of TR′ and the definition of AR. Namely
eitherO′ = AOR′ (1−δ)-solves R′ overDi for i ≤ `(n), or else TR′ outputs⊥ with overwhelming

124

probability. In the first case, by the correctness of AR, the checker CR gives a correct output
with overwhelming probability.

For non-uniform testers, it is clear that the above reduction still holds except one needs
to hardwire into CR the advice strings of TR′ for all input lengths i ≤ `(n).

Theorem 5.4.3 (Formal statement of Theorem 5.1.9). Let R be any NP relation, δ =
1/ poly(n), and Dn be any ensemble of samplable distributions. Then R can be δ-tested over
Dn given

⌈
log 2

δ

⌉
= O(log n) bits of advice. In particular the advice for length n inputs can

be any sn such that sn ≤ Pry←Dn [R(y) 6= ∅] ≤ sn + δ/2.

The intuition. Suppose that we are given sn ≈ Pry←Dn [R(y) 6= ∅] (the approximate
fraction of YES instances of R over Dn). If we sample enough points y1, . . . , yk ← Dn, then
by Chernoff we anticipate roughly a sn fraction of yi’s to satisfy R(yi) 6= ∅. As the first
step the checker for R simply verifies that sn ≈ |{i | O(yi) 6= ∅}| /k holds. This yet does
not mean that with high probability over y ← Dn, O(y) returns the right answer. But since
R is an NP-relation we can always make sure that if O(y) returns z 6= ∅, then (y, z) ∈ R.
By enforcing this extra check over the solutions zi = O(yi), the oracle O can be wrong only
in “one direction”: to return ∅ for a query y that R(y) 6= ∅. But if O does so significantly,
then it will change its bias Pry←Dn [O(y) 6= ∅] � sn and it can be detected. A very similar
trick is used in [5, 27, 54]. The difference between our setting and [5, 27, 54] is that they
deal with provers (rather than oracles) that are stateful and might cheat more intelligently
by answering their queries depending on all the queries that they are asked. That makes
the job of [5, 27, 54] potentially harder, but they bypass this difficulty by putting strong
restrictions on the adaptivity of the reduction (which is not the case for our result). Also
[128, 151] use this technique in another setting where the advice sn ≈ Pry←Dn [O(y) 6= ∅]
is used to construct a non-uniform reduction that (1 − 1/ poly(n))-solves R over Dn given
access to any oracle that solves R correctly only with probability ≥ 1/2 + n−1/3+ε.

Proof. (of Theorem 5.4.3) Let O be the oracle that is going to be tested for the relation R.
The tester TOR acts as follows.

1. Let k = n/δ2. For i ∈ [k] sample xi ← Dn.

2. For i ∈ [k], ask xi from O to get yi = O(xi).

3. If for any i ∈ [k], it holds that yi 6= ∅ but (xi, yi) 6∈ R (which can be checked efficiently),
then output ⊥.

4. If |{i : O(xi)∈R(x)}|
k

< sn − δ
6

then output ⊥, otherwise accept.

Completeness. If O(x) ∈ R(x) for all x ∈ {0, 1}n, then TR never outputs ⊥ in Step 3. We
show that the probability of outputting ⊥ in Step 4 is negligible. Let p = Prx←Dn [R(x) 6=
∅] and p′ = |{i : O(xi)∈R(x)}|

k
be the empirical estimate of p. By Chernoff, it holds that

125

Prx1,...,xk [|p′ − p| > ε] < 2e−2kε2 . Now since it is guaranteed that sn ≤ p, therefore it
holds that

Pr[p′ < sn − δ/6] ≤ Pr[p′ < p− δ/6] ≤ Pr[|p′ − p| > δ/6]

< 2e−2k(δ/6)2

= 2e−n/18 = neg(n).

Soundness. Suppose Prx←Dn [O(x) 6∈ R(x)] ≥ δ. Then either it holds that Prx←Dn [R(x) =
∅ ∧ O(x) 6= ∅] ≥ δ/6 or it holds that Prx←Dn [R(x) 6= ∅ ∧ O(x) 6∈ R(x)] ≥ 5δ/6. We show
that in both cases TR outputs ⊥ with overwhelming probability.

If Prx←Dn [R(x) = ∅ ∧ O(x) 6= ∅] ≥ δ/6 then with probability at least 1− (1− δ/6)k =
1 − neg(n) one of xi’s is sampled such that R(xi) = ∅ and O(xi) 6= ∅. In this case
(xi,O(xi)) /∈ R and so TR outputs ⊥ in Step 3.

On the other hand if Prx←Dn [R(x) 6= ∅ ∧ O(x) 6∈ R(x)] ≥ 5δ/6, because p ≤ sn + δ/2
then

Pr
x←Dn

[O(x) ∈ R(x)] ≤ Pr
x←Dn

[R(x) 6= ∅ ∧ O(x) ∈ R(x)] ≤

Pr
x←Dn

[R(x) 6= ∅]− 5δ/6 = p− 5δ/6 ≤ sn + δ/2− 5δ/6

= sn − δ/3.

So for each i it holds that Prxi←Dn [O(xi) ∈ R(xi)] ≤ sn − δ/3, and thus by Chernoff it
holds that

Pr[p′ ≥ sn − δ/6] = Pr[p′ ≥ (sn − δ/3) + δ/6] < 2e−2k(δ/6)2

= 2e−n/18 = neg(n).

But if p′ < sn − δ/6, then TR outputs ⊥ in Step 4.

Worst-Case to Average-Case Reductions for NP

For definitions of worst-case to average-case reductions, see Definition 5.2.8.

Corollary 5.4.4 (Formal statement of Corollary 5.1.10). Let R be an NP-relation, let
δ = 1/ poly(n) and let D be any efficiently samplable ensemble of distributions. If R reduces
to (1− δ)-solving R over D, then R has a non-uniform instance checker.

Corollary 5.4.5 (Formal statement of Corollary 5.1.7). Let δ = 1/ poly(n), and let f be an
efficiently computable family of functions. If SAT reduces to (1 − δ)-inverting f , then SAT
is uniformly checkable.

Proof. (of Corollaries 5.4.4 and 5.4.5) Since SAT is NP complete, there is a (worst-case to
worst-case) randomized reduction from the NP relation R of Theorem 5.4.3 to the relation
SAT. Therefore Corollary 5.4.4 follows from Theorem 5.4.2 and Theorem 5.4.3 immediately.

126

Corollary 5.4.5 also follows from Theorem 5.4.2 and Theorem 5.4.3 similarly by using
R = SAT and using the Cook-Levin reduction (to reduce inverting f to solving a SAT
instance). But this time we do not need the advice because of the following. Even though
Rf might not be a total relation, but it still holds that

Pr
y←Dfi

[Rf (y) 6= ∅] = Pr
y←f(Ui)

[y is invertible] = 1.

Thus here we can use the constants si = 1 as the advice for all the query lengths i ≤ poly(n)
that reduction might ask and apply Theorem 5.4.3, eliminating the need for advice.

One of the anonymous reviewers indicated to us that for downward self-reducible relations
R (which are not necessarily in NP) the Corollary 5.4.4 can be improved to get a uniform
instance checker if the worst-case to average case reduction is of a restricted form:

Observation 5.4.6 (Nisan, observed by an anonymous reviewer). Let R be a downward
self-reducible relation, let δ = 1/ poly(n) and let D be any efficiently samplable ensemble of
distributions. If R reduces to (1 − δ)-solving R over D by oracle reduction A, and if the
reduction A never asks queries of length `(n) > n from its oracle, then R has a uniform
instance checker.

Proof. The proof is along the lines of Nisan’s proof that Permanent has a two-prover proof
system (which is equivalent to a proof system where the prover is stateless and behaves like
an oracle).

We show by induction over the input length k ∈ [n] that R has a δ-tester TR and an
instance checker CR. By a padding argument we can assume without loss of generality that
the worst-case to average-case reduction A always asks queries of the same length as the
input length n. Also, if A is the worst-case to average-case reduction, then the following is a
checker (as in the proof of Theorem 5.4.2) on inputs of length n: COR first runs TR to check
that O (1− δ)-solves R on inputs of length n, and if this passes then run AO(x) and output
whatever AO outputs.

It suffices therefore to construct a tester TR. Such a tester trivially exists for input length
1. By induction, we define how TR behaves on input length n assuming we already have a
tester for input lengths n− 1.

1. First run the tester on O for input length n− 1, and reject if it rejects.

2. For i ∈ [n/δ2] sample xi ← Di uniformly.

3. For each sampled xi, run the downward self-reduction of R over xi which will (perhaps
adaptively) generate queries xij of length |xi,j| < |x| for j ≤ poly(n).

4. Run AO on each of the queries xij (which are of length ≤ k − 1).

5. Use the resulting answers along with the downward self-reduction in order to compute
the answer for xi. Call this answer yi.

127

6. Reject if there exists any xi such that either of the following holds:

(a) O(xi) 6= ∅ and (xi,O(xi)) /∈ R.

(b) O(xi) = ∅ but (xi, yi) ∈ R and yi 6= ∅.

Otherwise, accept.

The analysis of the tester TR is similar to that of Theorem 5.4.2. Let TIMETR(n) denote
the running time of TR on inputs of length n. Then it is clear that TIMETR(n) ≤ TIMETR(n−
1) + poly(n), which implies that TIMETR(n) ≤ poly(n). The reason is that we only run the
tester once for each input length.

128

Part III

Unconditional (Statistical) Security

129

Chapter 6

Zero-Knowledge Interactive PCPs
and Unconditional Cryptography

6.1 Introduction

Since the introduction of zero-knowledge proofs in the seminal work of Goldwasser, Micali,
and Rackoff [76], a large body of work has been devoted to understanding the capabilities
and limitations of such proofs. A particularly successful line of research studied the power of
statistical zero-knowledge (SZK) proofs — ones which guarantee that even computationally
unbounded verifiers can learn nothing from the interaction with the prover. In contrast to
computational zero-knowledge proofs [71], a major limitation of SZK proofs which restricts
their usefulness in cryptography is that they seem unlikely to cover the entire class of NP [2,
56].

Motivated by the above goals, Ben-Or, Goldwasser, Kilian, and Wigderson [15] intro-
duced in 1988 the model of multi-prover interactive proofs (MIPs), a natural extension of
the standard model of interactive proofs which allows the verifier to interact with two or
more non-communicating provers. The main result of [15] is an unconditional two-prover
SZK proof for any language in NP (see [9, 50, 113] for subsequent improvements). A direct
cryptographic application suggested in [15] is that of proving one’s identity using a pair of
bank cards. We will further discuss these types of applications later.

In a very surprising turn of events, the initial work on zero-knowledge in the MIP model
led to a rapid sequence of developments that have literally transformed the theory of com-
puter science. This line of research culminated in the first proof of the PCP Theorem [7, 8].

The notion of probabilistically checkable proofs (PCPs) is very relevant to our work. In
1988, Fortnow, Rompel, and Sipser [57] suggested an alternative model for MIPs in which
multiple provers are replaced by a single oracle, subsequently called a PCP oracle or just
a PCP. The difference between an oracle and a prover is that an oracle, like a classical
proof, cannot keep an internal state. When a prover is asked multiple queries, the answer to
each query can depend on all previous queries, whereas the answer of an oracle to each query
must depend on that query alone. The latter difference makes soundness against PCP oracles

130

easier to achieve than soundness against provers, which explains the extra power of PCPs
over traditional interactive proofs. However, as already observed in [15], the zero-knowledge
property becomes harder to achieve when converting provers into oracles because oracles
have no control over the number of queries made by a dishonest verifier. In particular, if the
verifier may query the entire domain of the oracle (as in the case of traditional polynomial-
length PCPs) then the oracle can no longer hide any secrets.

The question of replacing zero-knowledge provers by stateless oracles is motivated by
practical scenarios in which verifiers can “reset” provers to their initial state, say by cutting
off their power supply. (Note that similarly to zero-knowledge provers, zero-knowledge PCP
oracles should be randomized in the sense that their answer depends both on the query and on
a secret source of randomness which is picked once and for all when the oracle is initialized.)
This motivation led to a recent line of work on resettable zero-knowledge, initiated by Canetti,
Goldreich, Goldwasser, and Micali [39]. The main results from [39] show that, under standard
cryptographic assumptions, there exist resettable (computational) zero-knowledge proofs for
NP. However, results along this line do not seem relevant to the case of unconditional (and
statistical) zero-knowledge proofs, which are the focus of the present work.

Zero-knowledge PCPs. The question of unconditional zero-knowledge PCPs was stud-
ied by Kilian, Petrank and Tardos [108] (improving over previous results implicit in [50]).
Specifically, it is shown in [108] that any language in NEXP admits a proof system with a
single PCP which is statistical zero-knowledge against verifiers that can make any polyno-
mial number of PCP queries (but are otherwise computationally unbounded). However, as
expected from proof systems for NEXP, the answers of the PCP oracle cannot be computed
in polynomial time. This still leaves hope for scaling down the result to NP and making
the PCP oracle efficient given an NP witness. Unfortunately, such a scaled down version
presented in [108] has the undesirable side effect of scaling down the zero-knowledge prop-
erty as well, effectively restricting the number of queries made by a cheating verifier to be
much smaller than the (fixed polynomial) entropy of the oracle. Thus, compared to typical
feasibility results in cryptography, the results of [108] for NP require us to either make an
unreasonable assumption about the computational capability of the (stateless) prover, or to
make an unreasonable assumption about the limitations of a cheating verifier.

Interactive PCPs. The above state of affairs motivates us to consider the Interactive PCP
(IPCP) model, which was recently put forward by Kalai and Raz [102] and further studied
in [78]. This model can be seen as lying in between the pure PCP model and the pure MIP
model, thus aiding us in our quest for a “minimal” model for efficient unconditional zero-
knowledge proofs for NP. In the IPCP model there is one interactive prover as in the MIP
model and one PCP as in the PCP model. The study of IPCPs in [102] was motivated by
the efficiency goal of allowing shorter PCPs for certain NP languages than in the traditional
PCP model, at the price of a small amount of interaction with a prover. In contrast, our
use of the IPCP model is motivated by the feasibility goal of obtaining unconditional zero-
knowledge proofs for NP with polynomial-time prover and PCP oracle. Another difference is

131

that while in the context of [102] a PCP is at least as helpful as a prover, the zero-knowledge
property we consider is harder to satisfy with a PCP oracle than with a prover (as discussed
above). The IPCP model can be made strictly stronger than the MIP model by requiring
soundness to hold also with respect to stateful PCP oracles. We tackle this stronger variant
as well, but we stick to the basic IPCP model by default.

To meaningfully capture zero-knowledge proofs with polynomial-time provers in the IPCP
model, we extend the original IPCP model from [102] in two natural ways. First, we allow
the PCP to be randomized. Concretely, we assume that both the prover and the PCP
are implemented by polynomial-time algorithms with three common inputs: an instance
x, a witness w, and a random input r. (This is analogous to earlier models for efficient
multi-prover zero-knowledge proofs for NP.) The length of both w and r is polynomial in
|x|. Second, as discussed above, in order to allow the PCP oracle to hide secrets from the
verifier we need to use PCP oracles with a super-polynomial query domain, and we restrict
cheating verifiers to make (an arbitrary) polynomial number of queries to the oracle, but
otherwise allow them to be computationally unbounded. Note, however, that in contrast to
the solutions from [108] we cannot use PCP oracles with a super-polynomial entropy since
we want our PCP to be efficiently implementable.

This gives rise to the following feasibility question:

Are there (efficient-prover) statistical zero-knowledge proofs for NP in the inter-
active PCP model?

6.1.1 Our Results

We answer the above question affirmatively, presenting an unconditional SZK proof for NP
in the interactive PCP model with efficient prover and PCP oracle. Zero-knowledge holds
against cheating verifiers which can make any polynomial (in fact, even sub-exponential)
number of PCP queries, but are otherwise computationally unbounded. Our protocol can
be implemented in a constant number of rounds. We also show how to get a similar protocol
(with a non-constant number of rounds) in the stronger variant of the IPCP model in which
a cheating PCP oracle may be stateful, thus strengthening the previous feasibility result
from [15].

Interactive locking. The main technical tool we use to obtain the above results (as well
as additional applications discussed below) is a new primitive which we call an interactive
locking scheme (ILS). This primitive extends in a natural way the notion of non-interactive
locking schemes which were defined and implemented in [108]. The original locking primi-
tive can be viewed as a PCP-based implementation of a non-interactive commitment with
statistical hiding and binding. Roughly speaking, a locking scheme is an oracle which hides
a secret that can later be revealed to the receiver by sending it a decommitment key. Given
access to the oracle alone, it is hard for the receiver to learn anything about the secret.
However, it is easy for the receiver to become convinced that at most one secret can be
successfully decommitted even when the oracle is badly formed.

132

The locking scheme from [108] requires the oracle to have bigger entropy than the number
of queries against which the hiding property should hold. We prove the intuitive fact that
such a limitation is inherent, and therefore there is no efficient-oracle non-interactive locking
scheme which resists an arbitrary polynomial number of queries. This is because intuitively
if the entropy of the oracle is bounded, then either: (1) the receiver is able to learn all the
entropy by making a polynomial number of queries, and therefore break the hiding property;
or (2) if some entropy is hidden no matter what queries the receiver makes, then a cheating
sender is able to create a “fake” oracle that can cheat on this entropy and therefore be
opened to any value, breaking the binding property.

This motivates our notion of an interactive locking scheme. An ILS is a locking scheme
in the IPCP model: the commitment phase can involve, in addition to oracle queries by
the receiver, interaction with the sender from whom the secret originated. Here the sender
and the oracle play the roles of the prover and PCP oracle in the IPCP model, respectively.
Decommitment still involves a single message from the sender to the receiver. Somewhat
surprisingly (and counter to our own initial intuition), we show that interaction can be used
to disrupt the intuitive argument above.

We present several constructions of efficient interactive locking schemes. We show how
to obtain such schemes from interactive hashing — a primitive which was introduced by
Naor, Ostrovsky, Venkatesan, and Yung [125] for the purpose of constructing statistically
hiding and computationally binding commitment schemes from any one-way permutation
(see also [48, 83, 133]). The high level idea of the transformation from interactive hashing
to ILS is to “implement” a one-way permutation by an oracle which contains a random
point function (i.e., a function that outputs 0 on all but one random point). To ensure the
binding property even when the oracle is badly formed, the receiver should query the oracle
on a small number random points to verify that it is not “too far” from a point function.
The (black-box) proof of security of the interactive hashing protocol implies (unconditional)
proof of security for the ILS.

The above connection allows us to use interactive hashing protocols from the literature
for obtaining interactive locking schemes, but leaves open the question of minimizing the
amount of interaction with the sender. We resolve this question by presenting a novel direct
construction of ILS which requires only a single round of interaction with the sender.

The high level idea behind our single round ILS is as follows. The oracle π constructed
by the sender will be the zero function over {0, 1}n except for an “interval” of size 2cn. That
is, π(x) = 1 for a ≤ x ≤ a+ 2cn and π(x) = 0 elsewhere. Depending on whether the sender
commits to zero or one, the interval will be planted in the first or second half of the oracle
π. The position a of the interval will be revealed to the receiver in the decommitment phase.
When c < 1, the interval size 2cn will be small enough to prevent the receiver from finding
the committed bit during the commitment phase. But now the sender is able to cheat by
planting intervals in both the first and second half of π. To guarantee binding, we let the
receiver ask a “challenge” question about the interval in such a way that the sender cannot
find a pair of planted intervals in the first and second half of π with the same challenge
answer. A natural idea is to use a pairwise independent function h : {0, 1}n → {0, 1}dn and

133

ask the sender to reveal h(a). The sender is able to plant at most 2(1−c)n separate intervals
in each half of π. Each of the intervals in the first and second half of π will have the same
hashes with probability 2−dn. Therefore if 2(1 − c) < d, then with high probability over
the choice of h the sender is not able to find two intervals with the same hash value h(a)
and thus gets committed to a fixed bit. But now the information revealed by h(a) might
help the receiver find a non-zero point in π and break the hiding property. We show how
to modify the a known construction of pairwise independent hash functions to get another
function which is still almost pairwise independent but has the additional property that the
preimages of any hash value are “scattered” in the domain of the hash function. The latter
property prevents the receiver from taking advantage of the knowledge of h(a) to find where
the interval is planted. Using this approach we simultaneously guarantee binding and hiding.

