
Black Boxes, Incorporated

Mohammad Mahmoody Avi Wigderson

July 26, 2012

Abstract

The term “Black Box” often refers to a device whose functionality we understand,
but whose inner workings we don’t, or choose to ignore. This term appears a lot
in a large variety of contexts within theoretical computer science, and happens to
be extremely convenient to capture computations with restricted knowledge about or
access to certain information.

In its most basic form, a black box (also called an oracle) encodes a function f ,
to which the computation may issue query x and get the response f(x). We have no
knowledge (or interest) on the implementation of f in the black box – indeed, f itself
may be computationally hard or even not computable. From a programming perspec-
tive, this viewpoint is convenient when solving a problem using a subroutine for f that
someone else has implemented and we are given its input-output specification only.
This simple idea is of wide use in almost any large software development project, as
well as in algorithm design. From a theoretical perspective, the ability to efficiently
solve a given computational problem g using an oracle to f may constitute a reduction
from g to f , showing that computing (or solving) g “is not much harder than” com-
puting f (a statement of relevance even if we have no idea how complex computing
either of these functions are). The most powerful example for black-box reductions is
of course in NP-completeness proofs.

The abstraction of information access via black boxes and the roles this abstraction
plays in different settings is varied and rather subtle in some occasions. E.g., it might
be that the black box encodes the input itself, or that it is a powerful subroutine
which helps to solve a computational problem. Sometimes, the mere observation that
a particular algorithm is using one of its subroutines in a black-box manner has led
to unexpected new applications of the original proof techniques. One can also think
of “levels” of black-boxness. That is, in some cases one might deal with a subroutine
and ignore how it is implemented in general but still assume some restrictions on its
complexity. Furthermore, in situations such as cryptographic constructions, different
elements of the system (e.g., the implementation and/or the security reductions) may
or may not be of a black-box form and various settings lead to different possibilities or
impossibilities.

In what follows we will discuss, in no particular order, a collection of scenarios in
which the notion of black box is a central player, exhibiting different facets of this
abstraction, its implied power and limitations.
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Notation. We will use the following basic notation. Let B : {0, 1}∗ 7→ {0, 1}∗ be some
function on binary strings. The function computed by an algorithm A with black-box access
to B will be denoted AB (the best way to think about it is that A can write a string z in a
special “register”, and gets in unit time the value of B(z)). A B-relativized world is one in
which every algorithm has access to such an oracle B. This can be generalized to classes of
algorithms A and to classes of functions B. By PPT or “efficient” we denote a probabilistic
polynomial time algorithm.
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Complexity Classes. By default, we will not define the complexity classes and refer the
reader to the great books in complexity theory [Gol08, AB07, Pap94] (particularly Appendix
A [Gol08]) for the formal definitions.

1 Decision Trees

The Role of Black-Box Notion. The most basic use of a black box is in controlling
access to the input to a problem. Here we are interested in computing some (say Boolean)
function1 f : {0, 1}n 7→ {0, 1}. The algorithm knows f , and should compute f(x). To gather
information on the input x = (x1, x2, . . . , xn) it adaptively queries a sequence of indices in
[n] = {1, 2, . . . , n}, and for each index i the oracle provides it with the value of xi. When
the algorithm has enough information about the input, it will announce the value of f(x).

This model, often called decision tree, is the simplest and most basic computational
model. Indeed, it is purely information theoretic, in that there is no charge for computation
at all – the algorithm is charged only for information access, and its complexity is defined to
be the largest number of input queries it ever makes for each input length n. As simple as this
model of computation is, while quite a bit is known about it, many problems regarding it are
still open. Here we focus on comparing the power of various standard models of computation
(i.e., nondeterministic, randomized, quantum) when the access to the input is black-box.

1.1 The Black-Box Power of Nondeterminism, Randomness, and
Quantum Computation

A basic question about the power of this computational model is to now if there is any gain
in using resources like randomness, quantum superposition, or even nondeterminism in order
to compute f(x) through a decision tree (where the only restriction is the black-box access
to the input bits). We We refer the interested reader to the survey of Buhrman and de
Wolf [BdW02] for a comprehensive study and describe some of the main results here.

First we formally define the variants of decision tree complexities of a function.

Definition 1.1. For a Boolean function f : {0, 1}n 7→ {0, 1}, D(f) denotes the (determinis-
tic) decision tree complexity (DTC) of f which is the minimum number of (possibly adaptive)
queries to the bits of an arbitrary input x = (x1, x2, . . . , xn) by which one can determine f(x)
where each query is simply an index i ∈ [n] and the answer is xi. Using nondeterminism,
by N(f) we denote the nondeterministic decision tree complexity (NTC) of f which is the
smallest number of bits such that whenever if f(x) = 1, then there exist N(f) bits of x that
witness that f(x) = 1.

Depicting the decision tree algorithm as a binary tree whose internal nodes are labeled
by queries, edges by answers to the queries, and leaves by outputs, D(f) is the depth of the

1As usual, we will often think of f as being one of an infinite family of functions, and describe its
complexity asymptotically in the input length n.
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shallowest tree for deciding f . It is clear that for every function f on n bits it holds that
D(f) ≤ n, and there are functions for which we have D(f) = n (e.g., the parity function:
f(x1, . . . , xn) =

∑
i xi mod 2), but it is also easy to find functions f that depend on all bits

(and so D(f) = n), yet their NTC is only N(f) = O(log n).
For probabilistic algorithms, we demand only that the output is correct with probability

at least 2/3, on every input. Here a convenient way to think of a randomized algorithm is
a distribution (corresponding to the coin tosses performed in advance) over deterministic
decision trees. The complexity of an algorithm is the maximum depth of any tree in the
support, and R(f), the randomized decision-tree complexity (RTC) of f is the minimum
depth over all probabilistic decision trees computing f with probability ≥ 2/3. Clearly we
have R(f) ≤ D(f) for every function f , but there are known examples where the gap can
be almost quadratic; namely it holds that D(f) = n but R(f) = O(

√
n log n) [BSW05].

Interestingly, this gap can never be super-polynomial, and for every function f it holds that
D(f) ≤ O(R(f)3) [Sni85, Nis91].

For quantum algorithms, it stops making sense to view these algorithms as trees be-
cause of the inherent cancelations of computation paths due to “interference”. In particular,
quantum algorithms iteratively make queries to the oracle, just like their deterministic and
probabilistic counterparts. However, a query in the quantum setting is actually a linear
superposition

∑
i αi|i〉|0〉 accessing each input bit i with complex amplitude αi, all in par-

allel. The answer to such a query is the vector
∑

i αi|i〉|xi〉. The amplitudes {αi} satisfy∑
i |αi|2 = 1 (so |αi|2 may be viewed as the probability of asking the query i, as in the

probabilistic model). Between asking the queries, the algorithm can perform arbitrary uni-
tary operations on the amplitudes. After all the queries are asked, the algorithm performs
a “measurement” and outputs its (random) outcome, which we again demand to be correct
with probability at least 2/3.2

It is not hard to see that quantum decision trees can simulate the probabilistic ones, and
so for every function f we have Q(f) ≤ R(f). In this query model, however, even quantum
computing cannot be super-polynomially stronger than deterministic computation.

Theorem 1.2 ([BBC+01]). There is an absolute constant c such that for every function f
it holds that D(f) ≤ Q(f)c.

This is one of the few models for which such a relation (i.e., that quantum power does
not lead to super-polynomial advantage) is known, or even believed, and its proof is quite
remarkable in its “indirectness” and the mathematical tools it uses.

Ideas Used in the Proof of Theorem 1.2. The proof has three steps. The first step
shows that if a Boolean function f is computed with complexity Q(f) ≤ d1 by a quantum
decision tree, then f can be approximated, in the L∞ norm, by a multivariate real polynomial
p of total degree d2 = O(d1). Namely, for every Boolean vector x it would hold that
|p(x)−f(x)| ≤ 1/3. The second step is the remarkable fact that for every such polynomial p,

there exists another polynomial q, of degree d3 = d
O(1)
2 which computes f exactly (i.e., q(x) =

2See [BBC+01] for a formal definition of quantum decision trees.
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f(x), for every Boolean vector x). Finally, every f with such a polynomial representation

has a deterministic decision tree whose depth is at most d4 = d
O(1)
3 [NS94].3

Theorem 1.2 shows that D(f), R(f), and Q(f) are indeed all polynomially related and
it remains to compare them with N(f).

Now we consider the very simple function OR, the disjunction of n bits, and show how
useful studying even such simple functions in this simple model can be. It is not hard to see
that D(OR) = n, and that even randomization does not provide a major advantage R(OR) =
Ω(n). One of the few examples where quantum computation is provably faster is Grover’s
search algorithm [Gro96] establishing a quadratic speed-up over the probabilistic algorithms
Q(OR) = O(

√
n). Moreover, it is known [BBBV97] that Grover’s search algorithm is in fact

tight Q(OR) = Θ(
√
n). However, it clearly holds that N(OR) = 1 which shows a super-

polynomial gap between the nondeterministic DTC and the other modes of computation:
deterministic, randomized, and quantum.

Non-Black-Box Input Access for OR Problem. Finally, let us have a look at the
“non-black-box” version of the OR problem discussed above. That is, we assume that we are
given a Boolean formula ϕ on k variables which defines an input x of length n = 2k to the OR
problem by letting xi = ϕ(i) for 1 ≤ i ≤ n. To solve the OR problem over x = (x1, . . . , xn)
one shall decide whether ϕ is a satisfiable formula or not which is the same as the Boolean
satisfiability problem SAT. The lower-bound of Ω(n) = Ω(2k) over the running time of
deterministic, probabilistic, and quantum decision trees in solving SAT does not apply to
the new non-black-box setting anymore, and in the question suddenly becomes as hard as
the renowned P vs. NP question. In particular, there is a nondeterministic algorithm that
decides the OR problem in linear time over the size of ϕ, but whether a similar thing can be
done using randomized or even quantum algorithms is widely open. We note, however, that
since xi is efficiently computable from ϕ, one can also build a polynomial-sized quantum
circuit that computes ϕ, and therefore Grover’s search method gives a quantum algorithm
for solving the Boolean satisfiability problem SAT (i.e., the non-black-box version of the OR
problem) which is quadratically faster than the best known deterministic or probabilistic
one.

2 Effect of P = NP on Polynomial-Time Hierarchy

The question of weather P 6= NP or not is a central problem in complexity theory. The
importance of this question comes from the fact that whether P = NP or P 6= NP would
lead to drastically different “worlds” regarding what is efficiently computable and what tasks
can be performed “securely” (i.e., whether cryptography is possible).