Cryptography using hardware tokens. The above study of zero-knowledge interactive
PCPs and interactive locking schemes is motivated by a recent line of research on the capabil-
ities of cryptographic protocols in which parties can generate tamper-proof hardware tokens
and send them to each other. Katz [105] shows that, under computational assumptions,
general universally composable (UC) secure two-party computation [37] is possible in this
model if the tokens are allowed to be stateful, and in particular can erase their secrets after
being invoked. It was subsequently shown that even unconditional security is possible in this
model, first for the case of commitment [123] and then for general tasks [80]. See [67, 77, 93]
and references therein for other applications of stateful tokens in cryptography.

Obtaining similar results using stateless tokens turns out to be more challenging. Part
of the difficulty stems from the fact that there is no guarantee on the functionality of tokens
generated by malicious parties — they may compute arbitrary functions of their inputs and
may even carry state information from one invocation to another. It was recently shown
in [80], improving on [40], that any one-way function can be used for basing (computation-
ally) UC-secure two-party computation on stateless tokens. More practical protocols which
satisfy weaker notions of security were given in [110]. These works leave open the question
of obtaining a similar result unconditionally, and with statistical security. (To get around
impossibility results in the plain model, the number of queries to a token should be poly-
nomially bounded, but otherwise malicious parties may be computationally unbounded.) In
fact, the constructions from [40, 80, 110] may lead to a natural conjecture that achieving
statistical security in this setting is impossible, since in these constructions all the “useful
information” contained in tokens can be learned by a computationally unbounded adversary
using a polynomial number of queries.

However, similar to the case of ILS discussed above, the combination of stateless to-
kens and interaction turns out to be surprisingly powerful. As already alluded to in [15],
MIP protocols can naturally give rise to protocols in the hardware token model. In our
case, we implement the ILS (or IPCP) by having a single sender (prover) create a stateless
tamper-proof hardware token which implements the PCP oracle and send it to the receiver
(verifier). Applying this to our results, this directly gives rise to the first unconditionally
secure commitment protocols and SZK proofs for NP using stateless tokens.

134

We show how this can be extended to general unconditionally secure two-party compu-
tation if parties are allowed to build tokens which encapsulate other tokens: namely, the
receiver of a token A is allowed to build another token B which internally invokes A. The
high level idea is the following. By the completeness of oblivious transfer (OT) [101, 107], it
suffices to realize OT using stateless tokens. This is done as follows. The OT sender’s input
is a pair of strings (s0, s1) and the OT receiver’s input is a selection bit b. The OT receiver
commits b using an ILS. Applying our best construction, this involves sending a token A to
the OT sender and responding to a random challenge message received from the OT sender.
The OT sender now prepares and sends to the receiver a token B with the following function-
ality. Token B accepts a selection bit b along with a corresponding decommitment message.
It checks that the decommitment is valid (this involves invocations of the token A, which
token B encapsulates) and then returns the string sb if decommitment was successful. The
binding property of the ILS guarantees that the OT receiver can learn at most one string sb.
The hiding property of the ILS guarantees that the sender cannot learn b.

Interestingly, we also show a matching negative result: if token encapsulation is not
allowed, then statistically secure OT is impossible. This holds even if both parties are
guaranteed to follow the protocol except for making additional queries to tokens in order to
learn information about the other party’s input. The proof of this negative result employs the
recent notion of accessible entropy from [84] and has the following high level intuition. One
way to explain why statistical OT is not possible in the standard model (i.e., without tokens)
is that at any time during the interaction a computationally unbounded party (e.g., the OT
receiver R) is able to sample from the space of its randomness rR conditioned on what the
other party (i.e., the OT sender S) knows about R’s computation. The latter information
is captured by the transcript τ of the protocol. Therefore if at the end of the interaction
the distribution of rR conditioned on τ is not revealing the receiver’s bit b, the receiver can
sample from (rR | τ) and find out both of the strings (s0, s1). If such sampling is done
efficiently, the protocol is said to have accessible entropy [84]. In the token model, however,
the exchanged information is not symmetric and Bob might not know which queries Alice has
asked from Bob’s tokens. Similarly to the standard model, we define a protocol (A,B) in the
token model to have accessible entropy if the parties can (information theoretically) sample
their history of computation so far only conditioned on the other party’s view. Similarly
to the standard model, accessing the entropy of a protocol for OT in the token model can
be used to break its security for the benefit of either of the parties. We prove the following
technical lemma: For any protocol (A,B) in the stateless token model, there is another
protocol (A′, B′) with the following properties. (1) the parties in (A′, B′) “emulate” the
original protocol (A,B). Namely A′ honestly runs an instance of A in its belly and similarly
B′ does so for an instance of B. (2) Other than emulating (A,B), A′ and B′ are also allowed
to learn more information about the tokens they hold by asking token queries that might
not be specified by (A,B). (3) (A′, B′) is still restricted to asking at most poly(n) number
of queries from the tokens totally. (3) Finally, almost all the entropy of the interactive
algorithms A′ and B′ in the protocol (A′, B′) is accessible. This lemma, together with the
necessity of inaccessible entropy for the possibility of OT, proves that statistical OT does

135

not exist in the stateless token world.

6.2 Preliminaries

6.2.1 Properties of Interactive and Oracle Algorithms

Although one of the main applications of the interactive protocols is to use them as a “proof
system” [76], here we define their basic properties in a more abstract level so that we can
use them in the next section in the extended model of Interactive PCPs.

In this chapter we use the notation Â to denote a possibly malicious interactive algorithm
participating in a protocol instead of the honest interactive algorithm A.

Definition 6.2.1 (Properties of interactive protocols). Let (P, V) be an interactive protocol
composed of a prover P and a verifier V . We define the following properties for (P, V).

• Soundness: (P, V) is (1− δ)-sound for the input x, if for every prover P̂ it holds that

Pr[
〈
P̂ , V

〉
(x) = 1] ≤ δ.

• Statistical zero-knowledge (SZK): (P, V) is ε(n)-SZK for the language L if there

is a simulator Sim that gets oracle access1 to an arbitrary (unbounded) verifier V̂ , runs

in time poly(n), and if x ∈ L then SimV̂ produces a view for V̂ which is ε(n)-close to

the view of V̂ when interacting with P on the input x. A query q
sim

= (rV , a1, . . . , ai)

of the simulator Sim to the oracle V̂ consists of the randomness rV for V̂ and a set of
first i messages of the prover a1, . . . , ak to the verifier. The answer aver = (q1, . . . , qi+1)

returned by the oracle V̂ consists of the first i + 1 messages of the verifier V̂ when
rV is used as the randomness and a1, . . . , ak are received from the prover. Thus
the simulator Sim, in general, can “rewind” V̂ by asking queries of the form q

sim
=

(rV , a1, . . . , ai) and q′
sim

= (rV , a1, . . . , ai−1, a
′
i). The simulator Sim is called straight-line

if its queries are of the following “incremental” form: (rV), (rV , a1), . . . , (rV , a1, . . . , ai)

and the output of SimV̂ is the last query of Sim: (rV , a1, . . . , aj). It is easier to think
of a straight-line simulator as an interactive algorithm which simply interacts with the
verifier V̂ and outputs the view of V̂ in this interaction.

Note that the soundness is only a property of the verifier V while zero-knowledge is only
a property of the prover P .

Inefficient verifiers with large randomness. To prove the zero-knowledge for inefficient
verifiers V̂ with super-polynomially long randomness, we slightly change the simulator’s
behavior of Definition 6.2.1 as follows. We let the oracle V̂ to choose the randomness rV
uniformly at random (hidden from the simulator) and the simulator’s queries would only
consist of prover’s messages q

sim
= (a1, . . . , ai). Also the simulator’s output will be the last

1All the zero-knowledge constructions in this thesis use black-box simulators.

136

query of the simulator q
sim

= (a1, . . . , aj) joint with the randomness rV chosen by the verifier

(and yet (rV , a1, . . . , aj) should be ε-close to the view of V̂ when interacting with P). All
of our simulators in this chapter will be of this form to let us handling arbitrarily inefficient
verifiers.

Definition 6.2.2 (Composition of interactive protocols). Let (P1, V1), . . . , (Pk, Vk) be k inter-
active protocols. By (Pseq, Vseq) we mean the sequential composition of (P1, V1), . . . , (Pk, Vk)
defined as follows.

• Let x be the common input.

• Vseq uses independent random coins rV1 , . . . , rVk for V1, . . . , Vk and Pseq uses independent
coins rP1 , . . . , rPk for P1, . . . , Pk.

• Pseq and Vseq first interact according to the protocol (P1, V1) over the input x, and after
that interact according to the protocol (P2, V2) (over the asme input x) and so on.

• At the end Vseq rejects if any of Vi’s reject.

By (Ppar, Vpar) we mean the parallel composition of (P1, V1), . . . , (Pk, Vk), which is defined
similar to (Pseq, Vseq) with the difference that V1, . . . , Vk interact with the prover Ppar in a
round-synchronized way. Namely in the j’th round of the interaction, Vpar sends the queries
qj1, . . . , q

j
k to the prover Ppar where qji is the j’th query of Vi (and qji = ⊥ if Vj’s interaction

finishes before the j’th round). Then Vseq receives k answers aj1, . . . , a
j
k and Vi uses ai as its

answer to continue its execution.2

Both (Pseq, Vseq) and (Ppar, Vpar) are special cases of concurrent composition (Pcon, Vcon)
in which the verifier runs V1, . . . , Vk and the prover runs P1, . . . , Pk in a way that Vi will be
interacting with Pi in the i’th “sessions”. There is not any round synchronization enforced
across different sessions. The honest verifier Vcon will send the next query qji (i.e. the j’th
query of Vi) when she receives the answer aj−1

i from Pi in the i’th session, but a cheating

verifier V̂con might delay sending such query to gather more answers in different sessions
before continuing. On the other hand the honest prover Pcon will send the answer aji back

whenever he receives the query qji from Vcon, but a cheating prover P̂con might delay sending
such answer to gather more queries in different sessions before continuing.

By using simple “delay policies”, both the prover and the verifier (when the other party
is honest) are able to force a concurrent composition to behave like a parallel or sequential
composition.

2To define the parallel composition, we do not necessarily assume (P1, V1), . . . , (Pk, Vk) to have equal
round complexity, and the round complexity of (Ppar, Vpar) will be the maximum of the round complexity of
(P1, V1), . . . , (Pk, Vk).

137

The inputs in composed protocols. In all variants of compositions defined above (in-
cluding the concurrent composition), the same input x is used in all the sub-protocols. More
general definitions of concurrent composition allow different inputs to be used in different
instances of the protocol, but our definition still generalizes the parallel and sequential defini-
tions and is enough for our purposes. Moreover, the properties of the concurrent composition
described in Lemma 6.2.10 below (in particular the SZK property) hold in the more general
form of concurrent composition with different inputs (as long the inputs are fixed at the
beginning of the execution of the system.)

Lemma 6.2.3 (Properties of composition of interactive protocols). Let (P1, V1), . . . (Pk, Vk)
be k interactive protocols, and let (Pseq, Vseq), (Ppar, Vpar), (Pcon, Vcon) be, in order, their se-
quential, parallel, and concurrent compositions. It holds that:

1. Soundness [11]: If (Pi, Vi) is (1 − δi)-sound over the input x for all i ∈ [k], then
(Pcon, Vcon) (and in particular (Pseq, Vseq) and (Ppar, Vpar)) will have soundness 1−

∏
i δi.

2. SZK [111]: If (Pi, Vi) is εi-SZK for the language L with a straight-line simulator
for all i ∈ [k], then (Pcon, Vcon) (and in particular (Pseq, Vseq) and (Ppar, Vseq)) will be
(
∑

i εi)-SZK for L with a straight-line simulator.

Part 1 of Lemma 6.2.3 is proved in [11] for the case of parallel composition, but the proof
extends to the concurrent composition as well. The proof of Part 2 of Lemma 6.2.10 follows
by a standard hybrid argument similar to the proof of Part 2 in Lemma 6.2.14 below.

For the oracles π1, . . . , πk, by π = (π1| . . . |πk) we mean their combined oracle defined as
follows: Given the query (i, q), π answers as π(i, q) = πi(q). We allow an oracle algorithm
Aπ to ask multiple oracle queries from π in one round of queries.

By a malicious stateful oracle π̂ we mean an interactive algorithm whose honest behavior
is like an oracle. In other words, given a round of queries q1, . . . , qk, π returns π(q1), . . . , π(qk),
but a malicious stateful oracle π̂ accessed by the oracle-algorithm A can respond the queries
similar to a malicious interactive algorithm interacting with A. That is, π̂’s answer to a
query q can depend on the common input x, or the previous queries of A asked from π̂, or
other queries being asked in the same round as q.

Definition 6.2.4 (Parallel composition of oracle algorithms). Let Aπ1
1 , . . . , A

πk
k be k oracle

algorithms with access to k oracles π1, . . . , πk where for all i ∈ [k] Ai asks at most t rounds
of oracle queries from πi. We define A

πpar
par the parallel composition of Aπ1

1 , . . . , A
πk
k as follows.

• The oracle πpar = (π1| . . . |πk) is the combined oracle of π1, . . . , πk.

• Aπparpar emulates Aπ1
1 , . . . , A

πk
k in parallel as follows. Let q be one of the queries of Ai in

its j’th round of queries to πi. Apar asks (i, q) from πpar in its j’th round of queries and
returns the answer to Ai.

• Aπparpar rejects if any of the emulated algorithms Aπ1
1 , . . . , A

πk
k reject.

138

6.2.2 Interactive PCPs

Interactive PCPs (Definition 6.2.5 below) were first introduced in [102] and combine the
notion of oracle algorithms with interactive algorithms. Similar to the previous section, here
also we define IPCPs in a general way, not only for the purpose of a proof system, but rather
as a model of interaction consisting of interactive algorithms and a prover.

Definition 6.2.5. (Adapted from [102]) An interactive probabilistically checkable proof (IPCP)
Γ = (P, π, V) consists of an interactive algorithm P (the prover), an oracle π (the PCP or-
acle), and an interactive algorithm V (the verifier) such that:

• P and π share common randomness rP , and V is given the randomness rV .

• P , π, and V will be given an input x of length |x| = n. P and π may also receive a
common private input w.3

• The PCP oracle π is a function of (rP , x, w, q) where q is a query of the verifier V .
Since (rP , x, w) is fixed at the beginning of the protocol, we might simply use π(q) to
denote the answer to the query q.

• P and V π engage in an interactive protocol during which V can query the PCP oracle
π and at the end V accepts or rejects.

By an efficient IPCP we mean one in which the prover P , the PCP oracle π, and the verifier
V run in polynomial time over the input length |x| = n.

Definition 6.2.6 (Properties of IPCPs). Let Γ = (P, π, V) be an IPCP. We define the
following properties for Γ.

• Soundness: Γ is (1 − δ)-sound for input x, if for every prover and oracle (P̂ , π̂) it

holds that Pr[
〈
P̂ , V π̂

〉
(x) = 1] ≤ δ.

• Adaptive-soundness: Γ is (1 − δ)-adaptively-sound for input x, if for every prover

P̂ and every stateful oracle π̂ it holds that Pr[
〈
P̂ , V π̂

〉
(x) = 1] ≤ δ.

• Statistical zero-knowledge (SZK): The SZK property is defined as an extension to
the SZK property of interactive protocols (Definition 6.2.1) with respect to a language
L. Since all of our simulators in this chapter are straight-line, for sake of simplicity
here we only describe how to extend the definition to SZK of IPCPs for straight-line
simulators.

– The straight-line simulator interacts with a (potentially malicious) verifier V̂ ,
while the simulator Sim receives all the queries of the the verifier (including both
the queries asked from the prover and from the oracle) and responds to them.

3For example when (P, π) are efficient and L ∈ NP, w could be a witness for x ∈ L.

139

– Since an unbounded verifier can ask arbitrary number of queries from its oracle,
here we put a bound u on the number of oracle queries asked by V̂ . More formally
we say that Γ is (u(n), ε(n))-SZK (with a straight-line simulator), if there is a

simulator described as above such that for any v ≤ u, if V̂ asks at most v oracle
queries, then Sim runs in time poly(n, v) and produces a view for V̂ which is

ε-close to the view of V̂ when interacting with (P, π).

Note that when u(n) is super-polynomial, Definition 6.2.7 implies the standard notion of
zero-knowledge against polynomial-time verifiers.

Definition 6.2.7 (SZK-IPCP for languages). We say that Γ = (P, π, V) is an SZK-IPCP
for the language L with SZK (u(n), ε(n)) and (adaptive) soundness 1− δ(n) if the following
holds:

• Completeness: If x ∈ L, then Pr[〈P, V π〉 (x) = 1] = 1.

• (Adaptive) soundness: Γ has (adaptive) soundness 1− δ if for all x 6∈ L, the verifier

V is (1 − δ(n))-(adaptively)-sound. Namely for all provers P̂ and (stateful) oracles π̂

it holds that Pr[
〈
P̂ , V π̂

〉
(x) = 1] ≤ δ(n).

• Statistical zero-knowledge (SZK): Defined according to the definition of SZK in
Definition 6.2.6.

We simply call Γ an SZK-IPCP for L with (adaptive) security u, if Γ is (1−1/u)-(adaptively)-
sound and (u, 1/u)-SZK.

Round complexity of IPCPs. By the round complexity of an IPCP we mean the number
of rounds of interaction between the verifier and the prover (and not the PCP oracle) where
each round consists of a message from the verifier followed by a message from the prover. In
particular, the round i for the verifier starts after the i− 1’th message of the prover is sent
and ends when the i’th query of the verifier to the prover is sent (which will be followed be a
message from the prover). Thus in each round the verifier behaves like an oracle-algorithm.
The reasons to only consider the interaction with the prover as a factor in round complexity
are as follows.

1. In our constructions of SZK-IPCPs, the number of rounds of oracle queries is either
equal to one (Theorem 6.3.1) or is bounded by the number of rounds of interaction
with the prover (Theorem 6.3.2). On the other hand our negative results (Part 2 of
Theorem 6.4.1) is regardless of number of rounds of oracle queries.

2. Regarding the application of IPCPs to the stateless hardware token model, the queries
from the PCP oracle are asked locally (as opposed to the queries from the prover which
are sent to a remote party). Therefore the number of rounds of interaction with the
prover is a more meaningful measure of the efficiency of the system.

140

Let Γ be an IPCP with j rounds. We can always decompose the verifier’s randomness
into rV = (r1

V , . . . , r
j
V) so that for the first i rounds only the first i parts (r1

V , . . . , r
i
V) are

used by the verifier. A trivial decomposition is to let r1
V = rV and riV be the empty string

for i ≥ 2, but that might not be the “natural” decomposition of the randomness.

Definition 6.2.8 (Public-coin IPCPs). By a public-coin IPCP we mean an IPCP where
the prover gets to see the coin tosses of the verifier all along the interactions. Namely the
verifier’s randomness is decomposable into rV = (r1

V , . . . , r
j
V) such that riV is publicly reviled

(to the prover) at the beginning of round i and (r1
V , . . . , r

i
V) is used by the verifier in round

i.

Comments about public-coin IPCPs.

• As a mental experiment we can always assume that the whole randomness rV is chosen
at the beginning and it is only reviled part by part to the prover and is used by the
verifier.

• Without loss of generality we can always assume that riV is the i’th message of the
verifier to the prover. That is because the prover knows the content of the oracle π
and thus can determine the verifier’s query at the end of round i by only knowing
(r1
V , . . . , r

i
V). Despite this fact, it might still be conceptually simpler to describe the

verifier’s query in other ways.

• Being public-coin is part of the definition of the model and it might change the sound-
ness of an IPCP. Namely, and IPCP might be 0.99-sound when considered as a (regular)
IPCP over an input, but only 0.01-sound when considered as public-coin IPCP.

• When considering adaptive soundness (against stateful oracles), the public-coin IPCP
model is only as strong as a two-party (i.e. single prover) interactive protocol. The
reason is that the prover and the oracle both get full information about the verifier’s
messages to both of them and thus can play as a unified party. (For the same reason
fully-public-coin multi-prover proof systems are only a special case of single prover
proof systems.)

Now we define several forms of composition of IPCPs by extending the corresponding
compositions of interactive algorithms (Definition 6.2.2) to the IPCP model. The new
component in the IPCP model compared to the model of interactive algorithms is the oracle.
The oracle in all the compositions of IPCPs discussed here is simply the combined oracle of
the IPCPs being composed. This way the i’th emulated verifier will ask its oracle queries
from the i’th oracle by adding a prefix i to its queries and asking them from the combined
oracle.

Definition 6.2.9 (Composition of IPCPs). Let Γ1 = (P1, π1, V1), . . . ,Γk = (Pk, πk, Vk) be
k IPCPs. Let π = (π1| . . . |πk) be the oracle combination of π1, . . . , πk, and let Ui be the
modified version of Vi which asks its oracle queries from π rather than πi by adding the

141

prefix i and asking (i, q) from π. We define the sequential Γseq = (Pseq, πseq, Vseq), parallel
Γpar = (Ppar, πpar, Vpar) and concurrent Γcon = (Pcon, πcon, Vcon) composition of Γ1, . . . ,Γk, in
order, as the sequential, parallel, and concurrent composition of (P1, U

π
1), . . . , (Pk, U

π
k) (note

that πseq = πpar = πcon = π). In case of parallel composition the emulated verifiers ask
their oracles queries also in parallel. Namely, let U j

i denote the j’th round of the oracle
algorithm Ui (i.e., after it asks its (j − 1)’th query and before it asks its j’th query from the
prover Pi). Similarly let V j

par denote the j’th round of the oracle algorithm Vpar. The oracle

algorithm V j
par will be the parallel composition of the oracle algorithms U j

1 , . . . , U
j
k according

to Definition 6.2.4.

The definition above describes the honest behavior of the prover, oracle, and the verifier
in various forms of composition. The way malicious parties can behave in such compositions
is determined both by the definition of the composition and the IPCP model. In particular,
although in all forms of composition the emulated Vi asks its oracle queries from π by adding
a prefix i (simulating the query being asked from πi), since the oracle π is accessible by the
verifier all along, a malicious verifier is allowed to ask any query from the oracle π. Also
in the case of concurrent composition, it might be useful for a malicious stateful oracle to
gather more queries from the verifier before responding to them.

Note that similar to the case of interactive algorithms, the soundness and SZK of the
concurrent composition imply those properties (with the same parameters) for the sequential
and parallel compositions.

Lemma 6.2.10 (Properties of composition of IPCPs). Let Γ1 = (P1, π1, V1), . . . ,Γk =
(Pk, πk, Vk) be k IPCPs, and let Γseq,Γpar and Γcon be in order their sequential, parallel,
and concurrent compositions. It holds that:

1. Soundness: If Γi is (1 − δi)-sound for input x for all i ∈ [k], then Γcon (and in
particular Γseq and Γpar) will have soundness 1−

∏
i δi over the input x.

2. Adaptive-soundness: If Γi is (1 − δi)-adaptively-sound for input x for all i ∈ [k],
then Γseq will have adaptive-soundness 1−

∏
i δi over the input x.

3. SZK: If (Pi, πi, Vi) is (u, εi)-SZK for the language L with a straight-line simulator for
all i ∈ [k], then Γcon (and in particular Γseq and Γpar) will be (u,

∑
i εi)-SZK for the

language L with a straight-line simulator.

In the case of sequential composition of interactive protocols it was not necessary for
the simulator to be straight-line to get Part 2 of Lemma 6.2.3, but as we will see in the
proof of Lemma 6.2.10, in the case of IPCPs since the verifier is allowed to query the oracle
whenever she wants, we need the simulator to be straight-line even in the case of sequential
composition.

Proof. (of Lemma 6.2.10)

142

Soundness. Let P̂ be an arbitrary prover and π̂ = (π̂1| . . . |π̂k) an arbitrary oracle where π̂i

is the oracle accessed by the emulation of Vi in Vcon. We claim that Pr[
〈
P̂ , V π̂

〉
= 1] ≤

∏
i pi

and the reason is as follows. Let V ′i = V π̂i
i be the interactive algorithm where the oracle π̂i is

hardwired into the algorithm Vi (note that V ′i is inherently inefficient). Now the interactive
algorithm V ′ = V π̂

con is the same as the concurrent composition of V ′1 , . . . , V
′
k . The crucial

point is that the interactive algorithm V ′i is well-defined regardless of which other interactive
algorithms are run in parallel. That is because πi is a fixed oracle and its answers only
depend on the queries that Vi is asking from it (i.e., πi’s answers do not change depending
on other queries asked by other Vj’s). Let δ′i = maxP Pr[〈P, V ′i 〉 = 1], then by the soundness
hypothesis it holds that

δ′i = max
P

Pr[〈P, V ′i 〉 = 1] ≤ max
P,π

Pr[〈P, V π
i 〉 = 1] ≤ δi.

Therefore by Part 1 of Lemma 6.2.3, it holds that

Pr[
〈
P̂ , V π̂

con

〉
= 1] ≤ max

P
Pr[〈P, V ′〉 = 1] ≤

∏
i

δ′i ≤
∏
i

δi.

Adaptive-soundness. Suppose the sequential executions of Γ1, . . . ,Γk do not lead to a
reject. Then by the (1 − δi)-adaptive-soundness of Γi+1, Vi+1 will accept with probability
at most δi regardless of what has happened in the previous interactions and even if π̂i+1 is
stateful. Thus the probability that all of Vi’s accept is bounded by

∏
i δi.

SZK. For an arbitrary IPCP Γ = (P, π, V) let (P u, V) be the interactive protocol in which
P u answers both the queries of V from the prover P and up to u oracle queries of V asked
from π. If P, π and P u are honest, then from the point of view of a verifier V who asks at
most u oracle queries there is no difference between interacting with P u or (P, π). Therefore
(P u, V) is ε-SZK for any language L (with a straight-line simulator) if and only if Γ is (u, ε)-
SZK for L (with a straight-line simulator). Now by Part 2 of Lemma 6.2.3 and using the
fact that Γi is (u, εi)-SZK, it follows that (P u

i , Vi) is εi-SZK for L. Let (P u
con, Vcon) be the

concurrent composition of (P u
i , Vi)’s for i ∈ [k]. By Part 2 of Lemma 6.2.3 (P u

con, Vcon) is
(
∑

i εi)-SZK for L. On the other hand, if we restrict a verifier V to ask at most u queries
from a combined oracle π = (π1, . . . , πk), the number of queries that V can ask from the
i’th sub-oracle πi (by adding the prefix i to the query) is also bounded by u. Therefore the
(
∑

i εi)-SZK property of (P u
con, Vcon) implies that Γcon is (u,

∑
i εi)-SZK for L.

We shall point out that since in the sequential composition Γseq a cheating verifier V̂seq
can ask arbitrary queries to the oracle πseq at any time during the interaction, therefore the

behavior of V̂seq in Γseq does not necessarily correspond to a cheating verifier interacting in

the sequential composition of (P u
i , Vi)’s. However any cheating verifier V̂con participating

in Γcon (and in particular participating in Γseq and Γpar) always corresponds to a cheating
verifier interacting in a concurrent composition of (P u

i , Vi)’s.

143

6.2.3 Interactive Locking Schemes

An Interactive locking scheme is a commitment scheme implemented in the IPCP model. A
similar definition appeared in [108] without the interaction (i.e. only with an oracle), but as
we will see in Theorem 6.4.1 non-interactive locking schemes are inherently inefficient and
therefore not as applicable in cryptographic settings.

Definition 6.2.11 (Interactive locking scheme). Let Λ = (S, σ,R) be an efficient IPCP
(where we call S the sender, σ the locking oracle and R the receiver) of the following form:

• The common input is of the form 1n where n is the security parameter.

• (S, σ) receive a private input w ∈ Wn which is called the committed message as well
as the private randomness rS. The receiver R gets the randomness rR.

• The receiver R gets oracle access to the locking oracle σ and Rσ interacts with S in
two phases: (1) commitment phase and (2) decommitment phase. The decommitment
phase consists of only one message from the sender S to the receiver R which includes
the committed message w and the private randomness rS used by S. Following this
message the receiver R (perhaps after asking more queries from the oracle σ) accepts
or rejects.

• Completeness: For any w ∈ Wn if all parties are honest the receiver accepts with
probability one:

Pr[
〈
S(w), Rσ(w)

〉
(1n) = 1] = 1

where the probability is over the random seeds rS and rR.

Then Λ is called an interactive locking scheme (ILS) for the message space Wn and if W =
{0, 1}, we call Λ a bit-ILS. When n is clear from the context we might simply use W rather
than Wn to denote the message space.

Definition 6.2.12 (Properties of ILS’s). Let Λ = (S, σ,R) be an ILS. We define the following
properties for Λ.

• Binding: We define Λ to be (1− δ)-binding if for any sender Ŝ and any oracle σ̂, with
probability at least 1−δ over the interaction of the commitment phase there is at most
one possible w such that Ŝ can decommit to successfully. More formally, let R′ be the
interactive algorithm which does the following.

1. Choose a randomness rR for the receiver R.

2. Run the commitment phase of R in Λ.

3. R′ reads all the queries of the oracle σ̂ that are of length bounded by the running
time of R (this step is inherently inefficient).

4. Knowing the content of the oracle σ̂, R′ accepts if there exist (w1, r1) and (w1, r2)
such that w1 6= w2 and R would accept both of (w1, r1) and (w1, r2) in the de-
commitment phase.

144

Λ is (1− δ)-binding over the message space Wn iff (S, σ,R′) is (1− δ)-sound over the
common input x = 1n.

• Hiding: Let R̂ be any malicious receiver who asks at most u oracle queries from σ,
and let τw be the random variable which consists of the transcript of the interaction
of R with (S, σ) till the end of the commitment phase when the committed message is

w ∈ W . Λ is (u, ε)-hiding if for every such malicious receiver R̂ and every {w1, w2} ⊆ W
it holds that SD(τw1 , τw2) ≤ ε.

• Equivocability: Λ is equivocable if there is an efficient sampling algorithm Sam that
given (τ, w) where τ is the transcript (including the oracle queries) of the commitment

phase of
〈
S, R̂σ

〉
(for an arbitrary receiver R̂) and any w ∈ W , if

Pr[w is the committed message and τ is the transcript of
〈
S, R̂σ

〉
] 6= 0

then Sam(τ, w) outputs r according to the distribution (rS | τ, w). Namely r is sampled
according to the distribution of the private randomness rS of (S, σ) conditioned on w
being the committed message and τ being the transcript of the commitment phase.

We simply call the ILS Λ u-secure if it is (1− 1/u)-binding and (u, 1/u)-hiding.

Public-coin ILS. Since ILS’s are IPCPs by definition, we define an ILS to be public-coin
similar to the way we defined public-coin IPCPs. Note that the soundness of an ILS might
decrease when considered as a public-coin system.

Round-complexity of ILS. Since the interactive part of the decommitment phase of any
ILS consists only of one message from the sender S to the receiver R, by the round-complexity
of any ILS we only refer to the number of rounds during its commitment phase.

Composition of ILS’s. Different forms of composition of IPCPs can be applied to ILS’s
just as well, but here we are interested in their parallel composition and a specific variant of
it. In any k-fold composition of the ILS’s the sender receives k private messages w1, . . . , wk
where each wi ∈ W is used as the private message in the i’th ILS. Therefore the message
space of the composed ILS potentially increases from W to W k. We use parallel composition
to expand the message space. We use a variant of parallel composition which uses the same
message in all composed ILS’s to to amplify the soundness of an ILS.

Definition 6.2.13 (Parallel Compositions of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk = (Sk, σk, Rk)
be k ILS’s. By Λpar = (Spar, σpar, Rpar) we mean the the parallel composition of Λ1, . . . ,Λk as
IPCPs according to Definition 6.2.9. Namely, during the decommitment phase the sender
Spar sends the message ((w1, rP1), . . . , (wk, rPk)) to the receiver Rpar who emulates the inter-
active algorithm Ri over the message (wi, rPi) for i ∈ [k] (and accepts if all of them accept).

145

By a same-message (parallel) composition Λsmp = (Ssmp, σsmp, Rsmp) of Λ1, . . . ,Λk we
mean their parallel composition where the receiver enforces the condition that the same
w1 = w2 = · · · = wk ∈ W is used as the committed message in all of Λ1, . . . ,Λk. Namely,
in the decommitment phase of Λsmp, the sender Ssmp sends (w, rS1 , . . . , rSk) to the receiver
Rsmp and the receiver runs the verification algorithm similar to Rpar but over the message
((w, rP1), . . . , (w, rPk)).

Note that the message space of the same-message composition Λsmp stays the same as
W (as opposed to the regular parallel composition Λpar which expands the message space to
W k).

Lemma 6.2.14 (Properties of parallel compositions of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk =
(Sk, σk, Rk) be k ILS’s with the same round complexity and the same message space W , and
let Λpar = (Spar, σpar, Rpar) and Λsmp = (Ssmp, σsmp, Rsmp) be their parallel and same-message
compositions. Then we have:

1. Binding: If Λi is (1− δi)-binding for all i ∈ [k], then Λpar is (1−
∑

i δi)-binding and
Λsmp is (1−

∏
i δi)-binding.

2. Hiding: If Λi is (u, εi)-hiding for all i ∈ [k], then Λpar and Λsmp are both (u,
∑

i εi)-
hiding.

3. Equivocability: If Λi is equivocable for all i ∈ [k], then both of Λpar and Λsmp are also
equivocable.

Proof.

Binding. Spar of Λpar gets bound to a message (w1, . . . , wk) if all of Si’s for i ∈ [k] get
bound to a message wi. By the union bound and the (1− δi)-binding of Λi with probability
at most

∑
i δi by the end of the commitment phase there exist an i ∈ [k] where Si is not

bound to a fixed wi. Thus Spar has binding at least (1−
∑

i δi).
On the other hand, since Ssmp is forced to use the same message w in all of Ri’s, Ssmp

gets bound to a message w if for at least one i ∈ [k] Ri gets bound to a message w. Recall
that the latter happens whenever the inefficient modification of the receiver R′i defined in
binding part of Definition 6.2.12 rejects and by the binding of Λi this rejection happens with
probability at least 1− δi. Therefore by the soundness amplification of parallel composition
of IPCPs (Part 1 of Lemma 6.2.10), with probability 1−

∏
i δi at least one of R′i’s reject in

the execution of Ssmp in which case the sender Ssmp gets committed to at most one possible
message w.

Hiding. We use a standard hybrid argument (which works the same for both Λpar and
Λsmp). Fix any two messages w1 = (w1

1, . . . , w
1
k), w

2 = (w2
1, . . . , w

2
k) and consider k + 1

experiments as follows. In the i’th experiment for 0 ≤ i ≤ k, we use a parallel composition
of Λ1, . . . ,Λk while for 0 ≤ j ≤ i the committed message in Λj is w1

j and for i+1 ≤ j ≤ k, the

146

committed message in Λj is w2
j . Fix any malicious receiver R̂par who asks at most u queries

from its locking oracle σ. Let τi be the random variable which consists of the transcript of
the commitment phase in the i’th experiment. If SD(τ0, τk) >

∑
i εi, then there should exist

i ∈ [k] such that SD(τi−1, τi) > εi. Therefore R̂par can distinguish between the experiments

i − 1 and i with advantage εi. Now we claim that there exists a malicious receiver R̂ that
can break the εi-hiding of Λi by εi-distinguishing the two experiments where in the first one
w1
i and in the second one w2

i is used as the committed message in Λi. R̂ will run R̂par while

simulating the k−1 other senders and oracles of R̂par as follows. For Λ0, . . . ,Λi−1 R̂ simulates
their senders and locking oracles while w1

j is used as the committed string in Λj and in k− i
other games Λi+1, . . . ,Λk it simulates their senders and locking oracles while w2

j is used as

the committed string in Λj. Then it is easy to see that R̂ will εi-distinguish between the two

experiments because R̂con εi-distinguishes τi−1 from τi. But this contradicts the εi hiding of
Λi.

Equivocability. Let τpar = (τ1, . . . , τk) be the transcript of the interaction of Rpar with
(Spar, σpar) where τi consists of the part of the transcript for Λi and let w = (w1, . . . , wk) be
the message that has a non-zero chance of being the private message conditioned on τpar being
the transcript. To sample a randomness (rP1 , rP2 , . . . , rPk) consistent with τpar and w one has
to sample rPi consistent with (τi, wi) for all i ∈ [k] which is possible by the equivocability of
Λi’s.

Therefore we can use Λpar to expand the message space at the cost of slight loss in hiding
and binding, while Λsmp can be used to amplify the soundness at the cost of slight loss in
hiding.

6.3 Statistically Zero-Knowledge IPCP for NP

In this section we show how to construct a 2Ω(n)-secure constant-round SZK-IPCP for any
language L ∈ NP where both the prover and the PCP oracle in our construction can be
implemented efficiently given a witness w for x ∈ L. We also show how to achieve a 2Ω(n)-
adaptively-secure SZK-IPCP for any L ∈ NP at the cost of poly(n) round-complexity. More
formally we prove the following two theorems.

Theorem 6.3.1 (Constant-round SZK-IPCP for NP). For any language L ∈ NP there
exists a 2-round efficient public-coin SZK-IPCP Γ2R for L with security 2Ω(n). Moreover, the
simulator of Γ2R is straight-line and therefore by Lemma 6.2.10 for a small enough constant
c, a 2cn-fold concurrent composition of Γ2R remains (2Ω(n), 2−Ω(n))-SZK.

Theorem 6.3.2 (Adaptively-secure SZK-IPCP for NP). There exists a (poly(n)-round)
efficient SZK-IPCP Γadap for L with adaptive-security 2Ω(n).

147

The oracle is inherent for SZK. If we only want to achieve computational zero-knowledge,
we can remove the PCP oracle from the IPCP model and only the interaction would suffice
to achieve this goal (under the computational assumption that one-way functions exist [71]).
On the other hand, if the domain of the PCP oracle π were only of size poly(n) (rather than
super-polynomial), then a malicious polynomial-time verifier could read all of the informa-
tion in π and so the language L would be in the class SZK ⊂ AM ∩ coAM which does
not contain the class NP unless the polynomial hierarchy collapses. This means that the
existence of a oracle π with a super-polynomial domain is inherent to achieve unconditional
zero-knowledge for NP.

Intuition behind Theorem 6.3.1. Our main step to prove Theorems 6.3.1 is to construct
an interactive (ILS) (Definition 6.2.11), a primitive corresponding to commitment schemes in
the IPCP model. In Theorem 6.4.1 we present an ILS with optimal round complexity (i.e. one
round). Then we feed our ILS (as a commitment scheme) into the well-known construction
of [71] to achieve zero-knowledge for NP with non-negligible soundness. A classical way to
amplify the soundness of proof systems (while keeping the round-complexity) in the standard
model of interaction is to use parallel composition. We use the fact (Part 1) that parallel
composition of IPCP’s decreases the soundness error exponentially. The latter result (i.e.
Part 1 of Lemma 6.2.14) is interesting on its own since the IPCP model lies in between the
single-prover and the multi-prover models and it is known [57] that the parallel repetition
does not amplify the soundness in a simple exponential form (as one would wish). Secondly,
we show that although the parallel composition might hurt the zero-knowledge in general,
by crucially using equivocability feature of our ILS (see Definition 6.2.11) one can prove that
SZK is preserved under parallel composition.

Lemma 6.3.3 (Followed by Part 1 of Theorem 6.4.1). There exist an efficient ILS Λ =
(S, σ,R) for the message space {1, 2, 3} with security 2Ω(n) which is public-coin and equivo-
cable. Moreover the commitment phase of Λ has only one round of interaction.

To use the construction of [71] we also need the following technical lemma.

Lemma 6.3.4 (Hiding of selective opening of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk =
(Sk, σk, Rk) be ILS’s with the same round complexity and the same message space W and
suppose that Λi is (u, εi)-hiding for all i ∈ [k]. Also let D be an arbitrary (perhaps corre-

lated) distribution over W k. Now consider an arbitrary receiver R̂ who asks at most u oracle
queries and interacts with the parallel composition of (S1, σ1), . . . , (Sk, σk) in the following

experiments Real or Simul. Then R̂ can not distinguish between Real and Simul with an ad-
vantage more than 3

∑
i εi. In other words the statistical distance between the view of R̂ in

the two experiments is at most 3
∑

i εi.