3To obtain a better constant c, Beals et al. [BBC+01] proves Theorem 1.2 also by using “block sensitivity”
(another complexity measure) of the Boolean function f as the middle parameter, rather than using the
minimum degree of a polynomial representing f ; this proof obtains c ≈ 6.
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The Role of Black-Box Notion. In this section, we will see the different consequences
of these two scenarios: (1) Having an actual (non-black-box) access to an efficient algorithm
that solves an NP-complete problem like SAT versus (2) the case that such efficient algo-
rithm does not exist, but we still have oracle access to a magical black-box which solves
SAT. In particular, we study the different implications of these two scenarios regarding the
polynomial-time hierarchy. We shall also note that there is a third possibility as well: (3)
that there exists an efficient SAT solver algorithm A, but we are only given a black-box
access to A. In Section 3.1 we show how to reduce this case to case (1) by reconstructing
such algorithm A only by oracle access to it!

We first formally define the polynomial-time hierarchy. Recall that the class NP is the
set of all languages L for which there is a polynomial-time membership verifier V such that
x ∈ L iff ∃ y ∈ {0, 1}poly(|x|), V (x, y) = 1. Adding more quantifiers before the final verification
leads to larger complexity classes.

Definition 2.1 ([MS72]). The class Σk contains all the languages L for which there is a
polynomial-time verifier V and a polynomial p = poly(n) such that x ∈ L iff

∃ y1 ∈ {0, 1}p(|x|),∀ y2 ∈ {0, 1}p(|x|), . . . , yk ∈ {0, 1}p(|x|), V (x, y1, y2, . . . , yk) = 1 .

The class Πk contains the complements of the languages in Σk, and can be described similarly
by using k quantifiers starting with a ∀.

By definition it holds that Πi ⊆ Σi+1 and Σi ⊆ Πi+1, the polynomial-time hierarchy PH,
as a single complexity class is defined as the union of these levels: PH =

⋃
i Σi =

⋃
i Πi. An

interesting interpretation of the class PH comes from the complexity of finite transparent
games (see below). Meyer and Stockmeyer [MS73] gave another characterization of the levels
of the polynomial-time hierarchy (see Section 3.2.2 of [Gol08] for a proof.)

Theorem 2.2 ([MS73]). NPΣi = Σi+1.

2.1 Non-Black-Box Use of a SAT Solver

Which languages can be decided efficiently if SAT ∈ P (i.e., P = NP)? As it turns out,
in that case, all of the languages in PH could be solved in polynomial time by using the
SAT-solving algorithm A in a heavily non-black-box manner.

Theorem 2.3. If SAT ∈ P, then PH = P.

Proof. The proof is by eliminating the quantifiers of a language in PH one by one. Let A
be an efficient algorithm for SAT. A can be used to solve any language L ∈ NP using the
Cook-Levin reduction [Coo71, Lev73]. Namely if L = {x | ∃ y, VL(x, y) = 1}, then one can
efficiently map any input x to an instance s(x) which is satisfiable iff ∃ y, V (x, y) = 1. Note
that this mapping does not use the code of A in a non-black-box way, but rather uses the
code of VL(·, ·). So having oracle access to such algorithm A we can decide any language in
NP and coNP efficiently.
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Now suppose L ∈ Σi and L is defined as

x ∈ L iff ∃ y1∀ y2 · · ·Qyk, V (x, y1, y2, . . . , yk) = 1 where Q is either ∀ or ∃.

By the above method one can substitute [Qyk V (x, y1, . . . , yk) = 1] by [Uk(x, y1, . . . , yk−1) =
1] for some polynomial-time algorithm Uk which depends on A. Repeating this procedure
i− 1 more times eliminates all the quantifiers and give us an algorithm U1 which decides L
in polynomial-time.4

In the second iteration of the proof above when we want to remove the second quantifier,
we will need to use the code of A (invoked inside Uk) in a non-black-box way to feed it into
the Cook-Levin reduction.

2.2 Black-Box Use of a SAT Solver

As we described above, the proof of Theorem 2.3 is non-black-box. But is this non-black-box
use inherent? Suppose we are given a SAT-solver only in a black-box. In Section 3.1 we will
see that there is in fact an efficient way to learn and reconstruct such algorithm A in a
universal way by just asking polynomially many oracle queries to A! In this section we deal
with the (more plausible) case that P 6= NP and thus no such efficient algorithm exists.

Note that even if P 6= NP, it still makes sense to ask which problems can be solved
efficiently given oracle access to a SAT solver. In particular, can we still solve all of the
languages in the polynomial-time hierarchy using such oracle (i.e., PH ⊆ PNP)? Of course
the answer is yes if PH = P holds already (in which case one can simply ignore the oracle
and solves PH efficiently from the scratch), so here we also assume that the levels of PH
do not collapse and ask: what is the set of languages in PNP.

Interestingly, Theorem 2.2 answers our question indirectly! The reason is that by Theo-
rem 2.2 having even nondeterministic access to a complete problem in Σi provides a com-
putational power which is still limited to the languages in Σi+1. In particular it holds that
PNP ⊆ NPNP = Σ2. Therefore, by having oracle access to NP we can not go even beyond
the second level of PH!

Open Question. Does P = NP imply the collapse of any other complexity class other
than the polynomial-time hierarchy?

A Game-Theoretic Perspective on PH. Let A and B be two players, playing a finite
game of only two moves where, in order, A and B choose their moves y1, y2 from the set
U = {0, 1}poly(n) and n is a parameter controlling the “size” and description of the game.
Also suppose the predicate V (y1, y2) is equal to one iff A is the winner. In this game, the
player A has a winning strategy if and only if there is a move y1 for A such that for all
moves y2 of B the result is a win for A: V (y1, y2) = 1. By extending the set of games and

4Note that this process can not be applied to more than a constant number of quantifiers, because of the
blow-up in the running time of U compared to V .
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allowing the number of moves in the game to be a constant k, the player A would have a
winning strategy in an extended version of the game iff there exist a move y1 for A such
that for every move y2 for B there is a move y3 for A ... such that at the end it holds that
V (y1, . . . , yk) = 1. Now suppose we generalize such games one more step and let the game
to have initial position described by some x ∈ {0, 1}n. It is easy to see that for any such
game G, if the final verdict for the game V (x, y1, . . . , yk) is computable in polynomial time,
by definition, the set WG

A of all x’s describing a winning initial position for A builds up a

language in Σk. The complement set WG
A = WG

B which contains the initial positions over
which B has a winning strategy will be a language in Πk. In fact, the reverse connection
from games to the polynomial-time hierarchy holds as well. Any language L ∈ Σk (resp.
L ∈ Πk) can be interpreted as the initial positions of a k-move game over which the first
party (resp. the second party) has a winning strategy. There is no inherent reason for only
considering games with k = O(1) number of moves and studying the analogy only with the
polynomial-time hierarchy. In fact one can think of a similar connection between the games
with polynomially many moves and the languages solvable in polynomial space PSPACE.
For further discussion on this connection Section 19.2 of [Pap94].

3 Learning: Opening Black Boxes

At a high level, many results in learning theory can be described as follows. There is a black
box hiding a function f : {0, 1}n 7→ {0, 1} inside. We know a priori that f comes from a
family of functions F , and we want to know more about f by asking certain form of queries to
the black box. We might want to (1) reconstruct f completely, (2) find out some properties
or parameters of f (e.g., its average, or its large Fourier coefficients), or (3) approximate it
(under some definition of what it means to approximate), or . For a great introduction to
the field of learning theory we refer the reader to [KV94].

In this section we first describe a perhaps surprising result due to Bshouty et al. [BCG+95]
which states that using black-box access to an efficient SAT-solver we can reconstruct any
such algorithm (or an equivalent alternative) efficiently! This falls into the first category
described above. Then we will see the Goldreich-Levin (GL) lemma [GL89] which was
originally proposed in the context of cryptographic applications but later turned out to be
very useful also in other areas of computer science such as computational learning theory.
The GL lemma shows how to learn the “large” Fourier coefficients of a function f : {0, 1}n 7→
{0, 1} in probabilistic polynomial-time by only invoking black-box queries to f . This task
falls into the second category above. Finally we describe two applications of GL lemma to
learn decision trees and DNF formulas, which falls into the third category above.

3.1 Learning SAT-Solvers

Although the common believe is that there is no family of polynomial-size circuits solving
SAT (otherwise the polynomial-time hierarchy collapses to the second level [KL80]), but it is
still meaningful to ask the following question. Suppose someone claims to have an efficient
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algorithm for SAT and they only provide answers to SAT queries rather than revealing the
algorithm itself. Can we extract any useful information about this algorithm by asking only
oracle queries to it? More ambitiously, can we “reconstruct” the whole algorithm completely?
As Bshouty et al. [BCG+95] showed, it is in fact possible to learn any SAT-solving algorithm!
The result in [BCG+95] is proved in a more general context and the theorem below can be
derived from the results proved there.

Theorem 3.1 ([BCG+95]). Let C = (C1, C2, . . . ) be a sequence of circuits that Cn solves SAT
on instances of length n and |Cn| ≤ s(n). Also, suppose that SAT instances are encoded in a
way which allows padding and so Cm can be used to solve SAT on instances x where |x| < m
as well. Then there is a universal learning algorithm which given 1n as input gets only black-
box access to the family C, runs in (expected) time poly(s(n)), and it outputs a circuit Dn

which solves SAT on all instances of length n (i.e., Dn(x) = Cn(x) for all x ∈ {0, 1}n).

In the rest of this subsection we prove Theorem 3.1.
For any two circuits C,D with the same input length n we define C ≈ D if and for all

x ∈ {0, 1}n it holds that C(x) = D(x). The high level structure of the proof is as follows.

1. Suppose the learning algorithm is granted an extra (imaginary) feature which allows
it to ask “equivalence queries” rather than regular SAT queries to Ci’s. Namely, in
this model, we can query a circuit D with input length n, and the oracle answers back
whether it holds that Cn ≈ D or not. In case Cn 6≈ D, the answer will include a
“counter example” x such that D(x) 6= Cn(x). The first step is to show that in the
model of equivalence-queries there is a way to reconstruct a SAT solver in (expected)
polynomial time with the help of an NP oracle.

2. The second step uses Cm (for large enough m) both as an NP oracle, and also simulate
the equivalence queries for circuits of input length n by using only regular SAT queries
(which in turn will be asked to C.