Experiment Real:

1. (w1, . . . , wk) is sampled according to the distribution D, (r1, . . . , rk) is sampled uni-
formly at random and (Si, σi) receives (wi, ri) as its private message and randomness.

148

2. R̂ interacts with (S1, σ1), . . . , (Sk, σk) in parallel till the end of the commitment phases.

3. R̂ selects an arbitrary set B ⊆ [k] and receives (wi, ri) for all i ∈ B.

4. R̂ can continue asking up to u oracle queries (including the previous queries asked)
from the combined oracle σ = (σ1| . . . |σk).

Experiment Simul:

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ

′
i) receives (0, r′i) as its private

message and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ

′
k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and
ri is sampled at random conditioned on being consistent with wi and the transcript of〈
Si, R̂

σ′i

〉
. Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ B let σi be the oracle generated with (wi, ri) as its private message and
randomness, and for all i ∈ [k] \ B let σi be the same as σ′i. Let the combined oracle

be defined as σ = (σ1| . . . |σk). R̂ can continue asking up to u oracle queries (including
the previous queries) from the combined oracle σ.

Proof. We will use several hybrid arguments. We first define one more experiment:

Experiment Mixed:

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ

′
i) receives (0, r′i) as its private

message and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ

′
k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and
ri is sampled at random conditioned on being consistent with wi and the transcript of〈
Si, R̂

σ′i

〉
. Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ k let σi be the oracle generated with (wi, ri) as its private message

and randomness, and let the combined oracle σ be defined as σ = (σ1| . . . |σk). R̂
can continue asking up to u oracle queries (including the previous queries) from the
combined oracle σ′.

Claim 6.3.5. For any receiver R̂ who asks at most u oracle queries, the statistical distance
between the view of R̂ in Real and Mixed is at most

∑
i εi.

Proof. Let τmixed and τreal be the transcript of the commitment phases in the experiments
Mixed and Real. As a mental experiment suppose:

149

1. In Mixed, the sampling (w1, . . . , wm)← Dk is done at the beginning (similar to Real).

2. In both Real and Mixed, the random seeds (r1, . . . , rk) are chosen after the commitment
phases are done, conditioned on the transcript of the commitment phases (τmixed or τreal)
and (w1, . . . , wm).

Now the only difference between Real and Mixed is in the statistical distance between
(w1, . . . , wk, τmixed) and (w1, . . . , wk, τreal) in the two experiments. The crucial point is that
the distribution of ri’s conditioned on (w1, . . . , wk, τ) are independent and thus the way they
are sampled in Real and Mixed (conditioned on (w1, . . . , wk, τ)) is the same. Now suppose
the statistical distance between (w1, . . . , wk, τmixed) and (w1, . . . , wk, τreal) is more than

∑
i εi.

Then by an average argument we can fix the value of (w1, . . . , wk) and still keep the statis-
tical distance to be more than

∑
i εi. Namely for fixed values of (w1, . . . , wk), the statistical

distance between τmixed and τreal is more than
∑

i εi. Notice that the difference between Mixed
and Real (after fixing (w1, . . . , wk)) is that τmixed is generated with (0, . . . , 0) as the private
messages while τreal is generated with (w1, . . . , wk). But this contradicts the hiding property
of parallel composition of ILS’s (i.e. Part 2 of Lemma 6.2.14).

The following claim together with Claim 6.3.5 (and the triangle inequality over the sta-
tistical distances) finishes the proof.

Claim 6.3.6. For any receiver R̂ who asks at most u oracle queries, the statistical distance
between the view of R̂ in Mixed and Simul is at most

∑
i 2εi.

Before proving Claim 6.3.6 consider the following two experiments.

Experiment Com0Dec0:

1. R̂ interacts with (Si, σi) in the commitment phase conditioned on 0 being the private
message of (Si, σi).

2. R̂ can continue asking up to u oracle queries.

Experiment Com0Decw:

1. R̂ interacts with (Si, σi) in the commitment phase conditioned on 0 being the private
message of (Si, σi).

2. A randomness of the sender rS is sampled conditioned on the view of R̂ and w being
the private message.

3. R̂ can continute asking up to u oracle queries, but the oracle answers will be based on
(w, rS) being the private message and the randomness of the oracle.

Claim 6.3.7. For any message w, any receiver R̂ who asks at most u oracle queries can
distinguish between the Com0Dec0 and Com0Decw by an advantage of at most 2εi.

150

Proof. Let the experiment ComwDecw be an experiment similar to Com0Decw where the
transcript of the commitment phase was generated conditioned on w being the private mes-
sage. By the (u, εi)-hiding of the ILS Λi the statistical distance between the view of R̂ in
Com0Dec0 and ComwDecw is at most εi. We can apply Lemma 1.3.2 (with X, Y , and Z

being in order the view of R̂ in Com0Dec0, ComwDecw, and Com0Decw, and the first part
of each random variable being the view of the commitment phase) to conclude that the

statistical distance of view of R̂ in Com0Dec0 and Com0Decw is at most 2εi.

Proof. (of Claim 6.3.6) Suppose R̂ can distinguish between Simul and Mixed with advantage
more than

∑
i εi. By an average argument we can get fix the sample (w1, . . . , wk)← Dx and

use it in Simul and Mixed and keep the distinguishing advantage of R̂ more than
∑

i εi. Now
we use a hybrid argument. For 0 ≤ j ≤ k, define the j’th hybrid experiment as follows.

Experiment Hybj

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ

′
i) receives (0, r′i) as its private

message and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ

′
k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and
ri is sampled at random conditioned on being consistent with wi and the transcript of〈
Si, R̂

σ′i

〉
. Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ B∪ [j] let σi be the oracle generated with (wi, ri) as its private message
and randomness, and for all i ∈ [k]\(B∪ [j]) let σi be the same as σ′i. Let the combined

oracle be defined as σ = (σ1| . . . |σk). R̂ can continue asking up to u oracle queries
(including the previous queries) from the combined oracle σ.

Note that Hyb0 = Simul and Hybk = Mixed (with the mentioned difference that (w1, . . . , wk) is

fixed now). Therefore if R̂ can distinguish between Simul and Real with advantage more than∑
i 2εi, then there exists i ∈ [k] such that R̂ can distinguish between Hybi−1 and Hybi with

advantage more than 2εi. It is easy to see (similar to the proof of Part 2 of Lemma 6.2.14)

that R̂ can be converted into another malicious receiver R̂i who asks at most u oracle queries
and is able to distinguish between Com0Dec0 and Com0Decwi with advantage more than 2εi.
But the latter is not possible because of Claim 6.3.7.

Therefore Lemma 6.3.4 follows from Claims 6.3.6 and 6.3.5 and the triangle inequality
over the statistical distance.4

Now we prove Theorem 6.3.1 using Lemma 6.3.3 and Lemma 6.3.4.

4Note that the reductions in various hybrid arguments in the proof of Lemma 6.3.4 are not efficient, but
they keep the number of queries asked by R̂ bounded (which was sufficient). The reductions can be done
efficiently if Λi’s are equivocable.

151

Proof. (of Theorem 6.3.1) Let L ∈ NP, and let x be an input to an IPCP for L. By using
the Cook-Levin reduction one can efficiently compute (from x) a graph G where x ∈ L iff
G ∈ 3COL, and moreover any witness for x ∈ L can be efficiently converted into a witness
for G ∈ 3COL and vice versa. So we would assume that the parties always will run the
Goldreich-Levin reduction first and then will work with a graph G as their input where G
has n = |N | vertices and m = |M | edges. By a padding argument we can always assume
that n ≥ |x| and so any u(n)-secure IPCP for 3COL will yield a u(n)-secure IPCP for L as
well. Therefore without loss of generality will work with L = 3COL directly.

We use the zero-knowledge construction of [71] which in turn uses a commitment scheme.
For the needed commitment scheme we use the ILS Λ = (S, σ,R) of Lemma 6.3.3.

Construction 6.3.8 (Weakly-sound SZK-IPCP for 3COL). Let w : [n] → {1, 2, 3} be a
proper 3-coloring for G where w(i) 6= w(j) if i 6= j. Let Λ = (S, σ,R) be the ILS of
Lemma 6.3.3 and let w be the secret input given to (S, σ). The IPCP Γ = (P, π, V) is as
follows.

1. The prover P chooses s ← S3 at random where S3 is the set of all permutations over
the set {1, 2, 3}. P uses s to “randomize” the coloring w to get a new 3-coloring of G
as c(i) = s(w(i)) for all i ∈ N . Note that c is also a proper 3-coloring of G. Moreover
for any edge (i, j) ∈M it holds that (c(i), c(j)) is uniformly distributed over {1, 2, 3}2

conditioned on c(i) 6= c(j).

2. The prover P and the verifier V will engage in an n-fold parallel composition of the
commitment phase of the ILS Λ where c(i) and ri are, in order, the committed message
and the private randomness used by (Si, σi) (in the i’th instance of Λ). The interaction
of this step stops right before the decommitment phases start.

3. The verifier V chooses an edge (i, j)←M at random and sends (i, j) to the prover P .

4. The prover decommits the i’th and j’th instances of Λ by sending (c(i), ri) and (c(j), rj)
to the verifier V .

5. The verifier V verifies (c(i), ri), (c(j), rj) as decommitments of the i’th and j’th and
rejects if either of them fail or if c(i) = c(j).

Claim 6.3.9. The IPCP Γ = (P, π, V) of the Construction 6.3.8 has the following properties.

1. Completeness: If G is a 3-colorable graph, then Pr[〈P, V π〉 (G) = 1] = 1.

2. Soundness: Γ is 1
2m

-sound. Namely, if G is not 3-colorable, then Pr[〈P, V π〉 (G) =
0] ≥ 1

2m
.

3. SZK: Γ is (2Ω(n), 2−Ω(n))-SZK with a straight-line simulator.

4. Efficiency: Γ can be implemented efficiently (when (P, π) are given a proper coloring
w of G as their private input).

152

5. Round-complexity: If the commitment phase of Λ has t rounds, then Γ has round
complexity t+ 1.

6. Public-coin: Γ is public-coin if Λ is public-coin.

Proof.

Completeness. The completeness follows from the completeness of Λ and the fact that w
is a proper coloring.

Soundness. Suppose G is not 3-colorable. Since Γ runs n instances of Λ in parallel, by
Part 1 of Lemma 6.2.14, with probability at least 1 − nδ, by the end of the commitment
phases, for each i ∈ [n] there is at most one possible c(i) that the prover can decommit to
(together with some randomness ri) successfully. In the following we assume that such event
has happened. Now for each i ∈ [n] let c(i) be the possible color that the prover can decommit
to and let c(i) = ∗ if such color does not exist. Since G is not 3-colorable, with probability
at least 1/m the verifier chooses an edge (i, j) such that either c(i) = ∗, or c(j) = ∗, or
c(i) 6= c(j). But in all these cases the verifier will reject. Therefore the verifier will reject at
some point during he interaction with probability at least (1 − δn) · 1

m
. Recall that Λ had

hiding 1− δ ≥ 1− 2Ω(n), which means that Γ has soundness (1− nδ) · 1
m
≥ 1−n2−Ω(n)

m
≥ 1

2m
.

SZK. Suppose V̂ is a malicious verifier which asks up to u queries from π where Λ (of
Lemma 6.3.3) is (u, ε)-hiding. The simulator Sim starts by plugging in a random seed for

V̂ and interacting with V̂ similar to the way that (P, π) would do. But the problem is that
Sim is not given the coloring w and cannot get the randomized proper coloring c. Instead
Sim does the following.

1. Sim uses the trivial (and most probably improper) coloring c(i) = 0 for all i ∈ N and

interacts with V̂ .

2. After receiving the edge (i, j) ∈ M from V̂ , the simulator chooses (c(i), c(j)) ←
{1, 2, 3}2 conditioned on c(i) 6= c(j) and chooses r′i (resp., r′j) at random condi-

tioned on being consistent with c(i) (resp., c(j)) and the transcript of
〈
Si, V̂

σi

〉
(resp.,〈

Sj, V̂
σj

〉
). The latter is possible because of the equivocability of Λ.

3. Sim answers the remaining oracle queries of V̂ , but it pretends that (c(i), r′i) and
(c(j), r′j) are the private message and randomness used in order by σi and σj. (For
queries to other oracles πt where t 6∈ {i, j}, Sim continues using (0, rt) as the message
and the randomness used for the oracle πt.)

When one is interacting with the honest prover P and the honest oracle π, for any fixed
edge (i, j) ∈M the distribution of the colors of its vertices (c(i), c(j)) is uniformly distributed

153

over {1, 2, 3}2 conditioned on c(i) 6= c(j). Therefore by Lemma 6.3.4, the simulator Sim

generates a view for V̂ which is 3
∑

i∈[n] ε = (3nε)-close to the view of V̂ when interacting

with the honest prover and the oracle (P, π). Since Λ is (u, ε) = (2Ω(n), 2−Ω(n))-hiding, it
follows that Γ has SZK (2Ω(n), 3n2−Ω(n)) = (2Ω(n), 2−Ω(n)) with a straight-line simulator.

The efficiency, round-complexity, and public-coin properties are immediate.

Finally let Γ2R be an mn-fold parallel composition of Γ. By Part 1 of Lemma 6.2.10,
Γ2R has soundness 1 − (1 − 1/2m)mn = 1 − 2Ω(n). Also by Part 3 of Lemma 6.2.10 Γ2R has
SZK (2Ω(n),mn2−Ω(n)) = (2Ω(n), 2−Ω(n)) with a straight-line simulator. Clearly Γ2R remains
complete, efficient, and 2-round and this finishes the proof of Theorem 6.3.1.

Proof. (of Theorem 6.3.2) To prove Theorem 6.3.2 it is enough to get an SZK-IPCP with
non-negligible adaptive soundness. Then by Part 2 of Lemma 6.2.10 we can use the sequential
composition to amplify the adaptive-soundness.

Note that if the verifier asks only one query from the oracle, then there is no difference
between soundness and adaptive-soundness.

A construction of [15] takes any multi-prover interactive proof system and compiles it
into a 2-prover system with non-negligible soundness where the verifier asks only one query
from the oracle. The construction of [15] is as follows. The verifier sends its randomness rV
to the first prover and gets a full simulation of its interaction with the original multi-prover
system. Then, in order to make sure that the first prover did not lie, one of the query/answer
pairs claimed by the first prover is chosen at random and is verified by the second prover. If
the answers were different the verifier rejects. It is easy to see that if the first prover does not
simulate the game honestly as a simulation of the multi-prover case, then it will be caught
with probability roughly 1/v where v is the total number of queries of the interaction being
simulated. (We refer the reader to [15] for more details).

As a first try, we use the construction of [15] to compile our SZK-IPCP of Theorem 6.3.1
into one with non-negligible adaptive-soundness and only one oracle query. Namely, we starts
ask the verifier to send its randomness to the prover who simulates the whole execution of the
original system. Then we choose one of the query/answer pairs claimed by the prover and
verify its correctness with the oracle (who is supposed to know the answer to such queries).
Unfortunately, the problem with this construction is that the verifier is also able to “reset”
the original prover through the new oracle. That is because the new oracle is supposed to
know the answer to all the queries to the original prover and there is no restriction on which
queries the verifier will ask from the oracle. Therefore we loose the SZK property.

To keep the SZK property, as a second try, we change the construction above as follows.
The verifier will choose only one of the oracle queries, simulated by the new prover, and
verifies that query with the new oracle. Now if the prover lies about any of the oracle-
type simulated queries, it still will be caught by the verifier with non-negligible probability.
Unfortunately, this time we might loose the soundness. The reason is that if the soundness
of the original system relies on the oracle queries being hidden from the prover, since in the
new simulation we are revealing the oracle queries of the original system to the prover, the
prover might honestly simulate the oracle queries but use this knowledge to lie about the

154

simulated queries of the original prover. But the good news is that if the original construction
of SZK-IPCP was public-coin, then the soundness is still guaranteed even if the prover gets
to see the oracle queries, and so in this case we do not loose the soundness! More formally
we use the following construction.

Construction 6.3.10 (From soundness to weak adaptive-soundness). Let Γ = (P, π, V) be
an IPCP. We construct new IPCP Γ′ = (P ′, π′, V ′) as follows.

• PCP oracle: The (honest) oracle π′ will be the same as π.

• The interaction of P ′ and V ′:

1. V ′ chooses a randomness rV for V and interacts with P ′ similar to the interaction
of V and P . The main difference is that any time that V needs to ask a query
from π, V ′ will ask this query from the prover P ′ instead.

2. At this time V ′ has a full description of a possible interaction between V π and P
and rejects if V would reject in this interaction.

3. Suppose q1, . . . , qv are the oracle queries that were asked from the prover P ′ and
let ai be the answer claimed by P ′ for the oracle query qi. If V ′ didn’t reject in
the previous step, it will chooses a random i ∈ [v] and queries qi from the oracle
π′. Let a′i = π′(qi) be the answer. V ′ rejects if ai 6= a′i.

Claim 6.3.11 (Properties of Construction 6.3.10). Let Γ = (P, π, V) be an (efficient) public-
coin IPCP for the language L which is (1 − δ)-sound, (u, ε)-SZK and public-coin where the
honest verifier V asks at most v oracle queries. When Γ is used in Construction 6.3.10 the
result is an (efficient) IPCP Γ′ = (P ′, π′, V ′) for the language L which is (u− v, ε)-SZK, and
is (1− δ)/v-adaptively-sound.

Proof.

SZK. Any simulator Sim for Γ with parameters (u, ε) can be used to get a simulator Sim′

for Γ′ with parameters (u− v, ε). The reason is that the view of any malicious verifier V̂ ′ in

Γ′ who asks at most u − v can be simulated by another malicious verifier V̂ in Γ who uses
V̂ ′ as a black box (and in a straight-line manner). The verifier V̂ runs V̂ ′ and whenever V̂ ′

asks an oracle query from the prover P ′, V̂ also asks this query from the oracle π. Thus
any (straight-line) simulator for V̂ can be used to simulate the view of V̂ ′ with the same
statistical distance ε.

Adaptive soundness. Since the verifier asks only one query from π′, it does not matter
whether π′ is stateful or not. More formally, for any potentially stateful π′ we define a
(stateless) oracle π′′ which given the query x answers according to π′ when π′ is asked only
the query x. Note that from the point of view of V ′ there is no difference between π′ and
π′′, so we might as well assume that V ′ asks its query from the stateless oracle π′′.

155

Let Rej be the event that V ′ rejects. By the soundness of Γ as a public-coin IPCP if P ′

answers all of q1, . . . , qv honestly according to π′′, then it would hold that Pr[Rej] ≥ 1 − δ.
It is crucial that Γ is public-coin, because in the interaction of V ′ and P ′, P ′ gets to know
the oracle queries of V and the soundness should hold even in this case. But a malicious
prover P̂ ′ can change Pr[Rej] by lying about the answer to some of qi’s. Let Lie be the event
that there exists i ∈ [v] such that ai 6= π′′(qi), and let NoLie be the complement event that
ai = π′′(qi) for all i ∈ [v]. By the (1− δ)-soundness of the public-coin IPCP Γ it still holds
that:

Pr[Rej ∧ NoLie] ≥ (1− δ)− Pr[Lie]. (6.3.1)

On the other hand if Lie happens then P ′ will be caught with probability at least 1/v, and
so

Pr[Rej | Lie] ≥ 1/v. (6.3.2)

Therefore we conclude that

Pr[Rej] = Pr[Rej ∧ NoLie] + Pr[Rej ∧ Lie]

≥ max(0, 1− δ − Pr[Lie]) + Pr[Lie] · Pr[Rej | Lie] by Inequality 6.3.1

≥ max(0, 1− δ − Pr[Lie]) + Pr[Lie] · 1

v
by Inequality 6.3.2

≥ (1− δ)/v. Achieved by Pr[Lie] = 1− δ

We use Construction 6.3.10 over the IPCP Γ = (P, π, V) of Theorem 6.3.1 to get a
new IPCP Γ′ = (P ′, π′, V ′). Let v = poly(n) be the number of oracle queries of V in
Γ. Since Γ is public-coin and is 2Ω(n)-secure, therefore Γ′ will have adaptive-soundness
1/(2mv) = 1/ poly(n) and SZK (2Ω(n) − v, 2−Ω(n)) = (2Ω(n), 2−Ω(n)).

Finally let Γadap be a mvn-fold sequential composition of Γ′. By Part 2 of Lemma 6.2.10,
Γadap has adaptive-soundness 1−(1−1/(2mv))mvn = 1−2Ω(n). Also by Part 3 of Lemma 6.2.10
Γadap has SZK (2Ω(n),mvn2−Ω(n)) = (2Ω(n), 2−Ω(n)) and this finishes the proof of Theo-
rem 6.3.2.

6.4 Interactive Locking Schemes

In this section we study ILS’s and will construct an ILS with optimal round complexity.

Theorem 6.4.1. (A round-optimal ILS) Let `(n) = poly(n), then

1. There exist an efficient ILS Λ = (S, σ,R) for the message space {0, 1}` with security
2Ω(n) which has a commitment phase of only one round and is public-coin.

2. Any ILS with a noninteractive commitment phase needs an inefficient oracle σ and
thus Λ has optimal round-complexity (as an efficient ILS).

156

First, in Section 6.4.1 we present a general construction for ILS’s from any interactive
hashing scheme (IHS) (see Definition 6.4.2) where the round-complexity of the used IHS
equals the round-complexity of the commitment phase of the constructed ILS. Using known
constructions for IHS we get an ILS with a 2-round commitment phase. We show that this
is the best one can get through this approach by showing that any IHS with the parameters
needed for our construction requires at least 2 rounds (see Proposition 6.4.5).

Then in Section 6.4.2 we present a direct construction for ILS with only one round of
interaction in the commitment phase. Both constructions of Sections 6.4.1 and 6.4.2 are
2Ω(n)-secure and public-coin. Thus the 1-round construction of Section 6.4.2 proves Part 1
of Theorem 6.4.1.

Finally in Section 6.4.3 we will show that at least one round of interaction is needed in
the commitment phase of any efficient ILS (proving Part 2 of Theorem 6.4.1).

6.4.1 ILS from IHS

Interactive hashing schemes (IHS — Definition 6.4.2) and their variants have been of great
use in designing cryptographic protocols. Although the core central properties needed for
IHS’s in all these applications is of an information theoretic flavor, in the applications of
IHS’s in the computational regime [83, 85, 132, 133], compared to the applications in the
information theoretic regime [36, 36, 48]) some extra properties are required for the IHS
used. Here we use a minimal definition whose properties hold in all existing forms of IHS
in the literature and show that the existence of any IHS according to this definition implies
the existence of ILS.

Definition 6.4.2 (Interactive hashing). An interactive hashing scheme (IHS) Ψ = (S,R)
is a two party protocol between a sender S and a receiver R where both are given 1n as
the security parameter and S is also given w ∈ M as the private message. By the end of
the protocol the transcript of the protocol determines two outputs {w0 6= w1} ⊆ {0, 1}n for
which the following properties hold.

• Completeness: If S and R are honest, then w ∈ {w0, w1}.

• Binding: The protocol is ρ-binding, if for every fixed set T ⊂ W of size |T | ≤ ρ · |W |
and any malicious sender Ŝ the probability that both of w0 and w1 lie in T is at most
1/2; namely Pr〈Ŝ,R〉=(w0,w1)[{w0, w1} ⊂ T] ≤ 1/2.

• Hiding: If the sender S is honest, then for any transcript τ of the protocol which de-
termines the outputs (w0, w1) it holds that Prw←{w0,w1}[w = w0 | τ] = Prw←{w0,w1}[w =
w1 | τ] = 1/2. Therefore if, w ← W is chosen uniformly at random, w0 and w1 will
have the same chance of being equal to w.

We call Ψ efficient if both S and R are efficient and public-coin if the messages of the receiver
R only consist of her public coin tosses.

157

It is easy to see that if R simply sends a 2-to-1 pairwise-independent hash function
h : {0, 1}n → {0, 1}n−1 to S and S sends back h(w), it gives a ρ-binding IHS for ρ ≈ 2−n/2.
But, as we will see in Lemma 6.4.3 for our construction of ILS from IHS (Lemma 6.4.3) we
need IHS’s with non-negligible binding ρ = Ω(1/ poly(n)).

Lemma 6.4.3 (ILS from IHS). Let Ψ = (SΨ, RΨ) be a k-round IHS with binding ρ over
the message space {0, 1}n with a deterministic sender SΨ. Then there exists a bit-ILS
Λ = (S, σ,R) with a k-round commitment phase which is 1/2-binding and (2n/2, 2−n/2)-
hiding. Moreover if Ψ is efficient, then (S, σ) are efficient and the receiver R runs in time
poly(n, 1/ρ) (and so if in addition ρ = 1/ poly(n), then Λ is efficient as well).

[133] presented an IHS with binding ρ = Ω(1) at the cost of poly(n) rounds of interaction.
[48] showed how to achieve a constant-round IHS with 1/ poly(n) binding. In all the known
constructions of IHS the sender is deterministic, and in our construction of ILS from IHS
(Lemma 6.4.3) we use this property. The determinism of the sender is not crucial to us and if
the sender is randomized, then we only need the following sampling property to hold: Given
any transcript τ of the protocol determining (w0, w1) and any i ∈ {0, 1} one can efficiently
sample ri from the sender’s space of randomness according to ri ← (rS | τ, w = wi).

By using any known k-round efficient IHS with 1/ poly(n)-hiding and Lemma 6.4.3,
we get an efficient ILS Λ which is 1/2-binding and (2Ω(n), 2−Ω(n))-hiding. Now Part 1 of
Lemma 6.2.14 yields that an n-fold parallel composition of Λ is 2Ω(n)-secure and finally an
`-fold same-message parallel composition expands the message space to {0, 1}` while we keep
the 2Ω(n)-security. Therefore by using the 2-round IHS scheme of [48] and Lemma 6.4.3 we
derive Part 1 of Theorem 6.4.1 (but still without the optimal round-complexity).

Intuition. Our approach in the proof of Lemma 6.4.3 is to use the well-known reduction
from statistically hiding bit commitments to IHS in the computational setting [125] and
its black-box proof of security. Roughly speaking the idea of [125] is to run the IHS over
the message y ∈ {0, 1}n where y = f(x) and f is a permutation. Now if f is a one-way

permutation the fraction of points y which the malicious sender Ŝ is able to invert is a
negligible ε = neg(n) fraction of {0, 1}n. Therefore if the ILS is ρ-binding for non-negligible
ρ (and in particular ε < ρ) with a noticeable probability, by the end of the IHS with outputs

{y0, y1}, there is at most one y where Ŝ can invert (i.e., present x such that y = f(x)) and

claim that y was his private message. So if at the last step of the commitment phase Ŝ sends
a bit d = b⊕ c where b is his bit-message and y is such that y = yc, then she gets committed
to only one possible value for b for which she can find a consistent c.5

But here we are interested in unconditionally secure protocols and we can not rely on
the existence of one-way permutations or any other computational assumption. The idea is
to use the locking oracle σ to hold a random (non-zero) point function σ(x) = y where the
sender knows the image y and the preimage x and thus can “invert” y to x. By using the
IHS over the image y, the sender gets committed to a unique y (with probability at least

5The argument needs to be formalized through an efficient reduction and we refer the reader to the rather
complicated full proof of [125].

158

1/2) assuming that there are fewer than ρ ·2n many “invertible” points in the set σ({0, 1}n).
But the receiver can guarantee that the latter is the case by picking 100/ρ random samples
x′ ← {0, 1}n (conditioned on x 6= x′) and verifying that σ(x′) = 0.

Proof. (of Lemma 6.4.3) We first describe the bit-ILS Λ = (S, σ,R).

Construction 6.4.4 (Bit-ILS from IHS). Let b ∈ {0, 1} be the private message hold by
(S, σ). We will use the IHS Ψ with the properties described in Lemma 6.4.3 over the
message space {0, 1}n with binding ρ.

The commitment phase of Λ:

1. The common randomness rR of (R, σ) will be (x, y) ← {0, 1}n × {0, 1}n where y 6= 0.
The locking oracle σ will contain a point function: σ(x) = y and σ(x′) = 0 for x′ 6= x.

2. S and R engage in the IHS Ψ where the sender S uses y as the private message of SΨ.

3. Let b be the private bit given to S, and let (y0 < y1) be the output of the protocol Ψ
and let c be such that y = yc. As the last message of the commitment phase the sender
S sends the bit d = b ⊕ c to the receiver R. Note that this does not require an extra
round of interaction since d can be concatenated to the last message of the sender.

The decommitment phase of Λ:

1. S sends b and (x, y) to R.

2. R verifies that σ(x) = y and y = yd⊕b (and rejects otherwise).

3. For i ∈ [n/ρ] the receiver R samples x′i ← {0, 1}n conditioned on x′i 6= x at random
and verifies that σ(x′i) = 0 holds for all i ∈ [n/ρ] (and rejects otherwise).

Now we prove the properties of the ILS Λ of Construction 6.4.4.

Completeness is immediate.

Binding. Let T = {σ(x) | x ∈ {0, 1}n} \ {0} and T−1 = {x | σ(x) 6= 0} be the set of
non-zero points in the oracle σ. There are two cases: either T−1 has size |T−1| ≥ ρ · 2n
or |T−1| < ρ · 2n. If the first case |T−1| ≥ ρ · 2n holds, then with probability at least
1 − (1 − ρ)n/ρ > 1 − 2n one of the receiver’s samples {x′i} will be sampled from T−1 and
then the receiver R rejects. (The way we described the protocol the random samples x′i’s are
chosen in the decommitment phase, but they are part of the randomness rR of the receiver
and are chosen in the beginning of the commitment phase.)

On the other hand, if the second case |T−1| < ρ · 2n holds, it implies that the size of
|T | ≤ |T−1| < ρ · 2n is small as well. Now by the binding property of the IHS Ψ, with
probability at least 1/2 one of {y0, y1} lies out of T in which case there is only one way for
the sender S to decommit to a bit b consistent with y0, y1 and d. Therefore the 1/2-binding
holds in either of the cases.

159

Hiding. If a malicious receiver R̂ asks up to 2n/2 queries from the oracle σ, they will be
all answered zero with probability at least 1− 2−n/2 by the uniformity of x← {0, 1}n. But

in that case the oracle queries of R̂ do not reveal any information about y and the hiding of
the ILS Γ follows from the hiding of the IHS Ψ.

Equivocability. Let τ be the transcript of any malicious receiver R̂ by the end of the
commitment phase. Given (b, τ) the sampler algorithm Sam does the following. Let σ(x′1) =

y′1, . . . , σ(x′t) = y′t be the oracle queries asked by R̂ from σ appeared in the transcript τ and
let (y0, y1) be the output of the executed IHS. If there exist i ∈ [t] such that y′t 6= 0, then it

means that R̂ has found the committed bit b = d ⊕ c where c is such that y′i = yc. In this
case the sampler Sam simply outputs (x′i, y

′
i). On the other hand if y′i = 0 for all i ∈ [t],

then the sampler chooses y = yc where c = b⊕ d and chooses x← {0, 1}n \ {x′1, . . . , x′t} and
outputs (x, y) (pretending that σ(x) = y).

By using the IHS of [48] (which has the fewest number of rounds among known IHS’s)
we get a 2-round ILS. The following proposition shows that the Construction 6.4.4 of ILS’s
from IHS’s is not able to achieve efficient ILS’s with one round (in the commitment phase).

Proposition 6.4.5 (Nontrivial IHS’s need two rounds). Any IHS Ψ with at most 3 mes-
sages exchanged between the sender and the receiver has binding at most ρ = 100/

√
|W |.

Therefore for |W | = 2n, any IHS Ψ with non-negligible binding ρ needs at least two rounds
of interaction.

Proof. For starters we assume that Ψ has only one round (i.e. two messages) where the
receiver sends its message first. Later we will extend the result to 3-message protocols.
Suppose the first message sent from the receiver is q and is followed by an answer a from the
sender. In the following discussion we fix a query q. Now any answer a corresponds to two
elements {wa1 , wa2} ⊂ W which determines an edge in a graph Gq with the vertex set W . Each
edge a has a probability of being used as the sender’s message. By duplicating the edges we
can change Gq into a multi-graph such that the distribution of the message of the sender
corresponds to selecting a random edge from Gq. The hiding property implies that any two
connected vertices x and y have the same degree d(x) = d(y). Therefore each connected
component of Gq is a regular graph. Now we show that such graphs have a relatively large
matching.

Lemma 6.4.6 (Large matchings in regular graphs). Let G be any graph with v vertices such
that the vertices have degree at least one and each connected component of G is regular. Then
G has a matching of size at least v/4.

Proof. By the Vising theorem each connected component of G can be properly colored with
∆ + 1 colors where ∆ is the degree of the vertices of that component. Since each color forms
a matching, therefore each component of G with u vertices has a matching of size at least
u∆

2(∆+1)
≥ u/4. Therefore G has a matching of size at least v/2.

160

Let M be the matching of size |W |/4 in G guaranteed by Lemma 6.4.6. The sender
samples a random set T ⊂ W by choosing each w ∈ W with probability 10/

√
|W |. Each

edge of the matching M gets covered by T with probability at least 100/|W |. Therefore with
probability at least 1− (1− 100/|W |)|W |/4 > 1− 2−25 > 99/10 at least on of the edges in M
gets covered.

Now we let q, the message of the receiver, also be chosen according to its distribution.
For each such q, when we construct the graph Gq, the random set T covers one of the edges
of Gq with probability at least 99/100. Therefore, with probability at least 9/10 over the
choice of T , the set T has the property that: with probability at least 9/10 over the choice
of q, at least one of the edges of Gq is covered by T . We call such T a good set.

On the other hand by Markov inequality with probability at least 9/10, the size of T
is bounded by 100

√
|W |. Therefore by a union bound with probability at least 8/10, T is

both a good set and also of size at most 100
√
|W |. This set T can be used by the sender

to break the binding of Ψ, because with probability at least 9/10 over the first message q of
the receiver, the sender is able to send a message a (corresponding to the edge covered by
T) which determines two elements in the set T as the output of the protocol.

Now we study 3-message protocols. If we add one more message q1 from the receiver to
to the sender (in addition to the the 2-messages in the protocols studied above), the last
message of the receiver does not restrict the sender’s cheating power, because the set of
messages that the sender can claim to be his message does not depend on the last message
of the sender.

Now suppose the protocol has three messages where the sender starts the interaction.
In this case, the first message of the sender a0 might decrease the space of possible values
for w which are consistent with a0. Now the sender fixes a value a0 for his first message.
Let W ′ be the set of values for w which are consistent with a0. By using the same attack
above (for the protocols which start with a0), the sender can still find a set T of size at most
100
√
|W ′| < 100

√
|W | to break the binding of Ψ.

6.4.2 A 1-round ILS

Theorem 6.4.7 (A 1-round ILS). There exists an efficient bit-ILS Λ1R which is 2n/10-secure
and has only one round of interaction in the commitment phase.

Before proving Theorem 6.4.7 we need to develop some basis tools.
Thus we also get the following lemma, whose proof is immediate.

Lemma 6.4.8. For n > m let A be the family of n×m Boolean matrices as follows. To get a
uniform member of A, choose the first n−m rows all at random, and take the last m rows to
be an independently chosen random member of full rank m. Then for any 0 6= x ∈ {0, 1}n,
it holds that PrA←A[xA = 0] ≤ 2−m (and equivalently for any x1 6= x2 ∈ {0, 1}n and
y ∈ {0, 1}m, it holds that PrA←A[x1A = x2A] ≤ 2−m).

Proof. (of Theorem 6.4.7) We use the following construction for the ILS Λ1R.

161

Construction 6.4.9 (A 1-round ILS). Suppose b ∈ {0, 1} is the private message given
to sender and the oracle (S, σ), and suppose R is the receiver. Let m = 3n/4. Below we
associate {0, 1}n with the integers [0, 2n) and all additions and subtractions below are modulo
2n.

The commitment phase of Λ1R:

1. Sender S chooses a ← {0, 1}n at random. Let fb be the function: fb(x) = 1 iff
a ≤ x < a+ 2m, and let f1−b be the zero function over {0, 1}n. The locking oracle will
be the combination of the two functions σ = (f0|f1) (indexed by the first bit of the
query to σ).

2. Receiver R samples A ← A from the family of matrices of Lemma 6.4.8 and sends A
to S.

3. Sender S checks that the last m rows of A are independent, and if so he sends h = aA
to the receiver R.

The decommitment phase of Λ1R:

1. Sender S sends (b, a) to the receiver R.

2. Receiver R does the following checks and rejects if any of them does not hold.

(a) Check that aA = h.

(b) Check that f1−b(a) = 0, and fb(a) = 1.

(c) For each i ∈ [0,m], sample 10n random points from [a, a + 2i) and check that
fb(x) = 1 for all of them, and also sample 10n random points from (a− 2i, a− 1]
and check that fb(x) = 0 for all of them

Now we study the properties of the ILS Λ1R.

Completeness is immediate.

Binding. As a mental experiment we pretend that the randomness used during the de-
commitment phase by R is chosen in the decommitment phase (rather than in the beginning
of the commitment phase).

For a fixed locking oracle σ, Let X0 (resp., X1) be the set of possible values of a that
sender S can send to the receiver R as the decommitment of b = 0 (resp., b = 1) and get
accepted in the decommitment phase with probability at least 2−2n. We prove that by the
end of the commitment phase, with probability at least 1− 2−n/8, it holds that |X0| = 0 or
|X1| = 0 which means that the sender has only one way to decommit the value b and get
accepted with probability more than 2−2n. But now if we choose the receiver’s randomness
in the commitment phase, since there are at most 2n+1 possible values for (b, a), it follows by

162

a simple average argument that with probability at least 1− 22n−n−1 over the commitment
phase, the prover gets committed to only one possible value for (b, a) which he can use to
pass the decommitment phase successfully.

Claim 6.4.10. X0 ∩X1 = ∅.

Proof. If a ∈ X0 ∩ X1. Then when a is used as the decommitment of 0, in Step 2b of the
decommitment phase the receiver R checks that f0(a) = 1, f1(a) = 0. On the other hand in
the case of decommitting to 1, receiver R checks that fb(a) = 0, f1−b(a) = 1, but they can’t
both hold at the same time.

Claim 6.4.11. It holds that |X0| ≤ 2n−m and |X1| ≤ 2n−m.

Proof. We show that if {a, a′} ⊂ X0 then |a − a′| ≥ 2m (and this would show that X0 ≤
2n/2m). Assume on the contrary that a′ < a and a − a′ < 2m. Let i ∈ [1,m] be such that
2i−1 ≤ a− a′ < 2i. Then by the pigeonhole principle ether at least half of σ([a′, a]) are zero
or at least half of the values σ([a′, a]) are one. Without loss of generality let assume that at
least half of σ([a′, a]) is zero. In this case at least 1/4 of the values σ([[a′, a′ + 2i)]) are zero.
But then by Step 2c of the decommitment phase (0, a′) will be accepted with probability at
most (3/4)10n < 2−2n, and therefore a′ 6∈ X0 which is a contradiction.

Claim 6.4.12. With probability at least 1−2Ω(n) over the choice of A, it holds that |X0| = 0
or |X1| = 0.

Proof. Fix any pair a0 ∈ X0 and a1 ∈ X1, we know that a0 6= a1. Therefore, PrA[a0A =
a1A] = PrA[(a0 − a1)A = 0] ≤ 2−m. Claim 6.4.11 yields that there are at most 2n−m2n−m

such pairs, so by using a union bound, with probability at least 1− 2−m22n−2m = 1− 22n−3m

over the choice of A, it holds that X0A ∩ X1A = ∅ which implies that if the sender sends
any hash value h, the consistency check of Step 2a of the decommitment phase either makes
|X0| = 0 or |X1| = 0.

As we said before Claim 6.4.12 implies that with probability 1 − poly(n) · 22n−3m =
1−poly(n) · 2−n/4 ≥ 1− 2−n/8 over the interaction in the commitment phase the sender gets
bound to a fixed b ∈ {0, 1} to which he can decommit successfully.

Hiding. Suppose receiver R can ask at most u ≤ 2n/8 queries from the locking oracle σ.
We claim that before sending the matrix A, all of receiver R’s queries to σ are answered zero
with probability at least 1−2−n/4. To see why, think of Z2n as being divided into 2n−m = 2n/4

equal intervals such that a is the beginning of one of them. Since receiver R asks up to 2n/8

queries, before sending the matrix Z, he will ask a query from the interval beginning with
a with probability at most 2n/8/2n/4 = 2−n/8. Therefore (up to 2−n/8 statistical distance in
the experiment) we can assume that the matrix A is chosen by receiver R independently of
a.