Now we go over more details of the outline above. At the beginning of the learning
process, we know that there exists at least one circuit D of size at most s(n) such that
D ≈ Cn. Since any circuit of size s can be represented with O(s2) bits, the goal of the
learning algorithm can be seen as aiming to find a needle D ≈ Cn in a haystack of size at
most 2O(s(n)2).

Suppose we have asked i equivalence queries D1, . . . , Di so far and has received i counter
examples x1, . . . , xi. Let Fi be the set of all circuits of size at most s(n) which are consistent
with our current knowledge about Cn based on the counter examples {x1, . . . , xi}, namely:

Fi = {D | D is a Boolean circuit with n inputs, |D| ≤ s(n), D(xj) 6= Dj(xj) for all j ∈ [i]}.

The next equivalence query D = Di+1 will be chosen in such a way that either D ≈ Cn, or
otherwise, any possible counter example xi+1 to D is a “shrinks” the set Fi by a constant
factor: |Fi+1| ≤ 3

4
· |Fi|. By asking such queries, only after log4/3(2

O(s(n)2)) = O(s(n)2) many
steps we can find a D ≈ Cn.
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Call x an unbiased query for Fi if at most 3/4 fraction of Fi agree about the satisfiability

of a fixed query x, namely if δ0(x) = |{E∈Fi|E(x)=0}|
|Fi| and δ1(x) = 1 − δ0(x), then both of

δ0(x), δ1(x) are at most 3/4. We call x a biased query if it is not unbiased.
It is easy to see that if x is an unbiased query and is returned as a counter example to

any equivalence query D, it can only be a shrinking one, because matter what circuit D is
queried, if x is returned as a counter example it will eliminate 1/4 of Fi. Now suppose x is a
biased query. This means that if an equivalence query circuit D is chosen at random from
Fi, then with probability at least 3/4, it holds that 3/4 fraction of Fi agrees with D on the
input x, in which case x will also be a shrinking counter example.

We would like to ask our equivalence query D in a way that all queries x can only
be a shrinking example. For that purpose, we can sample uniformly at random from Fi
polynomially many circuits E1, E2, . . . , Ek, and take D to be a circuit which given the input
x, outputs majj∈[k] Ej(x). By choose k = 10n and using Chernoff bound, any x will have a
chance of at most 2−2n to be a “non-shrinking” counter example. Thus by a union bound,
with probability at least 1 − 2−n over the choice of D, any returned counter example will

be shrinking! But how can we sample E
$← Fi at random? Note that we can efficiently

verify membership in Fi. A fundamental result due to [JVV86, BGP00]5 states that efficient
membership verification in a set implies that one can efficiently sample uniform members
from it with the help of an NP oracle. But here we do have such oracle for free: the circuits
of the family C!

Changing the Equivalence Queries to SAT Queries. The only remaining step of the
proof is to get rid of the equivalence queries and run the learning algorithm using regular
SAT queries. Interestingly, by using the Cook-Levin reduction and the self-reducibility of
SAT we can always solve any query of the form: “Is there a counter example to circuit D
as a SAT solver for input length n” using an NP oracle! Any counter example x of the
form D(x) = 0, SAT(x) = 1 (i.e., x is a satisfiable formula, but D says it is not) can be
“witnessed” by providing x and its satisfying assignment. Thus the existence of such x can
be by using the Cook-Levin reduction and a single query to the NP oracle. Using a search-
to-decision reduction one can also find the actual counter example x. It is also possible that
D(x) = 1 but SAT(x) = 0. This case is more subtle since it is not clear right away how
such x can be efficiently witnessed. But even in this case by using the self-reducibility of
SAT and substituting the variables inside x with values from {0, 1} one by one, one can
find inputs three inputs x′, x′0, x

′
1 where x′0 and x′1 are, in order, the formulas obtained from

x by substituting one of its variables v with values v = 0 and v = 1 and it holds that
D(x′) = 1, D(x′0) = 0 and D(x′1) = 0. By using the Cook-Levin reduction and the NP
oracle one can also confirm the existence of the the set {x′, x′0, x′1} which witnesses that that
D is not a SAT solver. Finally, again by a search-to-decision reduction and using the NP
oracle one can find out which one of {x′, x′0, x′1} is the actual counter example for D.

5The result of [BGP00], which allows uniform sampling, was not known at the time [BCG+95] was
published. They just used approximate uniform-generation algorithm of [JVV86] which is enough four their
purpose.
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3.2 Goldreich-Levin Lemma

In this section we describe a fundamental result of Goldreich and Levin [GL89], known as
the Goldreich-Levin (GL) lemma, which originally was discovered in the context of cryp-
tographic applications. Using GL lemma Goldreich and Levin showed that the existence
of one-way permutations implies the existence of pseudorandom generators through an ex-
tremely efficient reduction. It turned out that GL is in fact quite useful also in other areas
of computer science such as learning theory, and this is the subject of our focus here. At
a high level, this results tells us how to find large Fourier coefficients of a Boolean func-
tion f : {0, 1}n 7→ {0, 1} which is only accessible as a black-box. First we will describe
the Goldreich-Levin (GL) lemma formally, then we go over some of its many. It simplifies
the presentation if one thinks of Boolean functions to choose their output from {±1} (−1
representing 1 and +1 representing 0).

Lemma 3.2 ([GL89]). There exist a probabilistic algorithm GL which given oracle access
to any f : {0, 1}n → {±1} runs in time (n

ε
)O(1) and finds (with probability 0.99) a set F (of

size (n
ε
)O(1)) that is a superset of Fε = {a | f̂(a) ≥ ε} – the set of Fourier coefficients of f

which are at least ε.6

Note that |Fε| can never be too large, because by the Parseval’s equality we have∑
a f̂(a)2 = Ex[f(x)2] = 1 and so |F | ≤ 1

ε2
. Some of the main applications of the GL

lemma are as follows.

List Decoding of Hadamard Code. The Hadamard encoding Hm of a message m ∈
{0, 1}n is a string of length 2n whose ath bit is equal to Hm(a) = (−1)〈m,a〉 where 〈m, a〉 =∑

imiai mod 2. Suppose we have received a “corrupted” Hadamard codeword f ∈ {±1}2n

of the message m ∈ {0, 1}n and we know that less than half of its bits might be different from
a correct encoding: Pr

x
$←{0,1}n

[f(x) = Hm(x)] ≥ 1+ε
2

. Since any two Hadamard codewords

differ in exactly 2n−1 coordinates (i.e., its normalized distance is 1/2), unique decoding is not
possible when the fraction of errors is more than 1/4. But as we will see it is still possible
to “list decode” a corrupted Hadamard codeword even when more than 1/4 fraction of bits
are corrupted, and this will be done using GL lemma! It can be seen that Pr

x
$←{0,1}n

[f(x) =

Hm(x)] ≥ 1+ε
2

if and only if f̂(m) ≥ ε. So for ε = 1/ poly(n) the GL algorithm produces a
set {m1, . . . ,mpoly(n)} such that m ∈ {0, 1}n is the message we are looking for.

Pseudorandom Generators. Here we rely on the list-decoding application GL lemma
and also describe the original main application of GL lemma presented by [GL89]. Suppose
p : {0, 1}n 7→ {0, 1}n is a one-way permutation. Namely p can be computed efficiently,

yet for all efficient algorithms A it holds that Pr[f(A(y)) = y : y = f(x), x
$← {0, 1}n] is

negligible. It is easy to see that the function q : {0, 1}2n 7→ {0, 1}2n where q(x, y) = (p(x), y)
for x, y ∈ {0, 1}n is also a one-way permutation. We claim that given q(x, y) = (p(x), y)

6The set F might also contain some b where 99
100 · ε < f̂(b) < ε.
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for (x, y)
$← {0, 1}2n, it is infeasible to guess 〈x, y〉 correctly with probability at least 1/2 +

1/ poly(n). This implies that G(x, y) = (p(x), y, 〈x, y〉) is a pseudorandom generator, because
the output of G(U2) is not random, yet it is indistinguishable from U2n+1. The reason is that

if given q(x, y) = (p(x), y) for (x, y)
$← {0, 1}2n, an algorithm A can guess 〈x, y〉 correctly

with probability at least ≥ 1/2 + ε, then by an average argument with probability at least

ε/2 over x
$← {0, 1}n, if we fix x, for at least 1+ε

2
fraction of y’s the same algorithm A is

able to compute 〈x, y〉 when given (p(x), y).7 The latter means that for such “good” x’s the
algorithm A provides us with an implicit access to a corrupted Hadamard encoding of x with
error fraction ≤ 1−ε

2
. But as we just saw, in this case whenever ε = 1/ poly(n), one can use

GL lemma to find a list of (n
ε
)O(1) = poly(n) candidates one of which is the right x we are

looking for to invert q(x, y). Thus, we are able to guess (x, y) correctly with probability at
least ε

2
· 1

poly(n)
≥ 1

poly(n)
which contradicts the fact that q was one-way.

3.3 Applications of Goldreich-Levin Lemma to Learning

In this section, we will see two applications of GL lemma to learn theory. A basic problem in
learning theory is to “approximate” the value of a function f , which is given only as a black-
box, under some distribution D. In this setting, the task of the learner is to query f only as
an oracle at poly(n) many points and at the end (with high probability 1−1/ poly(n)) output
some function g such that Pr

x
$←D

[f(x) 6= g(x)] ≤ ε for a small value of ε = 1/ poly(n). The
most natural case for D is to learn f under the uniform D = Un distribution, which is the
case in our following examples. If we do not know anything about f , we can never predict
the next answer, even if we ask many queries to it. Thus, a learning problem in this setting
is defined based on a family of functions F such that we already know that f belongs to F .

Decision Trees. Recall Definition 1.1 for decision trees. Any Boolean function f has
a decision tree of depth n and a total of 2n leaves. Here we are interested in learning
decision trees that have a polynomial size representation. Perhaps surprisingly, a the class
of polynomial-sized decision trees can be learned efficiently under the uniform distribution.
This result due to Kushilevitz and Mansour [KM93] turned out to be influential in using
Fourier analytic methods in learning theory.

Theorem 3.3 ([KM93]). Polynomial-size decision trees can be learned under uniform dis-
tribution.