After receiving h, the information that the receiver R knows about a is that it satisfies
the equation aA = h. If we choose and fix the first n −m bits of (a potential) a, then the

163

remaining bits are determined uniquely because the last m rows of A are full rank. It means
that for every y ∈ [0, 2n−m) there is a unique solution for a in the interval [y2m, y2m + 2m),
and they are all equally probable to be the true answer from the receiver’s point of view.

Now again we claim that (although there are 2m nonzero points in fb) all the queries
that the receiver R asks from fb are answered 0 with probability at least 1 − 2−n/8. Let
Z = {z | zA = h} be the set of possible values for a. For z ∈ Z, let I(z) = [z, z + 2m).
We claim that no x ∈ {0, 1}n can be in I(z) for three different z’s from Z. To see why,
let z1 < z2 < z3 and that x ∈ I(z1) ∩ I(z2) ∩ I(z3). But now the interval [y2m, y2m + 2m),
containing z2 separates z1 and z3, and so z3 − z1 > 2m. Therefore I(z1) ∩ I(z3) = ∅ which
is a contradiction. So, if the receiver R asks u queries from fb, he can ask queries from
I(z)’s for at most 2u different z’s (out of 2n−m many of them). As a mental experiment
assume that a is chosen from Z after the receiver R asked his queries, it holds that I(a)
will be an interval that the receiver R never asked any query from with probability at least
1 − u/2n−m ≥ 1 − ·2−n/8. Therefore with probability at least 1 − 2−n/9 all of receiver R’s
queries during the commitment phase will be answered zero. But putting the oracle queries
aside, the hash value h does not carry any information about the bit-message b and therefore
the scheme is (1− 2n/8)-hiding.

Equivocability. Let τ be the view of an arbitrary receiver R̂ after the commitment
phase. Let (A, h) be the matrix sent by R̂ and the hash value received from S, and let
(x1, y1), . . . , (xt, yt) be the oracle query/answer pairs asked from fb and described in τ (where
b is the input given to the sampler algorithm Sam). For each xi let Zi = {z | yi ∈ I(z) ∧ zA = h}
be the set of possible values for a which yi falls into I(z), and recall that Z = {z | zA = h}.
(As we said before, since the last m rows of A are independent, |Zi| ≤ 2 for all i.) Note
that yi = 0 if and only if a 6∈ Zi. Therefore the set of possible values for a is W =
Z ∩yi 6=0 Zi \ ∪yi=0Zi. Thus the sampler Sam simply outputs a random element of W as the
value for a. This can be done efficiently since any candidate for a (and in particular the
members of W) can be identified by their first n − m bits, and the simulator is given the
list ∪yi=0Zi of impossible values for a which is of length O(t), and therefore the verifier can
finish the sampling in time poly(|τ |) ≥ poly(t) which is allowed.

6.4.3 Efficiency of Noninteractive Locking Schemes

By a noninteractive locking scheme (NLS), we mean an ILS where the commitment phase
is noninteractive and sender S only participates in the decommitment phase. Note that an
efficient locking scheme by definition uses poly(n)-sized circuits to implement the locking
oracle σ, and therefore σ can have at most poly(n) entropy. In this section we show that
there exist no efficient NLS with super-polynomial security.

Since we are going to prove that NLS’s cannot be efficient, we need to deal with un-
bounded senders. Thus we can no longer assume that the decommitment phase is only a
message (b, rS) sent to the receiver, because the randomness rS used by the sender can be
exponentially long. Therefore to prove the strongest possible negative result, we allow the

164

decommitment phase of a NLS to be interactive.
The following theorem clearly implies Part 2 of Theorem 6.4.1.

Theorem 6.4.13. Let Λ = (S, σ,R) be any NLS for message space {0, 1} in which the func-
tion σ of the locking oracle has Shannon entropy at most H(σ) ≤ uq

1000
when the committed bit

b is chosen at random b← {0, 1}. Let u be an upper-bound on the number of oracle queries
to σ asked by the receiver R in the decommitment phase. Then either of the following holds:

• Violation of binding: There is a fixed locking oracle σ̂, and a sender strategy Ŝ such
that when σ̂ is used as the locking orale, for both b = 0 and b = 1, Ŝ can decommit
successfully with probability at least 4/5.

• Violation of hiding: There exists an unbounded receiver R̂ who can guess the random
bit b ← {0, 1} used by (S, σ) with probability at least 4/5 by asking at most u queries
to the locking oracle σ.

Intuition behind Theorem 6.4.13. Our main tool in proving Theorem 6.4.13 is the
notion of “canonical entropy learner” (EL) introduced in Definition 6.4.14. Roughly speaking,
EL is an efficient-query (computationally unbounded) algorithm which learns a randomized
function f (with an oracle access to f) under the uniform distribution assuming that f has
a bounded amount of entropy. EL proceeds by choosing to ask one of the “unbiased” queries
of f at any step and stop if such queries do not exist. An unbiased query x is one whose
answer f(x) is not highly predictable with the current knowledge gathered about f by EL.
Whenever EL chooses to ask a query it learns non-negligible entropy of f , and thus the
process will stop after poly(n) steps. On the other hand, when EL stops, all the remaining
queries are biased and thus will have a predictable answer over the randomness of f . We
prove that either the receiver is able to find out the secret message of the sender (in an NLS)
by running the EL algorithm, or otherwise if by the end of the learning phase still part of the
entropy left in the locking oracle is hiding the secret message, then a malicious prover can
plant at least two different messages in the locking oracle in such a way that it can decommit
to successfully.

Notation. In the following, for clarity, we use bold letters to denote random variables and
use the non-bold version of the bold variables to denote the samples of that random variable:
x← x.

Definition 6.4.14 (Canonical entropy learner). Suppose f is a random variable with the
support set {f | f : {0, 1}n → {0, 1}} of all Boolean functions defined over n bits of input.
The canonical entropy learner ELf

ε is an oracle algorithm with access to f which asks its
queries as follows. At any time there is a set Q of query/answer pairs that ELf

ε knows about
f . Then if there is any new query x (outside of Q) for which ε ≤ Pr[f(x) = 0 | Q] ≤ 1 − ε
(in which case we call x an ε-unbiased query of f with respect to Q) then ELf

ε asks the
lexicographically first such x. ELf

ε continues asking as long as there is any ε-unbiased queries
left. We call a query x (1− ε)-biased (with respect to Q), if it is not ε-unbiased.

165

Lemma 6.4.15. Suppose ε < 1/2 and let the random variable Q be the set of query/answer
pairs that ELf

ε learns when interacting with f . Then it holds that E[|Q|] ≤ H(f)/ε where H(·)
is the Shannon entropy.

Proof. When x is an ε-unbiased query of f with respect to Q, then conditioned on Q, f(x)
has Shannon entropy at least H(f(x) | Q) ≥ ε log(1/ε)+(1−ε) log(1/(1−ε)) > ε log(1/ε) > ε.
Suppose x1, . . . , x|Q| are the queries asked by ELf

ε and x|Q|+1, . . . , x2n are the remaining queries

not asked by ELf
ε in the lexicographic order, and suppose Qi is the set containing the pairs

of the queries x1, . . . , xi joint with their answers. Since the information about x1, . . . , xi and
f(x1), . . . , f(xi) is encoded in Qi−1, therefore it holds that H(f) =

∑
i∈[2n] H(f(xi) | Qi−1).

Note that

H(f(xi) | Qi−1) = Pr[|Qi| ≥ i]H(f(xi) | Qi−1∧|Qi| ≥ i)+Pr[|Qi| < i]H(f(xi) | Qi−1∧|Qi| < i) .

We claim that H(f(xi) | Qi−1∧ |Qi| ≥ i) ≥ ε. The reason is that we are conditioning on the
cases of Qi−1 which determine xi as an ε-unbiased point (and we do not condition on any
more information). Therefore it holds that

H(f) =
∑
i∈[2n]

H(f(xi) | Qi−1)

≥
∑
i∈[2n]

Pr[|Qi| ≥ i]H(f(xi) | Qi−1 ∧ |Qi| ≥ i)

≥
∑
i∈[2n]

Pr[|Qi| ≥ i]ε = εE[|Q|],

and so E[|Q|] ≤ H(f)/ε.

Now we turn to proving Theorem 6.4.13.

Proof. (of Theorem 6.4.13)
For simplicity, and without loss of generality, we assume that the oracle σ is Boolean and

is only defined over inputs of length n.
The attack of R̂ is as follows. The receiver runs the canonical entropy learner ELf

ε with
ε = 1/100u over the (random) function of the oracle σ (where the randomness of σ comes
from the randomness rS shared with the sender which includes the random bit b← {0, 1}).
Recall that the receiver cannot ask more than u queries. We define Qu to be the set of
query/answer pairs that the receiver (who asks at most u oracle queries) learns about σ. It
always holds that Qu ⊆ Q where Q is the set of query/answer pairs that ELf

ε would learn
without stopping after u queries. We call a set T of query/answer pairs for σ predicting if
there exists c ∈ {0, 1} such that Pr[b = c | T] ≥ 9/10. Let Qu be the value sampled by the
random variable Qu and Q be the value sampled by the random variable Q. There are two
possibilities.

(1) There is a possible Qu (as a value of Qu) where Qu is not predicting and Q = Qu (i.e.
there is no ε-unbiased query conditioned on Qu).

166

(2) All possible values of Qu (as the result of the receiver’s learning algorithm) are either
predicting or Q 6= Qu.

In the following we prove that Case (1) implies the violation of binding and Case (2)
implies the violation of hiding according to Theorem 6.4.13.

Case (1). First suppose that Case (1) holds. In particular there is a possible value Q as
the canonical entropy learner’s knowledge about σ such that Q is not predicting, namely:

1/10 < Pr[b = 0 | Q] < 9/10 and 1/10 < Pr[b = 1 | Q] < 9/10 .

Also note that conditioned on Q all the points x out of Q are (1− ε)-biased and thus have a
unique “likely answer”. Namely for each x there is lx such that Pr[σ(x) 6= lx | Q] < 1/100u.
Since Q is not predicting, for all x it holds that:

Pr[σ(x) 6= lx | Q ∧ b = 0] =
Pr[σ(x) 6= lx ∧ b = 0 | Q]

Pr[b = 0 | Q]
<

Pr[σ(x) 6= lx | Q]

1/10
< 1/10u .

(The same also holds if we condition on b = 1.) Therefore in addition to Q, if we condition
on b = 0 or b = 1, still all the points in σ are (1− 1/10u)-biased.

Now we show that the binding property could be violated by a malicious sender and
oracle (Ŝ, σ̂). Consider the following cheating strategy:

1. Distribution of σ̂: Sample two oracles along with their (possibly exponentially long)
randomness (σ0, r0), (σ1, r1) according to the distributions (σ0, r0)← (σ, rS | Q∧b = 0)
and (σ1, r1)← (σ, rS | Q ∧ b = 1) and define the oracle σ̂ as follows.

• If σ0(x) = σ1(x) = lx, then σ̂(x) = σ0(x) = σ1(x).

• If σ0(x) 6= lx but σ1(x) = lx, then σ̂(x) = σ0(x).

• If σ1(x) 6= lx but σ0(x) = lx, then σ̂(x) = σ1(x).

• If σ0(x) = σ1(x) 6= lx, then σ̂(x) = σ0(x) = σ1(x).

2. The algorithm of Ŝ: To decommit to b = 0, the sender Ŝ announces b = 0 and uses r0

as the randomness of S to interact in the decommitment phase. To decommit to b = 1,
Ŝ acts similarly by announcing b = 1 and using the randomness r1 in its interaction of
the decommitment phase.

Claim 6.4.16. If the sender generates the locking oracle σ̂ (from σ0, σ1) as above and de-
commits to zero by announcing 0 and using the randomness r0 in the decommitment phase,
then the receiver will accept the interaction with probability at least 9/10.

Proof. After running the decommitment to zero, we call the experiment a defeat if the
receiver asks any query x such that σ1(x) 6= lx, and will call it a win otherwise. Note that if
the experiment is a win, then the receiver will accept the decommitment because all of the
answers he gets for his queries from σ̂ will agree with σ0.

167

Now consider another experiment in which σ̂ is again generated exactly the same as
above, but now σ0 is used during the decommitment phase. It is clear that now the receiver
will accept, but again, we will call the experiment a defeat if the receiver asks any query x
(from σ0) such that σ1(x) 6= lx.

We claim that the probability that the first experiment is a defeat is exactly the same
as that of the second experiment. The reason is that, although the receiver in general
behaves differently in the two experiments, the difference starts by asking a query x such
that σ1(x) 6= lx, and otherwise all the answers given to to the receiver will be the same
between σ̂ and σ0.

Now we claim that the probability of defeat in the second experiment is less than 1/10.
It would finish the proof since in that case the probability of defeat in the first experiment
also will be less than 1/10, and therefore the receiver will accept in the first experiment with
probability more than 9/10.

In the second experiment we can pretend that σ1 is sampled after the verification is done
using the oracle σ0. The reason is that the behavior of the receiver is defined only based
on σ0, while σ1 is only used to determine whether or not the experiment ends in defeat. So
suppose X = {x1, . . . , xu} be the queries of the receiver before sampling σ1. Then for each
one of xi ∈ X it holds that Pr[σ1(x) 6= lx] < 1/10u and by the union bound, the probability
that for at least one of the x ∈ X, we get σ1(x) 6= lx is less than 1/10.

By symmetry, the same argument shows that if σ̂ is generated as above and the sender
pretends that σ1 is in the oracle and decommits to b = 1 (by using r1) the process leads to
the accept of the receiver R with probability more than 9/10.

We call a fixed (σ̂, r0, r1) generated as above a good sample for b = 0 if the decommitment

of Ŝ to b = 0 as above leads to accept with probability at least 4/5. A simple average
argument shows that the sampled (σ̂, r0, r1) is good for b = 0 with probability more than
1/2. A similar argument shows that the sampled (σ̂, r0, r1) is also good for b = 1 with
probability more than 1/2. By the pigeonhole principle there is a fixed (σ̂, r0, r1) which is
both good for b = 0 and b = 1. Using this (σ̂, r0, r1) the sender can decommit to both b = 0
and b = 1 and succeed with probability at least 4/5.

Case (2). If Case (2) holds, then we claim that the receiver R can guess the bit b with
probability at least 4/5. The reason is that by Lemma 6.4.15 it holds that E[|Q|] ≤ H(σ)/ε ≤
u/10. Therefore by Markov inequality, with probability at least 9/10 it holds that |Q| ≤ u in
which case Qu = Q. Moreover since Case (2) holds, whenever Q = Qu, then Q is predicting
and the receiver R can guess b correctly with probability at least 9/10. Therefore the receiver
R would guess b correctly with probability at least (9/10)(9/10) > 4/5 which is a violation
of hiding according to Theorem 6.4.13.

168

6.5 The Impossibility of Oblivious Transfer

In this section we prove that in the stateless token model, there is no statistically secure
protocol for Oblivious Transfer (OT), when the only limitation on malicious parties is being
bounded to make polynomially many queries to the tokens. We first define the (bit) oblivious
transfer functionality. For simplicity we use a definition with completeness one, but our
negative result easily extends to protocols with imperfect completeness.

The stateless token model. In the stateless (tamper-proof hardware) token model, two
(computationally unbounded) interactive algorithms A and B will interact with the follow-
ing extra feature to the standard model. Each party at any time during the protocol can
construct a circuit T and put it inside a “token” and send the token T to the other party.
The party receiving the token T will have oracle access to T and is limited to ask poly(n)
number of queries to the token. The parties can exchange poly(n) number of tokens during
the interaction. The stateless token model clearly extends the IPCP model in which there is
only one token sent from the prover to the verifier in the beginning of the game. Therefore
proving any impossibility result in the stateless token model clearly implies the same result
for the the IPCP model. It is easy to see that without loss of generality the parties can avoid
sending “explicit messages” to each other and can only use tokens (with messages planted
inside the tokens) to simulate all the classical communication with the tokens.

Definition 6.5.1 (Oblivious Transfer). A protocol (S,R) for oblivious transfer (in the stan-
dard or the token model), consists of a sender S and a receiver R. The parties both receive 1n

where n is the security parameter. The sender S holds the secret input (x0, x1), xi ∈ {0, 1},
and the receiver R holds the input i ∈ {0, 1}. At the end of the protocol, the receiver out-
puts y where (with probability one) it holds that y = xi. We define the following security
measures.

• Receiver’s security: This property guarantees that the sender is not able to find out
which of x0 and x1 is read by the receiver. Formally, for any malicious sender Ŝ who
asks poly(n) token queries and outputs j, it holds that Pri←{0,1}[i = j] ≤ 1/2 + neg(n).

• Sender’s security: This property guarantees that no receiver can read both of x0

and x1. Formally, for any malicious receiver R̂ who asks poly(n) token queries, with

probability 1− neg(n) the view vR̂ of R̂ satisfies either of the following:

Pr
(x0,x1)←{0,1}2

[x0 = 0 | vR̂] =
1

2
± neg(n) or Pr

(x0,x1)←{0,1}2
[x1 = 0 | vR̂] =

1

2
± neg(n).

Oblivious transfer by semi-honest parties. If one of the parties is semi-honest (i.e.
runs the protocol honestly, and only remember’s its view for further off-line investigation),
then in fact unconditionally secure OT is possible in the stateless token model. If the
receiver is honest, then the protocol is simply a token T sent from the sender which encodes
T (0) = x0, T (1) = x1. The receiver will read T (i) to learn xi. Moreover it is well known

169

that secure OT in one direction implies the existence of secure OT in the other direction,
so if the sender is semi-honest unconditionally secure OT is possible in the stateless token
model.

In this section we prove that statistically secure OT is impossible in the stateless token
model, if both parties are slightly more malicious than just being semi-honest. Roughly
speaking, we define the notion of “curious” parties who run the original protocol (honestly),
but will ask more queries from the tokens along the way.6 We will prove that for any
protocol (A,B) aiming to implement OT, there are curious extensions of the original parties
(Acur, Bcur) who break the security of the protocol. More formally we define curious parties
as follows.

Definition 6.5.2. Let (A,B) be a two party protocol in the token model. We call the
protocol Acur a curious extension of A, if Acur runs the same protocol as A, but at any
point during the protocol it might ask arbitrary queries from tokens sent from B. We call
Acur efficient, if it asks only poly(n) queries totally. By QAcur we denote the set of triples
representing total query/answer information that Acur gathers about the tokens it receives,
and we use QA to denote only the query/answers for the underlying emulated algorithm A
(and so QA ⊆ QAcur).

We will prove the following theorem.

Theorem 6.5.3 (No unconditional OT from stateless tokens). Let (S,R) be any protocol
for the oblivious transfer in the stateless token model. Then there are curious extensions
(Scur, Rcur) to the original algorithms where (Scur, Rcur) (and thus (S,R)) is not a secure
protocol for oblivious transfer even when the inputs are random. More formally either of the
following holds:

• Violation of sender’s security: When the sender S chooses x0 and x1 at random
from {0, 1} and interacts with Rcur, then Rcur can find out both of x0 and x1 with
probability at least 51/100.

• Violation of receiver’s security: When the receiver R chooses i← {0, 1} at random
and interacts with Scur, then Scur can guess i correctly with probability at least 51/100.

In the following section we first show that any protocol (S,R) with the following sampling
condition can not implement OT securely (Lemma 6.5.5). The sampling condition is that
one can sample the randomness of the receiver R conditioned on the view of the sender S.
This sampling condition extends the “accessible entropy” notion introduced by Haitner et
al [86] to the token model (in an information theoretic way) and is equivalent to saying that
the entropy of the receiver is accessible. Then we show (Theorem 6.5.8) that for any protocol
(S,R), there is a curious extension Scur, Rcur where almost all the entropy is accessible, and
this will prove Theorem 6.5.3.

6The term “honest but curious” is sometimes used equivalent to “semi-honest”. Our notion is different
from both of them because a curious party deviates from the protocol slightly by learning more but emulates
the original protocol honestly.