Proof Sketch. The first steps of the proof shows that for any function f which can be
computed by a decision tree with m leaves it holds that L1(f) ≤ m where L1(f) =∑

z |f̂(z)|. Then it is shown by straightforward calculation that for the function fδ de-

fined as fδ(x) =
∑
|f̂(z)|>δ/L1

f̂(z) · χz(x) it holds that fδ approximates f in L2 norm:

Ex[(f(x) − g(x))2] ≤ δ. Thus, in order to approximate f in L2 norm it is sufficient to

7Here we implicitly assumed that the algorithm is deterministic, although a similar argument works for
randomized algorithms as well.
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find all of its Fourier coefficients which are at least δ/m. Using GL lemma we can do this in
time (mn

δ
)O(1) and find a function fδ which approximates f : Ex[(f(x)−fδ(x))2] ≤ δ. Finally,

since f(x) ∈ {±1}, the function sign(fδ) (which outputs +1 or −1) is what we are looking
for because: Prx[sign(g)(x) 6= f(x)] ≤ Ex[(f(x)− g(x))2] ≤ δ.

DNF Formulas. We next describe a result of Jackson [Jac97] which also uses GL lemma
and Fourier techniques to show that the class of disjunctive normal form formulas can be
learned efficiently under uniform distribution.

Theorem 3.4 ([Jac97]). Polynomial-size DNF formulas can be learned under uniform dis-
tribution.

Proof Sketch. A result of [BFJ+94] shows that any DNF formula f over n variables has
a non-negligibly large Fourier coefficient. Using GL lemma we can find such coefficient
and approximate f “weakly” with probability slightly more than 1/2 under the uniform
distribution.8

Started by the breakthrough of Schapire [Sch90], we now have powerful tools for “boost-
ing” a weak learning algorithm to a strong one which approximates the function with prob-
ability close to one. But to get a strong learner under a distribution D, one needs to have
weak learners under a set of distributions D (depending on D). In the case of D being the
uniform distribution Jackson showed how to generalize the work of [BFJ+94] to get weak
learners for all the distributions in D to use boosting and get a strong learner for DNF
functions.

4 Limits of Black-Box Diagonalization

Although after decades of research in complexity theory the question of P =?NP is still
open, there has been moments when new techniques raised hopes for finally resolving this
question. Introducing the diagonalization method to complexity theory was one of this
moments since (as we will see below in Theorem 4.1) using this method one can separate
the class of computational problems solvable with more resources such as time and space.
We refer the reader to the great survey by Fortnow [For00] for many examples in which
diagonalization can be used to separate complexity classes.

However, as we will see shortly, it turned out that diagonalization, at least in its basic form
used in results such as Theorem 4.1 below come short in resolving P vs. NP question due to
the relativization side-effect. Namely, these proofs hold even when the relevant complexity
classes are defined relative to some arbitrary oracle O.

8We do not have the condition L1(f) ≤ poly(n) here anymore, otherwise we could already get a strong
approximation.
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Role of Black-Box Notion. Here, the role of the notion of a black-box is indirect. That is,
the main point is that some proof techniques are oblivious to the presence of any subroutine
provided for free as a black box, and this makes these proof techniques limited. In other
words, the relativization issue makes techniques such as diagonalization to be “too good”
for the purpose of resolving certain questions such as P vs. NP.

The power of the diagonalization technique can be manifested by a classical result of
Hartmanis and Stearns [HS65] who showed that more time leads to more computational
power.

Theorem 4.1 ([HS65]). For any integer k ≥ 1, DTIME(nk+1) 6⊆ DTIME(nk).

The proof of Theorem 4.1 is reminiscent of Cantor’s proof for uncountability of real
numbers [Can74] and Turing’s proof for undecidability of the Halting problem [Tur36].

Proof Sketch. The proof uses the notion of Universal Turing machine — a machine which
emulates another Turing machine M given as input over another given input x. For simplicity
let k = 2. We define a language L such that L ∈ DTIME(n3) but L 6∈ DTIME(n2). Given
an input x, one can always interpret it as an encoding of a Turing machine Mx and use the
Universal Turing machine to run Mx(·) over x itself for n2 steps. If the emulation leads to
Mx(x) = 1, we would define x 6∈ L, and otherwise (even if the computation Mx(x) does not
end in n2 steps) we define x ∈ L. This way of defining L guarantees that L 6∈ DTIME(n2).
On the other hand, by using an efficient implementation of the Universal Turing machine
(e.g., see [AB] Section 1.2) we derive that L ∈ DTIME(n3) .

Theorem 4.1, also known as the time hierarchy theorem, has an analogous version
which deals with space-complexity as follows: SPACE(nk+1) 6⊆ SPACE(nk). Moreover
Cook [Coo72] showed that allowing nondeterministic algorithms to run in longer time has
the same effect: NTIME(nk+1) 6⊆ NTIME(nk). Thus it was very natural to pursue the
same approach for showing that nondeterminism itself as a resource (compared to being
deterministic) leads to more computational power, hence proving NP 6⊆ P. In the following
we will see why such a technique is not indeed powerful enough to resolve the P vs. NP
question.

The proof of Theorem 4.1 relies on two facts: ((1)) one can represent a Turing machine M
as a bit strings and give them as inputs to another (Universal) machine, and ((2)) that one
can universally emulate the execution of M over another given input x with a small amount
of overhead in the time. Both of these statements also hold in a more general scenario in
which M is allowed call an oracle O in its execution, assuming that the Universal Turing
machine can also make queries to O. Thus the proof of Theorem 4.1 “relativizes” and we in
indeed have DTIME(nk+1)O 6⊆ DTIME(nk)O for every oracle O. The following theorem
by Baker, Gill, and Solovay [BGS75] shows that no proof technique (e.g., the diagonalization
method used in the proof of Theorem 4.1) is not able to resolve the P vs. NP question.

Theorem 4.2 ([BGS75]). There are oracles A and B such that PA 6= NPA but PB = NPB.
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Proof Sketch. One possibility is to take B = EXP (i.e., a complete problem in the class of
languages decidable in exponential time. Any language in EXP is also in PEXP. In addition,
given any input x, in order to decide its membership in a language in NPEXP, we can do
both of the following in exponential time: (1) go over all nondeterministic choices of the
nondeterministic machine, and (2) find the answers to its oracle queries. Thus it holds that
EXP ⊆ PEXP ⊆ NPEXP ⊆ EXP, and so: PEXP = NPEXP.

To obtain the desired oracle A such that PA 6= NPA, it is easy to see that for any choice
of A the language LA defined as LA = {x : |x| = n,∃ y ∈ {0, 1}|x|, A(y) = 1} (i.e., the OR
function applied to the truth table of A for length |x|) is in NPA. By diagonalization9, the
oracle A can be chosen in a way that no polynomial-time oracle machine MA can decide
membership in LA for all x. See Section 3.4 of [AB07] for the full proof.

We will see more examples that relativization poses limits over some powerful techniques
(particularly in cryptography) in Section 8.

5 Black-Box Ideas in Geometry

5.1 Ellipsoid Method

Due to their vast applications in computer science and engineering, the search for efficient
optimization methods has always been an active line of research in recent decades. A promi-
nent subarea deals with linear optimization where the input to the problem consists of a
bunch of linear constraints and we would like to optimize another linear function module all
these restrictions. In fact, many combinatorial problems (e.g., Maximum Flow and Shortest
Path) one can be easily reduced to linear optimization problems. In a Linear Programming
problem (LP for short) we want to find a vector x ∈ Rn maximizing cT · x under the condi-
tion that Ax ≤ b, for c ∈ Rn, A ∈ Rm×n, b ∈ Rm. From a geometric point of view, in an LP
instance, the constraints Ax ≤ b which form the “feasible domain” of x, describe a polytope
in Rn and we want to find the “last point” of this polytope in the direction specified by c.
We refer the reader to the books [Sch03, PS98] for comprehensive discussion of the subject.

Role of Black-Box Notion. In this section we will see how a simple observation about
the fact that a specific optimization method uses one of its subroutines in a black-box way
has eventually led to a more general approach that could solving a much bigger class of
problems. We will see another example of this phenomenon in Section 6.2.

Simplex Method. The most widely used method for solving LP problems is the Simplex
method of Dantzig [Dan51]. The intuition behind the Simplex method is to jump over the
vertices of the polytope in a way that in each step we move form a vertex of the polytope to an
adjacent vertex and this move improves the objective function. Unfortunately the number
of vertices for a high dimensional polytope described by polynomially many hyperplanes

9Note that here we want to show some limitations of the Diagonalization approach!
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could be exponentially large, and in fact one can find instances of the LP problem such that
the Simplex method takes exponential time. Despite that, Simplex method it is still an
effective method of solving LP problems over the instances that come up in real applications
(Spielman and Teng [ST04] explain this phenomenon to some extent).

Subsequent work showed how to use randomization in Simplex method in order to to
guarantee polynomial time [KS06], but the first polynomial time algorithm for solving linear
programming emerged in the seventies when Khachiyan [Kha79] presented the Ellipsoid
method. The reason behind the name Ellipsoid Method, is due to the elegant way it uses
high dimensional ellipsoids to give an iteratively improving bound on the region that the
optimal point lies in. First, we describe the Ellipsoid method at a high level and then will see
how a more careful look at it reveals that certain parts of this algorithm are black-box and
this feature leads to a generalization of this method to solve a wider class of linear programs.

Ellipsoid Method. Using binary search (and adding more linear constraints) solving an
LP problem can be reduced to only checking the feasibility of the given LP (i.e., checking
if there exits x for which Ax ≤ b without caring about the optimality of x). So w.l.o.g we
would only want to know if a given polytope described by (A, b) is empty or not. The first
step is to find an ellipsoid E1 which contains the polytope10. The algorithm now works in
iterations. In the beginning of the jth iteration, the ellipsoid Ej contains the polytope. Let
the point xj ∈ Rn be the center of Ej. We will check if xj is a feasible solution or not by
checking that Axj ≤ b. If x was a feasible point, we are done. Otherwise it means that for
some i it holds that aT

i · xj > bi where the vector aT
i is the ith row of A. This means that the

whole polytope is inside the half space Xj = {x | aT
i ·x ≤ aT

i ·xj}, and by the convexity of the
polytope, xj is indeed in Ej∩Xj. One interesting geometric fact is that the smallest ellipsoid
which contains Ej ∩Xj (for Xj being any half-space having the center of Ej on its border)
has a smaller volume than Ej by some noticeable factor depending on the dimension n. The
good news is that this smaller ellipsoid can in fact be found in poly(n) time. Therefore if we
take Ej+1 to be an ellipsoid with smallest volume which contains Ej ∩Xj, after polynomially
many number of iterations, we either find a feasible point, or can make sure that it does not
exist. (Here we are implicitly relying on the fact that the volume of a nonempty polytope
represented by an LP in n dimension is always at least 1/ poly(n).)

Separation Oracle Suffices. In [KP82] Karp and Papadimitriou pointed out that El-
lipsoid method is in fact able to solve a wider class of convex optimization problems that
just linear programming with a polynomial number of linear restrictions. In particular, all
we want is a separation oracle which is a form of black-box access to the input convex set
defined as follows.

Definition 5.1 (Separation Oracle for Convex Bodies). For a convex body B and given a
query x ∈ Rn, if x ∈ B, return YES, otherwise return a hyperplane separating x from B.

10We assume here that the polytope is bounded.

16



Karp and Papadimitriou also presented examples of LP problem with exponentially many
constraints for which the separation oracle can be implemented efficiently (with an implicit
knowledge of the constraints that define the feasible set), and therefore Ellipsoid method
could in fact be used to solve these problems efficiently!

Semidefinite Programming Using Black-Box Ellipsoid Method. In a semidefinite
programming (SDP for short) problem, the vector of variables x is in fact a matrix and
comes from the space PSDn – the set of positive semidefinite matrices in Rn×n. In addition
to this implicit constraint over the variables, there are also some input linear constraints
and the objective function is also linear (similar to the case of LP). It is easy to see that
any LP problem can be reduced to an instance of SDP problem, so solving SDP is a stronger
optimization tool. The first point about SDP is that the space of PSDn matrices is convex,
and so the feasible set of an SDP is also a convex set. In addition, the separation oracle can
be implemented efficiently for the feasible domain described by SDP instances. Therefore,
the general approach of [KP82] to use Ellipsoid method through a separation oracle can
be used to obtain a polynomial-time algorithm for solving SDP problems [GLS81]. In a
breakthrough, Goemans and Williamson [GW95] illustrated the power of SDP by designing
improved approximation algorithms for the Max Cut and Max 2-SAT problems. Ever since
SDP has been a major tool in designing approximation algorithms.

5.2 Volume Computation

The Role of Black-Box Notion. Similar to Section 1, here we also deal with comparing
the power of various computational models – deterministic vs. randomized, approximation
vs. exact – when the access to the input is somehow black-box. This time we focus on a
particular geometric problem: computing the volume of convex bodies. The input to the VC
problem is a convex body B ⊂ Rn for a polynomially large dimension n.

We will study two variants of VC problem: black-box and non-black-box. In the non-
black-box version we assume that the convex body B is defined through a polynomial number
of half-spaces (i.e., B is a polytope) and these half-spaces are given explicitly as part of the
input. In the black-box variant of VC we assume that we have an initial point x ∈ B and we
are also provided with a separation oracle (see Definition 5.1). We will compare the hardness
of these two variants of the VC problem between the randomized and deterministic models
of computation. Note that since one can always implement a separation oracle efficiently for
a given input polytope B, the non-black-box VC can be reduced to black-box VC and thus
black-box VC is comparably a harder problem.

Solving VC Exactly. First consider the non-black-box VC problem. This problem can
be solved efficiently in dimensions (e.g., n = 2), but unfortunately, this problem is in fact
#P-hard when n can be polynomially large [DF88]. The black-box VC problem, will not be
easier than non-black-box VC, and thus solving the problem exactly, requires solving #P in
polynomial time!
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The result of [DF88] leads us to the question of: what happens if we relax the problem
and only look for an approximation of the volume? Barany and Furedi [BF86] showed that
even approximation is not possible for the case of black-box VC.

Theorem 5.2 ([BF86]). There is no polynomial-time deterministic o(( n
logn

)n)-approximation
algorithm for the black-box VC problem.

The result is almost tight because an nn-approximation could be computed efficiently [M. 88].

Solving Black-Box VC Randomly and Approximately. Dyer, Frieze, and Kannan [DFK91]
showed that using both of these relaxations: (1) using randomness and (2) aiming for approx-
imation, the situation changes drastically and VC can be approximated within an arbitrarily
small polynomial factor!

Theorem 5.3 ([DFK91]). There is a randomized algorithm A which given ε and black-box
access to the body B (through a separation oracle), runs in time (n

ε
)O(1) and outputs v such

that VOL(B) ≤ v ≤ (1 + ε) VOL(B) with probability 0.99.

Here we only outline the structure the proof of Theorem 5.3 and mention the main ideas.
Let 0 < c < 1 be a parameter that we choose later. Let Lc be an n-dimensional lattice

defined with the base Bc = {(c, 0, . . . , 0), (0, c, 0, . . . , 0), . . . , (0, . . . , 0, c)}. For each convex
body B, |B∩Lc| counts the number of Lc points inside B and for small enough c, |B∩Lc| ·cn
gives a good approximation of VOL(B). The first idea to solve the problem lies in the
connection between counting and sampling. Jerrum, Valiant, and Vazirani [JVV86] showed
that in verity of settings (including ours) the tasks of “counting” and “uniform-sampling”
are are essentially equivalent.

Therefore, it is sufficient to show how to sample an (approximately) uniform lattice Lc
point inside B. A way to sample approximately uniform points from Lc ∩ B is to define
a graph over Lc, do a random walk of sufficient length, and choose the ending point. We
define two nodes of B ∩ Lc connected if they have distance c. Jerrum and Sinclair [JS88]
showed that a random walk over such graph does in fact converge to the uniform distributor
in polynomial time. Interestingly, Jerrum and Sinclair developed these tools originally with
the goal of approximating the Permanent of Boolean matrices!

6 Derandomization

One of the fundamental questions in complexity theory is to study to what extent truly
random bits are inherently useful in various contexts. There are scenarios (e.g., interactive
proofs) where using randomness is crucial, but we do not know yet whether randomness adds
more power to deciding languages in polynomial time, namely if BPP = P or not. Although
many randomized algorithms eventually were “derandomized” into equivalent deterministic
polynomial-time algorithms (e.g., [AKS02] derandomizing the randomized primality tests of
[SS77, Rab80]), there are known certain computational problems that still randomness seems
to play a central in solving them efficiently (e.g., the polynomial identity testing problem).
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Role of Black-Box Notion. In this section the role of the notion of black-box is two-fold.

1. First we describe a line of research in complexity theory which led to (conditional)
derandomization of all languages of BPP without looking at the internal computation
of the randomized algorithm. This is in contrast to derandomizing algorithms one
by one in ad-hoc manners (which can be thought of as a non-black-box approach to
derandomization).

2. Then we look at this general (almost) black-box way of derandomizing BPP and
observe that one of the some components of the derandomizing process are uses as
black-box. Trevisan noticed that this black-box feature of the derandomization of
BPP can itself be used to obtain “randomness extractors”. In a way, this second
aspect of the notion of black-box in this section is similar to the role black-box notion
in Section 5.2.

For more discussion on this subject see [AB] Chapter 20, [Gol08] Chapters 7 and 8,
and [Kab02].

6.1 Derandomizing BPP Almost as a Black-Box

In this section we will describe some ideas on how to prove BPP = P under believable
complexity assumptions. This is done by using a Pseudo-Random Generator (PRG) which
uses short truly random seeds and expand them so that they can still be used to run any
BPP algorithm. This approach on constructing PRGs is based on on the existence of “hard
functions”. The surprising fact about the derandomization of BPP is that it is done in an
almost black-box manner where the only non-black-box use of the algorithm is to know its
running time.

Nonuniformly Hard Functions. For a function f : {0, 1}n 7→ {0, 1} define C(f) to be
the (asymptotic) size of the smallest circuit computing f (over {0, 1}n). It is easy to see
that a random function f chosen at random from the set of all 22n possible functions, with
high probability has circuit complexity C(f) ≥ 2Ω(n). This implies that there is a language
L with circuit complexity C(f) ≥ 2Ω(n).

Theorem 6.1 ([IW97]). If there is any language L ∈ E (i.e., decidable in time 2O(n)) with
circuit complexity C(L) ≥ 2Ω(n), then BPP = P.

A natural way to derandomize BPP algorithms is to use pseudorandom generators of
the form defined as follows.

Definition 6.2. An (`, T )-PRG G is a function G : {0, 1}` 7→ {0, 1}T computable in time
2O(`) such that for any circuit D of size at most T we have

|Pr[D(UT ) = 1]− Pr[D(G(U`)) = 1]| ≤ 1/T .
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Since a PRG G (or any other function on ` inputs) can always be computed by a circuit
of size 2O(`), there is always a circuit of size 2O(`) which outputs 1 only on the images of G.
So we can not hope to achieve ` = o(log T ), but as we will see, under believable complexity
assumptions we can achieve ` = Θ(log T )

Using PRGs for Derandomization. Suppose G is a (Θ(log T ), T )-PRG. We can use G
to derandomize any BPP algorithm A as follows: Given an input x (of length |x| = n) to
A, we can hardwire x into A and use Cook-Levin reduction to get a Boolean circuit Cx of
size poly(n) which takes a (random) string r as input, and for at least 2/3 fraction of r’s it
outputs the right answer about the membership of x. If we take T = poly(n) to be the size
of Cx, by the definition of G we have |Pr[Cx(UT ) = 1] − Pr[Cx(G(U`)) = 1]| ≤ 1/T < 1/10,
and so by enumerating all pseudorandom inputs to Cx, and taking the majority we can find
out if x is in the language defined by A or not in time 2` × 2O(`) × T = poly(n).

As we saw, PRGs can be used for derandomizing BPP algorithms, but do such objects
exist at all? The following theorem is the result of a series of exiting work [BFNW93, NW94,
IW97, ACR98, STV98, SU01, Uma03] and shows that any level of (non-uniform) hardness
in the class E can be transformed into PRGs of related parameters.

Theorem 6.3 ([Uma03]). If there exist f ∈ E with C(f) ≥ S(n), then there exist an
(` = O(n), T = S(n)Ω(1))-PRG Gf .

In the following we describe some of the ideas in the proof of Theorem 6.3.

Proof Outline. We only outline the proof for the special case of S(n) = 2cn for a constant
c, which is indeed the range of parameters needed for proving Theorem 6.1. This outline is
based on the original proof of Theorem 6.1 due to [IW97].

Starting from f1 ∈ E with C(f1) ≥ 2Ω(n) the first step is to construct another function
f2 : {0, 1}O(n) 7→ {0, 1} which is still computable in time 2O(n) but is 2Ω(n) mildly hard on
average. An S mildly hard function h is defined to be one which for every circuit C of size at
most S it holds that Pr

x
$←{0,1}n

[C(x) = h(x)] ≤ 1− 1/n. This step is done using polynomial-

size error correcting codes with sublinear-time decoding algorithms (which can be obtained
based on random self reducibility of multivariate polynomials).