170

Notation. In the following, for clarity, we use bold letters to denote random variables and
use the non-bold version of the bold variables to denote the samples of that random variable:
x ← x. For example rA will denote the randomness of Alice as a random variable and rA
denotes the actual randomness used by Alice.

Breaking Oblivious Transfer by Accessing the Entropy

In the standard model of interaction (without tokens) all the information exchanged between
two parties is represented in the transcript τ of the interaction. This means that information
theoretically, an unbounded Bob can sample from r ← (rB | τ): his own space of randomness
conditioned on what Alice knows about it (which is the transcript of the protocol τ) and
vice versa. So information theoretically Bob is not committed to anything more than what
Alice knows about him (but of course Bob might not be able to sample from this distribution
efficiently). Roughly speaking if the sampling rB ← (Supp(rB) | τ) can be done efficiently
at any time during the protocol, [86] calls such protocol one with “accessible entropy”.

The fact that in the standard model unbounded parties can access all the entropy makes
unconditional oblivious transfer to be impossible in this model. The reason is that at the
end of the protocol, either the sender S can find out which bit is read by the receiver R by
sampling from r ← (rR | τ), or otherwise a sample from r ← (rR | τ) will reveal either of
the inputs x0, x1 with probability ≈ 1/2 and thus Bob can find out both of them by taking
enough number of samples. We will formalize this argument in the case of token model in
Lemma 6.5.5 below.

In the token model, however, the information exchanged between the parties is not
“shared” by them. Namely, the set QA (see Definition 6.5.2) captures the information
that the algorithm A gathers from the tokens he has received from the other party B, and
this set is different from QB. Moreover, it might be impossible for A to find out QB exactly.
Therefore if we consider τ = (QA, QB) to be the transcript of the protocol in the token
model, Alice and Bob each know part of τ , and this makes the above argument (for the
impossibility of OT) fail. In fact, as we said, if either of the parties is semi-honest, then
unconditional OT is possible in the stateless token model.

The following definition generalizes the notion of accessible entropy to the token model
(from an information theoretic perspective).

Definition 6.5.4 (Accessible entropy in the token model). Let (A,B) be a protocol in the
token model between Alice and Bob. We say the entropy of Bob can be (1 − δ)-accessed if
there is a sampling algorithm SamB as follows. SamB receives a possible view for Bob (r,Q)
as input and outputs another possible view for Bob (r′, Q′) with the following property:
With probability at least 1 − δ over the choice of (rA, rB) ← (rA, rB), if QA, QB denote to
the information that Alice and Bob has gathered from the tokens at any time during the
execution of the protocol, it holds that

SD((rB,QB | rA, QA), SamB(rB, QB)) ≤ δ.

We say that B has δ inaccessible entropy, if the entropy of B is not (1− δ)-accessible.

171

Comments about Definition 6.5.4 .
One can define a computational version of Definition 6.5.4 in the standard model where

SamB is efficient and given τ it samples from a distribution which is δ-close to (rB | τ). It
can be shown that an interactive algorithm B has non-negligible inaccessible entropy in this
definition if and only if B has non-negligible inaccessible entropy according to the definition
of [86].

[86] shows that in the standard computational setting non-negligible inaccessible entropy
implies statistically hiding commitments. We shall point out that in the stateless token
model, as we will see, if both parties are “curious enough”, then almost all the entropy can
be accessed, but as we saw in Theorem 6.4.1 unconditionally secure commitment schemes
does exist. The difference between the standard computational model of interaction and
the token model is that in the standard computational model the sampled r ← (rB | τ)
can be used (by a potentially malicious Bob) as a witness that Bob is running the protocol
appropriately and even be used to continue the protocol without being caught by Alice, but
in the token model a sampled r = SamB(rB, QB) might contradict the future queries of Alice
to the tokens she that is holding from Bob. The fact that Alice can caught Bob’s claim by
asking more token queries is highly used in our both Constructions 6.4.4 and 6.4.9 of ILS’s.
In fact, if one defines a simple commitment scheme as one where the receiver is not allowed to
ask token queries during the decommitment phase, then a similar argument to Lemma 6.5.5
below shows that simple commitment schemes imply (non-negligible) inaccessible entropy,
and therefore unconditional simple commitments are impossible to achieve in the stateless
token model.

Lemma 6.5.5 (Oblivious transfer needs inaccessible entropy). Let (S,R) be a protocol for
random oblivious transfer where the sender’s inputs x0, x1 are part of rS and receiver’s input
i is part of rB. If (S,R) has perfect completeness and the entropy of the receiver R can be
0.99-accessed, then either of the following holds:

• Violation of sender’s security: When the sender S interacts with R, then R can
find out both of x0 and x1 correctly with probability at least 51/100.

• Violation of receiver’s security: When the receiver R chooses i← {0, 1} at random
and interacts with S, then S can guess i correctly with probability at least 51/100.

Proof. We show that if SamR 1-accesses the entropy, then either of the security failures
above holds with probability at least 53/10. Using the actual SamR (which 0.99-accesses
the entropy) will change the success probability of the attacks by at most 2/100 which still
remain at least 51/100. So in the following we assume that Bob also can sample from
the distribution (rR | rS, QS) where by QS we denote the final set of query/answers that
the sender learns about the receiver’s tokens. We call (rS, QS) a predicting pair, if either
Pr[i = 0 | rS, QS] ≥ 9/10, or Pr[i = 1 | rS, QS] ≥ 9/10. Now there are two possible cases:

• Pr[(rS, QS) is predicting] ≥ 1/10: Then the sender can predict i by probability at
least 1/2+1/10 > 53/10 as follows: Whenever (rS, QS) is predicting, use the predicted

172

value, and whenever it is not use a random guess. This violates the security of the
receiver.

• Pr[(rS, QS) is predicting] ≤ 1/10: Therefore, with probability at least 9/10 (rS, QS)
is not predicting. For a non-predicting (rS, QS), by sampling (r′R, Q

′
R) ← (rR,QR |

rS, QS) we get either of the cases i = 0 or i = 1 with probability at last 1/10. By the
assumed perfect completeness of the protocol the output of the sampled (r′R, Q

′
B) is

equal to xi. Note that sender can sample from (rR,QR | rS, QS) by using the sampler
SamR. When (rS, QS) is not predicting, by sampling n samples (r′R, Q

′
R) ← (rR,QR |

rS, QS), the receiver can find both of x0 and x1 with probability 1−neg(n). Therefore,
since (rS, QS) is not predicting with probability 9/10, the receiver can find both inputs
of the sender with probability at least
(9/10) · (9/10− neg(n)) > 53/100.

Curious Extensions Who Access the Entropy

In this section we define a specific curious extension to the protocols in the stateless token
model which we call “canonical” curious extensions and prove that almost all the entropy
of such protocols can be accessed. Roughly speaking, a canonical curious extension of an
interactive algorithm is a curious extension of the original protocol where the parties ask
their “extra” token queries according to the canonical entropy learner of Definition 6.4.14.
Each time that an unbiased query q is asked, it reveals a noticeable amount of information
about the other party’s private randomness. By the same argument as Lemma 6.4.15, since
the entropy H(rA)+H(rB) ≤ poly(n) is bounded, by asking only efficient number of queries
one can learn enough information to predict the answer to any other (fixed) query to the
tokens. In particular, the answer to the query that is going to be asked in the emulation
of the original protocol will be predictable, so we can ignore asking such queries and use
the predicted answers in the emulation of the original protocol. We call the new protocol
which uses the predicted values an “ideal” protocol (Aid, Bid) which will simulate the original
protocol (A,B) up to 1/ poly(n) statistical distance.

Finally, the main point is that in the ideal protocol the parties know exactly what the
other party knows about them! The proof uses induction. Assuming that Alice and Bob
both know (QAid

, QBid
), they can find out which queries are ε-unbiased from Alice’s and Bob’s

point of view. When Alice is asking such a query Bob knows the query and its answer (since
it is from a token generated by Bob) and vice versa. Therefore, (rAid

, QAid
) will determine

QBid
and (rBid

, QBid
) will determine QAid

and in a sense we are back to the standard model
where the transcript is known to both parties, and thus all the entropy can be accessed!

It will be easier for us to first define the ideal experiment Ideal and then define how the
canonical curious parties behave.

Definition 6.5.6 (Ideal experiment.). Let (A,B) be a protocol in the stateless token model.
The protocol (Aid, Bid) will depend on (A,B) and will be executed in the experiment Ideal
as follows.

173

• Randomness: (Aid, Bid) will use the same randomness (rA, rB) and will (try to) em-
ulate (A,B).

• Set of token query/answers: (Aid, Bid) will inductively update the sets QAid
and

QBid
which encode the information they have gathered from the other party’s tokens

so far.

• Mutual Knowledge: A crucial point is that QAid
and QBid

will be known to both Alice
and Bob inductively. Namely, Aid can find out the updates to the set QBid

without Bid

explicitly revealing that information to Aid and vice versa. How this condition holds
and how the emulation of (A,B) is done is clarified next.

• Emulation: Suppose during the emulation we are at a time where A needs to ask the
query q0 from a token T . Instead of doing so, Aid runs the canonical entropy learner
of Definition 6.4.14 over the tokens (TB1 , . . . , T

B
i) that he holds from Bob. Namely, Aid

considers the uniform distribution of (rA, rB) consistent with the “transcript” of the
interaction: (QAid

, QBid
). Note that, by induction’s assumption Aid knows QBid

as well.
Now if there is any query q to any of the tokens (TB1 , . . . , T

B
i) sent from Alice such

that q is ε-unbiased, then Aid asks the lexicographically first such query q1 and updates
QAid

. We stress that since Bid knows also QAid
, he is also able to find the query q1,

and moreover since this query is asked to one of the tokens that Bob has generated,
Bid knows the answer as well. So Bob also knows the update to the set QAid

the same
as Alice. When Aid is done with the learning phase before asking q0, it not ask the
query q0, but rather will use the likely answer lq0 which is uniquely determined by
the updated (QAid

, QBid
) (but of course lq0 might be different from the actual solution

provided by the token). Bid will emulate B similarly.

Now we define the experiment CanCur in which a canonical curious extension of the
protocol (A,B) is defined.

Definition 6.5.7 (Canonical curious extensions). Let (A,B) be a two party protocol in
the stateless token model. A Canonical Curious extension of A denoted by Acc receives
two parameters ε: the curiosity parameter and u: the upper-bound on the number of extra
queries asked by A. Acc acts in the experiment CanCur as follows:

• Acur runs the algorithm A with randomness rA and emulates the interaction of A with
B. The set QA denotes the set of token query/answers corresponding to this emulation.

• Acur also keeps updating a set of token query/answers QAid
by pretending that it is

being executed in the experiment Ideal. Acur stops asking more extra queries (i.e. the
queries out of QA) whenever |QAid

| = u. Note that in CanCur (as opposed to CanCur),
Acc does ask the emulated queries of A from the tokens and uses the answer for further
computations.

• The total token queries/answer knowledge of Acur is encoded in QAcur = QA ∪QAid
.

174

Now we prove the following theorem showing that by taking ε small enough, one can
access almost all the entropy of (Aid, Bid) efficiently.

Theorem 6.5.8 (Canonical curious parties can access the entropy). Let (A,B) be a protocol
in the stateless token model between Alice and Bob where they totally ask k = poly(n)
number of queries to the tokens exchanged. For a given δ = 1/ poly(n) let ε be such that

δ = 2(εk+
√
εk) and let u = |rA|

kε2
. If ε is used as the curiosity parameter and u is used as the

upper-bound parameter, then the entropy of Bcc in (Acc, Bcc) is (1− δ)-accessible.

Note that Theorem 6.5.8 and Lemma 6.5.5 together imply Theorem 6.5.3 as a corollary.

Intuition. Roughly speaking Theorem 6.5.8 follows from the following facts:

1. Entropy is accessible in Ideal: The entropy of Aid is 1-accessible, because QAid
and

QBid
are known to both parties at any time during the protocol.

2. Parties are efficient in Ideal: By Lemma 6.4.15Aid on average asks at mostH(rB)/ε =
|rB|/ε ≤ poly(n) number queries.

3. Ideal and CanCur are close: As long as the likely answers used by Aid and Bid for
the emulation of (A,B) are correct, the two experiments Ideal and CanCur are exactly
the same. Let WG (Wrong Guess) be the event that one of these likely answers used
is incorrect. By definition, he probability that WG happens at any particular query in
Ideal is at most ε, and therefore the probability of WG is bounded by ε · k. By taking
ε small enough we can make ε · k arbitrary small.

The formal proof follows.

Proof. (of Theorem 6.5.8) The sampling algorithm SamB in CanCur will perform the sampling
by simply pretending that it is being used in the experiment Ideal (by ignoring QB and only
using QBid

and rB). We will show that with probability 1−δ over (rA, rB) the sampler SamB

will sample δ-close to the right distribution all along the execution of CanCur.
As a mental experiment, we sample (rA, rB)← (rA, rB) and run both of the experiments

CanCur and Ideal in parallel with the same randomness (rA, rB). We use the notation Prcc[·]
to denote the probability of an event in CanCur and use Prid[·] to denote the probability of
an event in Ideal.

Let WGi to be the event in the experiments CanCur and Ideal that holds iff the i’th query
qi asked by Alice or Bob in is not the likely answer, and define the event WG =

∨
i WGi.

We modify CanCur slightly and let the size of QAid
and QBid

to grow beyond u. Our proof
will take care of this issue indirectly. By this change, it is easy to see that as long as WG does
not happen the experiments CanCur and Ideal are exactly the same. In particular it holds
that Prcc[WG] = Prid[WG]. Since (rA, rB) determines the whole execution of the experiments
CanCur and Ideal we can talk about the event WG(rA, rB), and Pr(rA,rB)[WG] is the same in
CanCur and Ideal.

The following claim shows that by taking ε small enough CanCur and Ideal will become
statistically close.

175

Claim 6.5.9. It holds that Pr(rA,rB)[WG] ≤ kε.

Proof. If show that Prid[WGi] ≤ ε the claim follows by union bound over i ∈ [k]. But
Prid[WGi] ≤ ε holds by the definition of the experiment Ideal and ε-unbiased queries.

We call (rA, rB) a good sample if the following conditions hold when (rA, rB) is used to
run the experiments:

1. WG does not happen.

2. |QBid
| and |QBid

| does not pass the upper limit u.

3. At any time during the execution if QAid
, QBid

, QAcc , and QBcc denote the set of
query/answers in the both experiments in that moment it holds that

Pr
id

[WG happened before | QAid
, QBid

] ≤
√
kε and

Pr
cc

[WG happened before | QAcc , QBcc] ≤
√
kε.

Claim 6.5.10. Pr[(rA, rB) is good] ≥ 1− δ.

Proof. By Claim 6.5.9 the first property holds with probability at least 1− kε.
By Lemma 6.4.15 and using the Markov inequality the second property holds in Ideal

with probability at least 1 − kε. So both properties 1 and 2 hold with probability at least
1− 2kε.

We use Lemma 1.3.5 with the following parameters X = (rA, rB), F = WG, Zi =
(QAid

,QBid
) where (QAid

,QBid
) their value at the i’th moment and p =

√
kε. Now Lemma 1.3.5

implies that the third property holds for Ideal (and similarly for CanCur) with probability at
least 1−

√
kε.

Therefore all the properties hold for a random (rA, rB) with probability at least 1−2kε−
2
√
kε = 1− δ.

Suppose the sampled (rA, rB) is a good one. Then, by the fist property, all along the
execution CanCur and Ideal will be the same. The second property will guarantee the effica-
ciously with respect to the upper-bound u.

Now suppose SamB is run over the input (rB, QBcc) at an arbitrary moment during the
execution of the system. By the first property, the sampler SamB will conclude the correct
QAcc . Therefore SamB will sample exactly according to (rBid

,QAid
| rAid

, QAid
) in Ideal. By

the third property the probability that WG has happened before is at most
√
kε in either of

CanCur or Ideal. Finally we note that if one samples (rB, QBcc) conditioned on (QAid
, QBid

)
and conditioned on ¬WG, the samples have the same distribution in Ideal and CanCur.
This means that if (rA, rB) is good, the sampler SamB will sample 2

√
kε < δ-close to the

right distribution. This finishes the proof that SamB (1 − δ)-accesses the entropy of Acc in
(Acc, Bcc).

176

Bibliography

[1] Proc. 21st STOC, 1989. ACM.

[2] W. Aiello and J. H̊astad. Statistical zero-knowledge languages can be recognized in two
rounds. Journal of Computer and System Sciences, 42(3):327–345, 1991. Preliminary
version in FOCS’87.

[3] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC
’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 99–108, New York, NY, USA, 1996. ACM. ISBN 0-89791-785-5. doi: http:
//doi.acm.org/10.1145/237814.237838.

[4] M. Ajtai. The worst-case behavior of schnorr’s algorithm approximating the shortest
nonzero vector in a lattice. In STOC ’03, pages 396–406, New York, NY, USA, 2003.
ACM. ISBN 1-58113-674-9. doi: http://doi.acm.org/10.1145/780542.780602.

[5] A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On basing one-way
functions on np-hardness. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pages 701–710, 2006.

[6] B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-
case assumptions. In Proc. FOCS ’08, pages 211–220, 2008.

[7] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of np.
J. ACM, 45(1):70–122, 1998.

[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[9] Babai, Fortnow, and Lund. Non-deterministic exponential time has two-prover inter-
active protocols. CMPCMPL: Computational Complexity, 1, 1991.

[10] L. Babai and S. Laplante. Stronger separations for random-self-reducibility, rounds,
and advice. In In IEEE Conference on Computational Complexity, pages 98–104, 1999.

[11] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36:254–276, 1988.

177

[12] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS,
pages 106–115. IEEE, 2001.

[13] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the First Annual Conference on Computer and
Communications Security, pages 62–73. ACM, November 1993.

[14] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput, 163(2):510–526, 2000.

[15] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In STOC, pages 113–131, 1988.

[16] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[17] Bennett, Brassard, and Ekert. Quantum cryptography. SCIAM: Scientific American,
267, 1992.

[18] E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography on strong
one-way functions. In R. Canetti, editor, TCC, volume 4948 of Lecture Notes in
Computer Science, pages 55–72. Springer, 2008. ISBN 978-3-540-78523-1. URL http:

//dx.doi.org/10.1007/978-3-540-78524-8_4.

[19] D. Bleichenbacher and U. M. Maurer. Directed acyclic graphs, one-way functions
and digital signatures (extended abstract). In Y. G. Desmedt, editor, Advances in
Cryptology—CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages
75–82. Springer-Verlag, 21–25 Aug. 1994.

[20] D. Bleichenbacher and U. M. Maurer. On the efficiency of one-time digital signatures.
In K. Kim and T. Matsumoto, editors, ASIACRYPT, volume 1163 of Lecture Notes in
Computer Science, pages 145–158. Springer, 1996. ISBN 3-540-61872-4.

[21] J. Blömer and J.-P. Seifert. On the complexity of computing short linearly independent
vectors and short bases in a lattice. In STOC ’99: Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pages 711–720, New York, NY, USA, 1999.
ACM. ISBN 1-58113-067-8. doi: http://doi.acm.org/10.1145/301250.301441.

[22] M. Blum. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians, pages 1444–1451, 1987.

[23] M. Blum and S. Kannan. Designing programs that check their work. 21st ACM STOC,
pages 86–97, 1989.

[24] M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42(1):
269–291, 1995. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/200836.200880.

178

http://dx.doi.org/10.1007/978-3-540-78524-8_4
http://dx.doi.org/10.1007/978-3-540-78524-8_4

[25] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM J. Comput., 13(4):850–864, 1984. ISSN 0097-5397. doi: http:
//dx.doi.org/10.1137/0213053.

[26] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[27] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for np prob-
lems. SIAM Journal on Computing, 36(4):1119–1159, 2006.

[28] A. Bogdanov and L. Trevisan. Average-case complexity. CoRR, 2006.

[29] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar, 16:447–452, 1965.
ISSN 0001-5954.

[30] R. B. Boppana, J. H̊astad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

[31] G. Brassard. Relativized cryptography. In Proceedings of the 20th Annual Symposium
on Foundations of Computer Science (FOCS), pages 383–391. IEEE Computer Society,
1979.

[32] G. Brassard and L. Salvail. Quantum merkle puzzles. In International Conference
on Quantum, Nano and Micro Technologies (ICQNM), pages 76–79. IEEE Computer
Society, 2008.