The second step is to take f2 and construct another function f3 : {0, 1}O(n) 7→ {0, 1}
which is again computable in time 2O(n), but is 2Ω(n) strongly hard, where an S strongly
hard function h is one which for every circuit C of size at most S we have Pr

x
$←{0,1}n

[C(x) =

h(x)] ≤ 1/2 + 1/S. This step is based on a derandomized version of Yao’s XOR lemma.
Later on, Sudan, Trevisan, and Vadhan [STV98] showed how to do both of these steps in a
combined way based on certain list-decidable codes.

Now suppose f3 is defined on inputs of length {0, 1}c′n for some constat c′ < 1. The
final step is to take an input (to the PRG) of length 10c′n and apply f3 to 2Ω(n) number of
c′n-sized subsets of the input bits. The structure of these chosen subsets is based on some
combinatorial design [NW94] that guarantees that the output bits obtained from different
subsets are “almost independent”. Pseudo-randomness of the output bits is proved by a
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reduction to the hardness of f3 and a hybrid argument. Namely, if there is a distinguisher D
implemented with a circuit of size T that breaks the pseudorandomness of the output bits,
D can be used to get a circuit of size TO(1) that breaks the strong hardness of f2. By taking
T small enough so that TO(1)(n) < S(n) = 2c.n we get a contradiction.

Non-Black-Box Ad-Hoc Derandomization? As mentioned, the known derandomiza-
tion of BPP outlined above is almost black-box in the sense that the only non-black-box
information needed about the derandomized algorithm is its running time. Yet, this deran-
domization is under computational hardness assumptions. One might wonder whether it
is possible to achieve unconditional derandomization of BPP through a (more) non-black-
box technique and eliminate the need of proving complexity lower-bounds for the purpose
of derandomization. The work of [KI04, IKW02] showed that proving complexity lower-
bounds are indeed necessary for derandomizing (for both cases of randomized deterministic
BPP and randomized nondeterministic AM algorithms). Kabanets and Impagliazzo [KI04]
showed that derandomizing a specific BPP algorithm (i.e., polynomial identity testing)
implies that either NEXP 6⊆ P/poly or PERM 6∈ AlgP/poly (i.e., permanent does not
have polynomial-sized arithmetic circuits). The latter lower-bound, in turn, was used to
derandomize all randomized arithmetic circuits. The work of [IKW02] showed similar re-
sults for nondeterministic randomized computation (i.e., AM protocols). Namely, [IKW02]
presented an AM protocol whose derandomization would imply lower-bounds against non-
deterministic circuit. Interestingly these lower-bounds are indeed sufficient to derandomize
all AM protocols; thus, when it comes to nondeterministic AM computation, derandomizing
them all using PRGs in an almost black-box manner and/or derandomizing them one-by-one
using ad-hoc methods are basically equivalent!

6.2 Reusing Black-Boxes: Trevisan’s Extractor

In this section we describe a result due to Trevisan [Tre01] which relies on the fact that the
proof of Theorem 6.3 uses the distinguisher as a black-box (see Remark 6.7) to construct
randomness extractors!

Randomness extractors are efficient algorithms that allow one to extract (almost) pure
randomness from sources with defected randomness. Here we will focus on the case of single
source extractors and for a broad discussion of the subject refer the reader to the survey of
Shaltiel [Sha02] and references there.

Definition 6.4. A function G : {0, 1}N × {0, 1}` 7→ {0, 1}T is a (k, ε)-extractor, if for any
random variable X over {0, 1}N with min-entropy at least H∞(X) ≥ k the statistical distance
between UT and f(X,U`) is at most ε.

We are interested in explicit constructions for f , and would like to achieve T as large as
≈ k and ε as small as possible.

In a breakthrough [Tre01] Trevisan showed that PRGs constructed in Theorem 6.3
are indeed randomness extractors! The connection is surprising because extractors are
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information-theoretic objects and the more common direction of transferring the ideas in
complexity theory is to start from an information theoretic phenomenon and find a compu-
tational version of it (e.g., Yao’s XOR lemma [Yao82, GNW95]).

Construction 6.5 (Extractors from PRGs). Define the extractor G : {0, 1}N × {0, 1}` 7→
{0, 1}T as follows: given F ∈ {0, 1}N and x ∈ {0, 1}`, interpret F as truth table of a function
f : {0, 1}n 7→ {0, 1} for 2n = N and apply Gf of Theorem 6.3 for hardness S(n) = 2n/10 over
the given ` bit input x to get T = 2Ω(n) = NΩ(1) bits of output.

Theorem 6.6 ([Tre01]). The extractor G of construction 6.5 is a (TO(1), O(1/T))-extractor.

Proof of Theorem 6.6 crucially relies on the following observation.

Remark 6.7 (Proof of Theorem 6.3 is Black-Box). The proof of Theorem 6.3, as a combina-
tion of its intermediate reductions, shows that for every function f and every distinguisher
D which 1/T -distinguishes UT from the constructed Gf (U`), there is a circuit d of size TO(1)

which given oracle access to D computes f correctly.

Outline of the Proof of Theorem 6.6. We say that a statistical test (i.e., distinguisher) D
breaks f if it 1/T -distinguishes UT from Gf (U`). The proof of Theorem 6.3 shows that
whenever D breaks f there is a circuit Cf of size W = TO(1) such that CD

f computes f .
Therefore, by counting the total number of circuits of size W , we conclude that for a fixed
D, there can not be more than 2O(W 2) number of functions f that D breaks. Since C uses
the adversary D as a black box, such D could be computationally unbounded and could as
well be the (unbounded) distinguisher that achieves the distinguishing advantage equal to
the statistical distance between UT and Gf (U`). Thus if the distribution over f has min-
entropy at least T×W 2, with probability at most O(1/T) over the choice of f , D can break f .
Therefore whenever D does not break f , it can only ε-distinguish UT from Gf (U`) for ε ≤ 1/T .
So D can not distinguish UT from Gf (U`) by an advantage more than 1/T +O(1/T) = O(1/T).

7 Black-Box Worst-Case to Average-Case Reductions

for NP

The existence of one-way functions is necessary for almost all basic cryptographic tasks
[IL89, OW93]. A one-way function f : {0, 1}n 7→ {0, 1}n is a function which is efficiently
computable but any polynomial time algorithm has only a negligible chance of finding a
preimage for f(Un). It is easy to see that the existence of one-way functions implies that
NP is hard on average. Since (in addition to being a necessary condition) it is widely
believed that P 6= NP, a natural question is whether one can base the existence of one-way
functions only on P 6= NP or NP 6⊆ BPP. Namely, the hope is to construct an efficiently
computable function f whose one-way-ness relies on SAT 6⊆ BPP. The most natural way
of doing so is through a black-box reduction R that solves SAT with probability, say 2/3,
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given oracle access to any adversary A who inverts f with non-negligible probability. As a
relaxation one might at least hope to base the average-case hardness of NP on its worst-case
hardness. Again, the natural way to this “hardness amplification” is through a black-box
reduction.

For a general discussion on average-case complexity and in particular its connection to
worst-case complexity look at the survey by Bogdanov and Trevisan [BT06].

On the positive side, there are results that show how to construct one-way functions
based on worst-case complexity of certain languages, but so far none of these languages are
proved to be NP-hard. In the following, we first describe the main known ideas on how to
base average-case hardness on the worst-case hardness, and then will describe some results
that provide negative evidence against the possibility of basing one-way functions (or even
the average-case hardness of NP) over the worst-case hardness of NP.

7.1 Positive Side

A black-box reduction from a computational problem A to another computational problem
B is a PPT algorithm R which given any input instance x and access to any oracle G who
solves B, RG(x) solves A over x with probability 2/3. A locally random reduction, RG(x)
asks its queries from the oracle G according to the uniform distribution over {0, 1}|x|. If A
and B are the same, R is called a random self reduction.

Suppose we have a random self reduction for a problem A which given x asks q = poly(|x|)
number of oracle queries. It follows that if an algorithm G solves A on 1 − 1/4q fraction of
the inputs, then we can solve A with probability at least 3/4 on any input. Here we describe
two major examples of random self reductions.

Random Self Reduction for Discrete Logarithm. An instance of Discrete Logarithm
DL problem is parameterized with cyclic group (family) G and a generator g for G. For
any input x we want to find the unique i in the range 0 ≤ i ≤ |G| − 1 such that gi = x.

The random self reduction of DL is as follows. Given x choose j
$← [n] at random and take

z = xgj. Note that z has uniform distribution over G. Now given i = DL(z) (i.e gi = z), one
can get DL(x) = (i− j) mod n.

The next example is about one of the successful cases for which we could base average-
case hardness of a complexity class (here #P) over its worst-case hardness. The problem of
computing the permanent over finite fields (denoted by PERM) is known to be complete for
the class #P [Val79]. Thus a random self reduction for PERM implies that solving PERM
for a uniformly chosen instance is as hard as solving #P in the worst case. Recall that the
permanent of a matrix Mn×n = [mi,j] is defined as∑

j1∈[n]

∑
j2∈[n]\{j1}

· · ·
∑

jn∈[n]\{j1,...,jn−1}

∏
i∈[n]

mi,ji

and is a multilinear polynomial of degree n over the n2 entries of Mn×n = [mi,j]. In fact,
random self reduction is possible for the more general framework of low-degree polynomials
(with PERM as a special case).
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Random Self Reduction for Polynomials [BF90, Lip91]. Suppose p(x1, x2, . . . , xn)
is a polynomial on n variables of total degree d, and its coefficients are from the field F where
|F| ≥ d+2. Suppose we want to compute p(~a) where ~a = (a1, . . . , an) ∈ Fn. Let ~b ∈ Fn be an

arbitrary vector. For a variable t, p(~a+ t~b) = q(t) is a univariate polynomial of degree d such

that q(0) = p(~a + 0~b) = p(~a). If we fix any t 6= 0 and choose ~b
$← Fn at random, the vector

~a + t~b will be uniformly distributed over Fn. Based on this idea, the random self reduction
proceeds as follows. Given the input ~a choose t1, t2, . . . , td+1 to be d+ 1 different members of

F such that ti 6= 0. Then choose ~b
$←Fn uniformly at random, and ask for p(~a+ ti~b) = si for

1 ≤ i ≤ d+ 1. Knowing q(t) on the d+ 1 points t1, t2, . . . , td+1, allows us to find out degree
d polynomial q(t) and obtain q(0).

Random self correction has also been used to base the average-case of complexity classes
such as PSPACE and EXP on their worst-case hardness [STV01], but the most interesting
such result would be for the class NP. Unfortunately, as we will see shortly, such reduction
might not exist (or it might be very hard to find). Before going over such results, we mention
another line of research that approaches the question of NP-hard one-way functions from a
different angel.

Lattice-Based Cryptography For a set of n independent vectors B = {b1, . . . , bn} in
Rn one can define a lattice L(B) = {

∑
i aibi | ai ∈ Z for all i} with B as its basis. The

shortest vector problem SVP is the task of computing the (Euclidian) shortest vector in
L(B) for a given basis B. The SVP is known to be NP-hard (even to approximate within a√

2 factor [Mic01]).
The celebrated work of Ajtai [Ajt96] showed how to generate hard instances of the

SVP problem (while the generator samples the answers along the way) by only assuming
that SVP is hard to approximate in the worst-case within some poly(n) factor. Further
work [AD96, GGH96a, GGH96b, GPV07, Pei08] showed how to get stronger cryptographic
primitives (e.g., public-key encryption) from the same assumption. Unfortunately the re-
quired approximation factor in these assumptions are larger than the approximation factors
over which SVP is known to be NP-hard. Goldreich and Goldwasser [GG98] showed that in
fact, approximating SVP with large-enough polynomial factors can not be NP hard unless
NP = coNP.

The proof of all above results are through a black-box reduction. So, one wonders whether
there is a more general phenomenon underlying all of them that make them fail in basing
average-case hardness of NP on its worst-case hardness.

7.2 Negative Side

In this section we will go over some results suggestion that black-box worst-case to average-
case reductions for NP might not exist. In particular, we will see that certain forms of such
reductions imply the collapse of the polynomial-time hierarchy, and even if they exist in their
general (black-box) form, they still imply the existence of program checkers for SAT (which
is tightly related to long-standing open questions in the complexity of interactive proofs).
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The first result we describe here is due to Feigenbaum and Fortnow [FF93] who showed
that non-adaptive random self reductions for NP are unlikely to exist. A non-adaptive
reduction prepares all of its queries at first, and then asks them all together.

Theorem 7.1 ([FF93]). There is no non-adaptive random self reduction R for SAT, unless
the polynomial-time hierarchy collapses to the third level.

Proof. The idea is to use the reduction R and design a (non uniform) AM proof system
(i.e., two-message public-coin proof system with a non-uniform verifier) for UNSAT which is
known to imply that PH = Σ3.

Suppose a prover and a verifier are given an input x of length |x| = n and the prover
claims that x 6∈ SAT. For a sampled randomness r of the reduction R, the verifier can ask
the prover to provide the answers to the queries of R(x). If the prover sends back the true
answers, the verifier gets to know the final result Rr(x) which is equal to SAT(x) with high
probability. But there is no guarantee that a malicious prover would follow the protocol. On
the other hand, whenever the prover claims that an oracle query is satisfiable, the verifier
can ask for a witness for this claim. Thus if the verifier knows in advance how many of
the oracle queries of Rr(x) are satisfiable instances, the prover can not cheat in any of the
answers! If the verifier is non-uniform, it is possible for him to know the probability that a
uniformly sampled instance of SAT is satisfiable (note that an only depends on the length
n). The idea is to run many instances of the reduction R and run some statistical tests over
their oracle answers returns by the prover based on the given advice an to make sure that
the prover is not cheating.

If the reduction R(x) asks q = poly(n) many queries, the verifier can run k = q6 instances
of R(x) in parallel and ask for the answers to all of the queries asked in all these reductions.
Using Chernoff bound, the verifier would know that with high probability the total number
of YES queries is ≈ an · k · q± q · k2/3 = an · q7± q5 (and she would safely abort the protocol
if this condition does not hold). Thus the number of queries that the prover can cheat on
is bounded by q5, and so in total, there are only q5/q6 = o(1) executions of the reduction
R(x) (out of the total q6 executions) where the prover has returned a wrong answer to one
of the queries of the reduction. Therefore for 1− o(1) fraction of the executions of R(x) the
verifier gets to know the right answer (or it catches the cheating prover).

Bogdanov and Trevisan extended the result to reductions that ask their queries with
arbitrary distributions, but are still supposed to solve SAT in the worst case (with high
probability) whenever the oracle solves 1− 1

poly(n)
fraction of the queries of length n correctly.

Such reductions are called self correctors.

Theorem 7.2 ([BT03]). There is no non-adaptive self corrector R for SAT, unless the
polynomial-time hierarchy collapses to the third level.

Proof Sketch. Note that the queries of the reduction R are not necessarily asked according
to any particular distribution, so we can not give the average number of YES answers of the
queries of R(x) as an advice to the verifier (since this number can depend on the input x).
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For simplicity suppose R(x) asks only queries of length n when |x| = n. Call a query
y ∈ {0, 1}n α-heavy, if the probability that R(x) asks y is at least α2−n. If the reduction
R(x) asks q = poly(n) queries, at most a q/α fraction of {0, 1}n could be α-heavy. So for
large enough α = poly(n), if the oracle given to R(x) answers α-heavy queries arbitrarily,
the reduction is still supposed to solve SAT correctly (with high probability). The main ideas
in [BT03] to take advantage of this fact are the following:

• The verifier can force the prover to tell her which queries of the reduction are heavy
and which ones are light. This can be done by using protocols to prove lower-bound
and upper-bound on the probability of asking a specific query [GS86, For87, AH91].
Therefore, it is sufficient to only receive correct answers to the light queries. Similarly
to the proof of Theorem it is sufficient to find out the expected fraction of YES instances
among the light queries of R(x) (this number, in general, cannot be provided as advice,
because it depends on x). To do this, we use the following trick.

• If we put a light query in a random position among Ω( 1
α2 ) queries which are sampled

according to the uniform distribution, the prover can not tell which one is the special
planted query (unless with small probability). Therefore, if we know the fraction of
YES instances for a uniformly random query (which could be known through non-
uniform advice), the prover has to answer the query that we hid among the random
ones correctly or otherwise would be caught with high probability! This way the
prover is essentially forced to answer the light query correctly. By sampling many
instances of R(x) and taking one (light) query from each execution and performing the
above “hiding protocol” one can estimate the fraction of light queries which are a YES
instance up to small additive error. Note that all these estimation protocols are done
in parallel and still the final protocol has only a constant number of rounds, and by
the result of [GS86] it can be converted into a two-message protocol.

Extending the result of [BT03] to reductions with more than one round of adaptivity
remains an important open question.

Holenstein, Mahmoody, and Xiao [MX10], took a different path and showed that worst-
case to average-case reductions in NP would imply “program checkers” for SAT [BK89]. A
program checker C for a language L, takes as input another algorithm P (claiming to solve
L) and an input x, and it outputs in {0, 1,⊥} in a way that we have

Pr[C(P, x) 6= L(x) and P solves L correctly] ≤ 1/3.

In other words, either C finds the true answer about L(x) using P , or it detects a bug
in P . Whether SAT is checkable or not has been open for more than three decades and is
tightly related to the complexity of the prover in interactive proofs for coNP [BFL91]. A
black-box program checker C uses the program P only as an oracle. The following theorem
indicates that even if black-box worst-case to average reduction for NP is possible, it would
require finding program checkers for NP first.
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Theorem 7.3. If there is a black-box worst-case to average-case reduction or NP, then NP
has a non-uniform program checker. Furthermore, if one can construct a one-way function
f through a black-box reduction to the worst-case hardness of NP, then NP has a uniform
program checker. In both cases the program checker is also black-box.

Proof Sketch. First we outline the proof for the case of worst-case to average-case reduction
or NP. Suppose we are given a program P claiming to solve SAT and an input x which we
want to know whether x ∈ SAT or not. The design of the program checker goes through the
following two steps.

• We first “test” whether P is “close” to a SAT solver under the uniform distribution or
not. This can be done, given pn = Pr

x
$←Un

[x ∈ SAT] as non-uniform advice, and using

self-reducibility of SAT. Namely, the tester can sample many instances x
$←Un, and for

every x such that P (x) = 1, it tries to find the satisfying solution to x using P itself.
The tester anticipates at least ≈ pn fraction of x to be satisfiable.

• After performing the test, we have the guarantee that P solves almost all of x ∈ Un
correctly. Now, if R is a worst-case to average-case reduction for SAT, given any input
x, the algorithm C can run RP (x) by using P as an oracle that solves SAT correctly on
almost all instances. The final conclusion is that: either P does not pass the test (and
C outputs ⊥), or that we solve x ∈? SAT correctly with high probability (by definition
of R). This is exactly what we want from a program checker!

For the case of constructing NP-hard one-way function f , by applying the Cook-Levin
reduction to the “puzzle” y = f(Un) (with “solutions” {x | f(x) = y}) we get a formula Y
whose satisfying assignments correspond to the solutions of the puzzle y. The distribution
over Y (sampled through sampling y = f(Un) and applying the Cook-Levin reduction) is
still samplable, and moreover, we know that under this distribution the puzzle y should be
solvable with probability one. Therefore we can follow the outline above, while there is no
need for the non-uniform advice.

8 Limits of Black-Box Techniques in Cryptography

The theory of cryptography is concerned with formally defining the notions of security and
designing secure protocols which meet these definitions. Almost all natural cryptographic
tasks (also called primitives) imply the existence of one-way functions [IL89] which in turn
implies P 6= NP. Since proving P 6= NP seems to be beyond our current techniques in
complexity theory [RR97, BGS75, AW08], the current paradigm in foundations of cryptog-
raphy is to prove the security of cryptographic protocols based on complexity assumptions
(which are almost always “lower level” cryptographic primitives such as one-way functions).
For a comprehensive discussion on cryptographic primitives and their definitions we refer
the reader to the great books [Gol01, Gol04, KL07].
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The existence of many cryptographic primitives (e.g., secret-key encryption (SKE)) is
known to be implied by the existence of one-way functions [GM84, GGM86, LR85, Rac88]
and even equivalent to that [IL89, OW93].

On the other hand, we have not been able to derive the existence of other cryptographic
primitives (e.g., public-key encryption (PKE)), based on one-way functions, and stronger
primitives (e.g., trapdoor permutations) are employed [DH76, Rab79, GM84, NY90, CS98].
Thus the researchers wondered whether such implication can be proved at all. Note that
both OWFs and PKEs are widely believed to exist, and so the logical implication is likely
to be true. However, it is still possible that our cryptographic tools and techniques come
short in proving such statement. Indeed, most of cryptographic constructions are black-
box. Roughly speaking, a black-box construction of a partitive Q from another primitive
P consists of two (black-box) reductions: one shows how to implement Q using any secure
implementation of P , and the other one shows that this implementation is indeed secure.
The following formalization is due to [RTV04]11.