[33] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci., 37(2):156–189, Oct. 1988.

[34] J. Buchmann, J. Loho, and J. Zayer. An implementation of the general number field
sieve. In CRYPTO ’93, pages 159–165, New York, NY, USA, 1994. Springer-Verlag
New York, Inc. ISBN 0-387-57766-1.

[35] Cachin and Maurer. Unconditional security against memory-bounded adversaries. In
CRYPTO: Proceedings of Crypto, 1997.

[36] C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bounded
receiver. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science (FOCS), pages 493–502. IEEE Computer Society, 1998.

[37] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS, pages 136–145, 2001.

[38] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In Proc. 30th STOC, pages 209–218. ACM, 1998.

[39] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge
(extended abstract). In STOC, pages 235–244, 2000.

179

[40] N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure computation
using tamper-proof hardware. In EUROCRYPT, pages 545–562, 2008.

[41] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols
(extended abstract). In STOC, pages 11–19, 1988.

[42] C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In FOCS, pages 42–52, 1988.

[43] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002. ISBN 3-540-42580-2.

[44] I. Damg̊ard. Collision free hash functions and public key signature schemes. In Ad-
vances in Cryptology – EUROCRYPT ’87, volume 304 of Lecture Notes in Computer
Science, pages 203–216. Springer, 1987.

[45] I. Damg̊ard, O. Goldreich, T. Okamoto, and A. Wigderson. Honest verifier vs. dishonest
verifier in public coin zero-knowledge proofs. In Advances in Cryptology – CRYPTO
’95, volume 963 of Lecture Notes in Computer Science, pages 325–338. Springer, 1995.

[46] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. Statistical secrecy and multibit
commitments. IEEE Transactions on Information Theory, 44(3):1143–1151, 1998.

[47] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, Nov. 1976.

[48] Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious transfer in
the bounded storage model. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, pages 446–472, 2004.

[49] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating cvp to within almost-
polynomial factors is np-hard. Combinatorica, 23(2):205–243, 2003. ISSN 0209-9683.
doi: http://dx.doi.org/10.1007/s00493-003-0019-y.

[50] C. Dwork, U. Feige, J. Kilian, M. Naor, and S. Safra. Low communication 2-prover
zero-knowledge proofs for np. In CRYPTO, pages 215–227, 1992.

[51] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. pages 10–18, 1984.

[52] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Inf. Control, 61(2):159–173, 1984. ISSN
0019-9958. doi: http://dx.doi.org/10.1016/S0019-9958(84)80056-X.

[53] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology,
9(1):35–67, 1996. Preliminary version in CRYPTO ’89.

180

[54] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM
Journal on Computing, 22(5):994–1005, 1993.

[55] J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adaptiveness
and additional queries in random-self-reductions. Computational Complexity, 4:338–
346, 1994.

[56] L. Fortnow. The complexity of perfect zero-knowledge. Advances in Computing Re-
search: Randomness and Computation, 5:327–343, 1989.

[57] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. In Theoretical Computer Science, pages 156–161, 1988.

[58] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. Theoretical Computer Science, 134(2):545–557, 1994.

[59] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proc. 41st FOCS, pages 305–313. IEEE, 2000.

[60] R. Gennaro, Y. Gertner, and J. Katz. Lower bounds on the efficiency of encryption
and digital signature schemes. In Proc. 35th STOC. ACM, 2003.

[61] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of generic
cryptographic constructions. SICOMP: SIAM Journal on Computing, 35, 2005. Pre-
liminary versions in FOCS’ 00 [59] and STOC’ 03 [60].

[62] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

[63] O. Goldreich. On promise problems (a survey in memory of Shimon Even [1935-2004]).
Technical Report TR05–018, Electronic Colloquium on Computational Complexity,
February 2005.

[64] O. Goldreich and S. Goldwasser. On the possibility of basing cryptography on the
assumption that P 6= NP. Theory of Cryptography Library: Record 98-05, February
1998. http://theory.lcs.mit.edu/~tcryptol.

[65] O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice prob-
lems. Journal of Computer and System Sciences, 60(3):540–563, 2000. ISSN 0022-0000.
30th Annual ACM Symposium on Theory of Computing (Dallas, TX, 1998).

[66] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology, 9(3):167–189, Summer 1996.

[67] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, 1996.

181

[68] O. Goldreich and S. P. Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In IEEE Conference on Computational
Complexity, pages 54–73. IEEE Computer Society, 1999.

[69] O. Goldreich, Y. Mansour, and M. Sipser. Interactive proof systems: Provers that
never fail and random selection. FOCS, 0:449–461, 1987. ISSN 0272-5428.

[70] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM,
editor, Proc. 19th STOC, pages 218–229. ACM, 1987. See [62, Chap. 7] for more
details.

[71] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729,
July 1991. Preliminary version in FOCS’ 86.

[72] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/285055.285060.

[73] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pages 399–408, 1998.

[74] O. Goldreich, S. Vadhan, and A. Wigderson. On interactive proofs with a laconic
prover. In Proc. 28th ICALP, 2001.

[75] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. Advances in Computing Research: Randomness and Computation, 5:73–90,
1989.

[76] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989. Preliminary version in STOC’
85.

[77] S. Goldwasser, Y. T. Kalai, and G. Rothblum. One-time programs. In CRYPTO,
Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

[78] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs for muggles. In STOC, pages 113–122, 2008.

[79] S. D. Gordon, H. Wee, A. Yerukhimovich, and D. Xiao. On the round complexity
of zero-knowledge proofs from one-way permutations, 2009. Manuscript. Available at
http://www.cs.princeton.edu/~dxiao/docs/zk-owp.pdf.

[80] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography
on tamper-proof hardware tokens. In TCC, 2010.

182

http://www.cs.princeton.edu/~dxiao/docs/zk-owp.pdf

[81] L. K. Grover. A fast quantum mechanical algorithm for database search. In Annual
Symposium on Theory of Computing, pages 212–219, 22–24 May 1996.

[82] Haitner, Hoch, Reingold, and Segev. Finding collisions in interactive protocols – A
tight lower bound on the round complexity of statistically-hiding commitments. In EC-
CCTR: Electronic Colloquium on Computational Complexity, technical reports, 2007.

[83] I. Haitner and O. Reingold. A new interactive hashing theorem. In Proceedings of
the 18th Annual IEEE Conference on Computational Complexity, 2007. See also pre-
liminary draft of full version, research.microsoft.com/en-us/um/people/iftach/
papers/IneractiveHashing/IneractiveHashing_Jour_1.pdf.

[84] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC).

[85] I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli, and R. Shaltiel. Reducing com-
plexity assumptions for statistically-hiding commitment. In Advances in Cryptology
– EUROCRYPT 2005, pages 58–77, 2005. See also preliminary draft of full version,
www.wisdom.weizmann.ac.il/~iftachh/papers/SCfromRegularOWF.pdf.

[86] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive
protocols – A tight lower bound on the round complexity of statistically-hiding com-
mitments. In Proceedings of the 47th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 2007.

[87] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically-hiding
commitments and statistical zero-knowledge arguments from any one-way function. To
appear in SIAM Journal on Computing, November 2007.

[88] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In STOC ’09:
Proceedings of the 41st annual ACM symposium on Theory of computing, 2009.

[89] I. Haitner, A. Rosen, and R. Shaltiel. On the (im)possibility of arthur-merlin witness
hiding protocols. In Theory of Cryptography, Fourth Theory of Cryptography Confer-
ence, TCC 2009, 2009.

[90] I. Haitner, O. Reingold, and S. Vadhan. Improvements in constructions of pseudo-
random generators from one-way functions. In Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing (STOC), 2010.

[91] Y. Han, L. A. Hemaspaandra, and T. Thierauf. Threshold computation and crypto-
graphic security. SIAM J. Comput., 26(1):59–78, 1997. ISSN 0097-5397.

[92] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. Preliminary versions
appeared in STOC’ 89 and STOC’ 90.

183

research.microsoft.com/en-us/um/people/iftach/papers/IneractiveHashing/IneractiveHashing_Jour_1.pdf
research.microsoft.com/en-us/um/people/iftach/papers/IneractiveHashing/IneractiveHashing_Jour_1.pdf
www.wisdom.weizmann.ac.il/~iftachh/papers/SCfromRegularOWF.pdf

[93] C. Hazay and Y. Lindell. Constructions of truly practical secure protocols using stan-
dardsmartcards. In ACM Conference on Computer and Communications Security,
pages 491–500, 2008.

[94] E. Hemaspaandra, A. V. Naik, M. Ogihara, and A. L. Selman. P-selective sets and
reducing search to decision vs. self-reducibility. J. Comput. Syst. Sci., 53(2):194–209,
1996. ISSN 0022-0000. doi: http://dx.doi.org/10.1006/jcss.1996.0061.

[95] T. Holenstein. Pseudorandom generators from one-way functions: A simple construc-
tion for any hardness. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, 2006.

[96] T. Holenstein. Private communication. 2009.

[97] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In Proc. 30th FOCS, pages 230–235. IEEE, 1989.

[98] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proc. 21st STOC sto [1], pages 44–61. Full version available from Russell
Impagliazzo’s home page.

[99] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proc. 29th STOC, pages 220–229. ACM, 1997.

[100] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Sufficient conditions for collision-resistant
hashing. In In Proceedings of the 2nd Theory of Cryptography Conference, pages 445–
456, 2005.

[101] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer -
efficiently. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer
Science, pages 572–591. Springer, 2008. ISBN 978-3-540-85173-8.

[102] Y. T. Kalai and R. Raz. Interactive PCP. In ICALP (2), pages 536–547, 2008.

[103] L. V. Kantorovich. On the translocation of masses. Doklady Akademii Nauk SSSR,
37:227–229, 1942.

[104] L. V. Kantorovich and G. S. Rubinstein. On a space of totally additive functions.
Vestn Lening. Univ, 13(7):52–59, 1958.

[105] J. Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In EUROCRYPT, Lecture Notes in Computer Science, pages 115–128. Springer,
2007.

[106] S. Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/1089023.
1089027.

184

[107] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing (STOC), pages 20–31, 1988.

[108] J. Kilian, E. Petrank, and G. Tardos. Probabilistically checkable proofs with zero
knowledge. In STOC: ACM Symposium on Theory of Computing (STOC), 1997.

[109] J. H. Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way permutation-
based hash functions. In FOCS, pages 535–542, 1999. URL http://computer.org/

proceedings/focs/0409/04090535abs.htm.

[110] V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-proof
tokens. In TCC, pages 327–342, 2010.

[111] Kushilevitz, Lindell, and Rabin. Information-theoretically secure protocols and secu-
rity under composition. In STOC: ACM Symposium on Theory of Computing (STOC),
2006.

[112] L. Lamport. Constructing digital signatures from a one-way function. Technical Report
CSL-98, SRI International, Oct. 1979.

[113] D. Lapidot and A. Shamir. A one-round, two-prover, zero-knowledge protocol for np.
Combinatorica, 15(2):204–214, 1995.

[114] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation.
JCRYPTOLOGY, 2003.

[115] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. In Proc. 31st FOCS, pages 2–10. IEEE, 1990.

[116] U. M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
J. Cryptology, 5(1):53–66, 1992.

[117] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991. ISSN 0304-
3975. doi: http://dx.doi.org/10.1016/0304-3975(91)90200-L.

[118] R. Merkle. Secure communications over insecure channels. Communications of the
ACM, 21(4):294–299, 1978.

[119] R. C. Merkle. A digital signature based on a conventional encryption function. In
C. Pomerance, editor, Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture
Notes in Computer Science, pages 369–378. Springer-Verlag, 1988, 16–20 Aug. 1987.

[120] D. Micciancio. Lattice based cryptography. In H. C. A. van Tilborg, editor, Encyclo-
pedia of Cryptography and Security. 2005. ISBN 978-0-387-23473-1.

185

http://computer.org/proceedings/focs/0409/04090535abs.htm
http://computer.org/proceedings/focs/0409/04090535abs.htm

[121] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian
measures. In FOCS ’04, pages 372–381, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2228-9. doi: http://dx.doi.org/10.1109/FOCS.2004.72.

[122] G. Monge. Mmoire sur la thorie des dblais et des remblais. Histoire de l’Acadmie des
Sciences de Paris, page 666, 1781.

[123] T. Moran and G. Segev. David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In EUROCRYPT, pages 527–544, 2008.

[124] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proc. 21st STOC sto [1], pages 33–43.

[125] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge argu-
ments for NP using any one-way permutation. Journal of Cryptology, 11(2):87–108,
1998. Preliminary version in CRYPTO’92.

[126] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Stan-
dard. National Institute for Standards and Technology, Apr. 1995.

[127] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):
149–167, Oct. 1994. Preliminary version in FOCS’ 88.

[128] R. O’Donnell. Hardness amplification within np. J. Comput. Syst. Sci., 69(1):68–94,
2004. ISSN 0022-0000. doi: http://dx.doi.org/10.1016/j.jcss.2004.01.001.

[129] T. Okamoto. On relationships between statistical zero-knowledge proofs. Journal of
Computer and System Sciences, 60(1):47–108, 2000. Preliminary version in STOC’96.

[130] S. J. Ong and S. P. Vadhan. An equivalence between zero knowledge and commitments.
In TCC, pages 482–500, 2008.

[131] R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-
knowledge. Technical Report TR-93-073, International Computer Science Institute,
Berkeley, CA, Nov. 1993. Preliminary version in Proc. 2nd Israeli Symp. on Theory of
Computing and Systems, 1993, pp. 3–17.

[132] R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-
knowledge protocol design. pages 267–273, 1993.

[133] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful ad-
versary. AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 155–169, 1993. Preliminary version in SEQUENCES’91.

[134] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. ISSN 0022-0000. doi:
http://dx.doi.org/10.1016/S0022-0000(05)80063-7.

186

[135] R. Pass. Parallel repetition of zero-knowledge proofs and the possibility of basing
cryptography on np-hardness. In IEEE Conference on Computational Complexity,
pages 96–110, 2006.

[136] A. Pavan, A. L. Selman, S. Sengupta, and N. V. Vinodchandran. Polylogarithmic-
round interactive proofs for conp collapse the exponential hierarchy. Theor. Comput.
Sci., 385(1-3):167–178, 2007. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.
2007.06.013.

[137] C. Peikert and V. Vaikuntanathan. Noninteractive statistical zero-knowledge proofs
for lattice problems. In CRYPTO 2008: Proceedings of the 28th Annual conference
on Cryptology, pages 536–553, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-
540-85173-8. doi: http://dx.doi.org/10.1007/978-3-540-85174-5 30.

[138] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient authentication and signing
of multicast streams over lossy channels. In IEEE Security and Privacy Symposium,
2000.

[139] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

[140] M. O. Rabin. Digitalized signatures. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton, editors, Foundations of Secure Computation, pages 155–168. Academic
Press, 1978.

[141] M. O. Rabin. Digitalized signatures and public-key functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Tech-
nology, Jan. 1979. URL ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/

MIT-LCS-TR-212.ps.gz.

[142] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In STOC, pages 73–85, 1989.

[143] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In Theory of Cryptography, First Theory of Cryptography Con-
ference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2004.

[144] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb 1978.

[145] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications
to image databases. In ICCV ’98: Proceedings of the Sixth International Conference
on Computer Vision, 1998.

[146] A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge. Journal
of the ACM, 50(2):196–249, 2003. Preliminary version in FOCS’97.

187

ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/MIT-LCS-TR-212.ps.gz
ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tr.outbox/MIT-LCS-TR-212.ps.gz

[147] S. Sanghvi and S. P. Vadhan. The round complexity of two-party random selection.
In STOC, pages 338–347, 2005.

[148] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[149] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997.

[150] D. Simon. Finding collisions on a one-way street: Can secure hash functions be based
on general assumptions? In Advances in Cryptology – EUROCRYPT ’98, volume 1403
of Lecture Notes in Computer Science, pages 334–345. Springer, 1998.

[151] Trevisan. On uniform amplification of hardness in NP. In STOC: ACM Symposium
on Theory of Computing (STOC), 2005.

[152] S. Vadhan. Private communication., 2009.

[153] S. P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1999.

[154] L. G. Valiant and V. V. Vazirani. Np is as easy as detecting unique solutions. In STOC
’85: Proceedings of the seventeenth annual ACM symposium on Theory of computing,
1985.

[155] S. Vaudenay. One-time identification with low memory. In Eurocode 92, number 339
in CISM Courses and Lectures, pages 217–228, Wien, 1992. Springer-Verlag, Berlin
Germany.

[156] H. Wee. One-way permutations, interactive hashing and statistically hiding com-
mitments. In S. P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Com-
puter Science, pages 419–433. Springer, 2007. ISBN 3-540-70935-5. URL http:

//dx.doi.org/10.1007/978-3-540-70936-7_23.

[157] D. Xiao. (Nearly) optimal black-box constructions of commitments secure against
selective opening attacks, 2009. Manuscript.

[158] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd FOCS, pages
80–91. IEEE, 1982.

[159] C.-K. Yap. Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci., 26:287–300, 1983.

188

http://dx.doi.org/10.1007/978-3-540-70936-7_23
http://dx.doi.org/10.1007/978-3-540-70936-7_23

	Abstract
	Acknowledgements
	Introduction and Preliminaries
	Introduction
	Security vs. Efficiency in Public-Key Cryptography
	NP-Hard Cryptography
	Unconditional Security by Exchanging Stateless Hardware

	Previous Publications
	Preliminaries
	Basics about Probability
	Interactive Algorithms
	AM Languages

	I Security vs. Efficiency in Public-Key Cryptography
	Merkel's Key-Agreement Protocol is Optimal
	Introduction
	Our Result

	Our Techniques
	Comparison with Previous Work of Impagliazzo and Rudich
	The Issue of Independence
	Our Approach

	Our Attacker
	Attacking Algorithm

	Analysis of Attack: Proof of Theorem 2.3.1
	Success of Attack: Proof of Lemma 2.4.1
	Efficiency of Attack: Proof of Lemma 2.4.2

	Completing the Proof
	Removing the Normal Form Assumption
	Finding the Secret

	Lamport's Signature Scheme is Optimal
	Introduction
	Our Results
	Prior Work

	Our Techniques
	Defining the Usefulness Condition

	Signature Schemes in Oracle Models
	Proof of the Main Result
	Proof of Lemma 3.4.3
	Proof of Claims 3.4.4 to 3.4.7

	A One-Time Signature Scheme
	Extensions
	Handling Imperfect Completeness

	Lower-Bounds on Black-Box Constructions
	Conclusions and Open Questions

	II NP-Hard Cryptography
	Sampling with Size and Applications to NP-Hard Cryptography
	Introduction
	Application to Basing Cryptography on NP-Hardness
	Main Tool—A New Sampling Protocol
	Related Work
	SamO(1) vs. Sam2
	Contrast to Previous Work

	Our Techniques
	The Case of Sam2
	The Case of SamO(1)
	Histograms

	Preliminaries
	Notation
	The Histogram of a Function
	Metrics over Distributions
	Efficient Provers for AM Protocols
	Set Size Estimation and Sampling Protocols

	Sampling with Size and Verifying The Histogram
	Proving Supporting Lemmas

	Applications
	Lower-Bounds on Statistically Hiding Commitments

	More on NP-hard Cryptography, Randomized Reductions, and Checkability of SAT
	Introduction
	Difficulties with Randomized Reductions
	Complexity of Real-Valued Functions Verifiable in AM
	Randomized Reductions, Checkability, and Testability
	Randomized vs. Deterministic Reductions

	Preliminaries
	Promise Problems and Relations
	Checkability and Testability
	Worst-Case to Average-Case Reductions

	Real-Valued Total Functions
	Definitions and Preliminaries
	Power of R-TUAM

	Reductions that Imply Checkability of SAT
	Extending Beigel's Theorem to Testability

	III Unconditional (Statistical) Security
	Zero-Knowledge Interactive PCPs and Unconditional Cryptography
	Introduction
	Our Results

	Preliminaries
	Properties of Interactive and Oracle Algorithms
	Interactive PCPs
	Interactive Locking Schemes

	Statistically Zero-Knowledge IPCP for NP
	Interactive Locking Schemes
	ILS from IHS
	A 1-round ILS
	Efficiency of Noninteractive Locking Schemes

	The Impossibility of Oblivious Transfer