Definition 8.1. A black-box construction of a primitiveQ from another primitive P , consists
of two oracle PPTs (Q,S) as follows.

• Implementation: Given oracle access to any implementation P of P , QP gives an
implementation of Q. For example, if P is one-way permutations, then the oracle P
could be any length-preserving permutation over {0, 1}∗.

• Proof of Security: For every oracle “adversary” A breaking the security of QP (as
an implementation of Q), SA,P breaks the security of P (as an implementation of P).

In the next section we will see that black-box constructions are not able to prove certain
cryptographic implications that we would like to prove and believe that are true in the logical
sense.

8.1 Black-Box Separations

In seminal work [IR88] Impagliazzo and Rudich showed that black-box constructions are in-
capable of proving some cryptographic implications. They showed that secure key agreement
(KA) protocols (and thus public-key encryption) can not be based on one-way functions (or
even one-way permutations) through a black-box construction. In a KA protocol, Alice and
Bob agree on a key by communicating through a public channel while it is unfeasible for
any efficient adversary who has access to the public channel to find this key. The result
of [IR88] relied on the fact that black-box constructions relativize. Namely, if there is a
black-box construction of Q from P , then it holds that: for every oracle O, if Q can be
realized securely relative to O, then P could also be realized securely relative to O.

Theorem 8.2 ([IR88]). There exists an oracle relative to which one-way permutations exist
but no key-agreement protocol remains sesure. Therefore, no black-box construction of key-
agreement protocols from one-way permutations exists.

11What we call black-box construction here, is called “fully black-box” in [RTV04].
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Following [IR88] many other black-box separation results were established (e.g., [Sim98,
GKM+00, GMR01, Fis02, HR04, HH09]) and even led to results that prove lower-bounds
on the efficiency of the implementation reduction in black-box constructions (e.g., [KST99,
GT00, GGK03, HK05, LTW05, HHRS07, BMG07, BMG08]).

Proof Outline. It can be shown that a random permutation with high probability is hard to
invert by any PPT. The first step in the proof of Theorem 8.2 chooses a random permutation
oracle P as a subroutine of the oracle O. Note that by adding more subroutines to O, as
long as these subroutines does not depend on the random permutation P , P still remains
one-way relative to O.

The second (and in fact the main) step is to add subroutines to O in a way that any
KA protocol can be broken efficiently. The main technical part of [IR88] is to show that
any KA can be broken by a computationally unbounded adversary who asks polynomially
many number of queries to P . Moreover, they show that this adversary can be implemented
efficiently if P = NP. This implies that we can take O = (P,PSPACE), (or any O = (P,Q)
such that P = NP relative to Q).

Polynomially-Secure Key Agreement. Now that we know black-box constructions are
not able to build super-polynomially secure key-agreement protocols from one-way permuta-
tions or even random permutations, one can still ask the following question: Is it possible to
obtain key-agreement protocols with some polynomial level of security from these primitives?
This question was studied by Merkle [Mer78] where he showed how to achieve quadratically
secure key-agreement protocols from any random permutation. In this protocol, Alice and
Bob agree on a set [n2] where a random permutation P maps [n2] to itself. Alice (resp. Bob)
queries P on n random random points x1, . . . , xn (resp. y1, . . . , yn) and send the answers
P (x1) = a1, . . . , P (xn) = an (resp. P (y1) = b1, . . . , P (yn) = bn) to the other party. With a
constant probability, there is a “collision” between the sets {x1, . . . , xn} and {y1, . . . , yn} and
Alice and Bob will notice this collision due to their similar images; they take this collision to
be the key. But what can Eve do after observing the messages being sent across? It is easy
to see that all Eve can do is to ask the queries in [n2] one by one till she hits the collision,
which on average takes ≈ n2/2 queries to P .

A simple modification of the protocol yields a construction only based on random func-
tions. Barak and Mahmoody [BMG08] showed that quadratic security for key-agreement is
the best one can achieve from random functions. Biham et al. [BGI08] showed how to use
exponentially hard one-way functions (instead of random functions) to achieve quadratically
secure key-agreement protocols.

Even though most cryptographic constructions are black-box, not all of them fall into
this framework. The most prominent examples are secure computation protocols [Yao86]
and some applications of zero-knowledge proofs in cryptography. Here we elaborate a bit on
the latter type by briefly describing zero-knowledge proofs and an application of it.
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8.2 Zero Knowledge Proofs and Non-Black-Box Constructions

The class NP contains the languages whose membership can be proved efficiently by pro-
viding a witness. If deciding membership in a language L ∈ NP is computationally hard,
revealing a witness w for x ∈ L might reveal some “knowledge” that could not be obtained
independently. Proving a statement such as x ∈ L without revealing its proof w seems
contradictory at first, but in a seminal work Goldwasser, Micali, and Rackoff [GMR89] in-
troduced the notion of an interactive proof that carries zero knowledge and showed how to
achieve it for nontrivial languages such as quadratic residuacity.

Definition 8.3. A language L has a zero knowledge (ZK) proof system if there are interactive
algorithms: V the verifier and P the prover such that the following holds.

• Completeness: For every x ∈ L we have Pr[〈V, P 〉(x) = accept] = 1 where by
〈V, P 〉(x) we mean the the final output of V after the interaction with P .

• Soundness: If x 6∈ L, for any prover P ∗, we have Pr[〈V, P ∗〉(x) = accept] ≤ 1/3.

• Zero Knowledge: For every potentially cheating verifier V ∗ there is a simulator S
such that for every x ∈ L, the output of S(x) is computationally indistinguishable
from 〈V ∗, P 〉(x).

Note that languages in BPP trivially have zero knowledge proofs (without interaction).

Sequential and Parallel Repetition. To decrease the soundness error the parties can
repeat the protocol many times and at the end the verifier accepts if all the executions lead
to accept. There are various ways the repetition can be carried out. In a sequential repetition
the ith instance of the protocol starts after the (i − 1)th instance ends, while in a parallel
repetition the jth round of all the executions are done at the same time. It is not hard to
see that k sequential or parallel repetition of a proof systems decreases the soundness error
down to 1

2k
. The bad news is that ZK property does not necessarily holds under the parallel

repetition (see [Gol01] Proposition 4.5.9).
The work of Goldreich Micali and Wigderson [GMW86] showed that under computational

assumptions, every provable statement can be proved in zero-knowledge.

Theorem 8.4 ([GMW86]). If one-way functions exist, then any language L ∈ NP has a
zero-knowledge proof system.

Proof Outline. Using Cook-Levin reduction, it is enough to give a ZK proof system for any
NP-complete language. We will do it for the problem of 3-colorable graphs.

Suppose for a moment that there are “digital envelopes with locks” available to the
parties. The prover who knows a 3-coloring for the input graph G first permutes the 3 colors
randomly and then puts the colors c1, . . . , cn of the vertices into envelopes and gives them

to the verifier. Now the verifier chooses a random edge e
$←{E(G)} from G, which connects

some vertices u, v and asks the prover to open the envelopes containing the colors of u and
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v. If the prover is cheating, he will be caught with probability at least 1/|E(G)| (which can be
amplified using sequential repetition).

But what about the ZK property? If the prover is truthful, all verifier observes is a pair
of random different colors at ends of an edge which can be easily simulated.

It remains to implement the digital envelopes. This primitive is also known as a “commit-
ment scheme” and Naor showed how to construct it based on any pseudorandom generator
[Nao02]. The work of [HILL99] showed how to construct pseudorandom generators from any
one-way functions, and therefore one-way functions are sufficient for zero-knowledge proofs
for all languages in NP.

Now we describe an application of zero-knowledge proofs that uses a one-way function
in a non-black-box way.

8.2.1 A Non-Black-Box Identification Scheme

An identification (ID) scheme is a protocol with n parties that lets them to identify each other
after an initial setup phase. In this phase there is some “public information” p announced
by all the parties, and the person i gets to know a secret si which can be used by them at
a later point to prove their identity. In addition, if person i proves its identity to person j,
the information revealed by that process should not let the person j to forge the identity of
i at any point in the future.

In [FFS87], an ID scheme was designed based on the assumption that there a one-way
function f exists. In the initial phase the person i takes a random private value si, and
announce the public value of pi = f(xi). Later, to prove that he is indeed the person i, he
can show that he knows some x such that f(x) = pi, and suffices as a proof of his identity
due to the one-way property of f . If he reveals xi as the proof, it would be convincing, but
it will let others to use it later and forge his identity. But since the code of the OWF f is
known to everyone, and since xi can be thought of as the witness to the an NP statement
f(xi), the person i can use the ZK protocol of Theorem 8.4 to prove that he knows xi rather
than revealing xi directly. The zero-knowledge property prevents others from learning any
knowledge about xi to be used in their subsequent interactions.

Since the actual code of f (which is the implementation of the primitive used) is needed
to be fed into Cook-Levin reduction of the ZK proof for the 3-coloring problem, the im-
plementation reduction in this identification scheme uses the implementation of OWF in a
non-black-box way.

8.2.2 Non-Black-Box Proofs of Security

Note that in order to decrease the soundness error of the ZK protocol of Theorem 8.4 one
needs to do sequential repetition which increases the number of rounds to some polynomial.
Another ZK protocol for NP, due to Blum [Blu87], shows how to achieve constant soundness
in constant number of rounds. The next natural question is whether there are constant round
protocols with negligible soundness error. Goldreich and Krawczyk [GK96] showed that it is
impossible to achieve for nontrivial languages, if ((1)) the verifier is public coin and ((2))
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the simulator S is “universal” an uses the cheating verifier V ∗ in a black-box way (i.e., as
an orale).

Theorem 8.5 ([GK96]). If for a language L we have a ZK argument (or proof) system with
the following properties:
• It is constant round.
• The soundness error is negligible.
• The verifier is public coin.
• The simulator uses the cheating verifier as a black box.

then L ∈ BPP.

In a breakthrough, Barak [Bar01, Bar02] showed that the simulator can indeed use the
code of the cheating verifier, in order to bypass the impossibility result of Theorem 8.5. His
result is based on the assumption that collision-resistant hash functions exist. The techniques
introduced by Barak [Bar01, Bar02] are essentially is the only cryptographic techniques for
non-black-box proofs of security.
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