
Lower Bounds on Obfuscation from All-or-Nothing

Encryption Primitives

Sanjam Garg∗ Mohammad Mahmoody† Ameer Mohammed‡

Abstract

Indistinguishability obfuscation (IO) enables many heretofore out-of-reach applications in
cryptography. However, currently all known constructions of IO are based on multilinear maps
which are poorly understood. Hence, tremendous research effort has been put towards basing
obfuscation on better-understood computational assumptions. Recently, another path to IO
has emerged through functional encryption [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] but such FE schemes currently are still based on multi-linear maps.
In this work, we study whether IO could be based on other powerful encryption primitives.

Separations for Indistinguishability Obfuscation. We show that (assuming that the
polynomial hierarchy does not collapse and one-way functions exist) IO cannot be constructed
from powerful encryption primitives, such as witness encryption (WE), predicate encryption,
and fully homomorphic encryption even using some powerful non-black-box techniques, formally
defined as “monolithic” constructions (more details below). What unifies these primitives is that
they are of the “all-or-nothing” form, meaning either someone has the “right key” in which case
they can decrypt the message fully, or they are not supposed to learn anything.

Monolithic Constructions: New Model for Non-Black-Box Separations. One
might argue that fully black-box uses of the considered encryption primitives limit their power
too much because these primitives can easily lead to non-black-box constructions if the primitive
is used in a self-feeding fashion — namely, code of the subroutines of the considered primitive
could easily be fed as input to the subroutines of the primitive itself. In fact, several important
results (e.g., the construction of IO from functional encryption) follow this very recipe. In
light of this, we prove our impossibility results with respect to a stronger model than the fully
black-box framework of Impagliazzo and Rudich (STOC’89), Reingold, Trevisan, and Vadhan
(TCC’04). Our model builds upon and extends the previous non-black-box model of Brakerski,
Katz, Segev, and Yerukhimovich (TCC’11) and Asharov and Segev (FOCS’15), by allowing the
non-black-box technique of self-feeding a primitive’s code to itself as oracle calls planted inside
input circuits. Since we allow any gates to be planted in the input circuits as long as they
treat the subroutines of the primitive monolithically, we call such constructions monolithic and
separations for all such constructions monolithic separations.

∗University of California, Berkeley. Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, AFOSR YIP Award and research
grants by the Okawa Foundation and Visa Inc. The views expressed are those of the author and do not reflect the
official policy or position of the funding agencies.
†University of Virginia. Supported by NSF CAREER award CCF-1350939.
‡University of Kuwait. Work done while at the University of Virginia and visiting UC Berkeley.

1

Contents

1 Introduction 3
1.1 Our Results . 6
1.2 Further Related Work . 7

2 Technical Overview 8
2.1 New Extended Framework for Proving Separations 8
2.2 Using Variants of Witness Encryption as the Middle Primitive 11
2.3 Separating IO from Instance-Hiding WE . 13
2.4 Separating IO from Homomorphic WE . 14
2.5 Primitives Implied by Our Variants of WE . 15

3 Preliminaries 16
3.1 Primitives . 16
3.2 Black-Box Constructions and Separations . 22
3.3 Measure Theoretic Tools . 23
3.4 Black-Box Separations . 23
3.5 Tools for Getting Black-Box Lower Bounds for IO 25

4 Monolithic Constructions: An Abstract Extension of the Black-Box Model 27
4.1 Monolithic Extensions of Special Primitives . 28
4.2 Defining Monolithic Constructions Using Monolithic Extensions 30

5 Separating IO from Instance Revealing Witness Encryption 31
5.1 Overview of Proof Techniques . 33
5.2 The Ideal Model . 33
5.3 Witness Encryption exists relative to Θ . 34
5.4 Compiling Out Θ from IO . 37

6 Separating IO from Instance Hiding Witness Encryption 42
6.1 Overview of Proof Techniques . 43
6.2 The Ideal Model . 44
6.3 Instance-Hiding Witness Encryption Exists Relative to Θ 44
6.4 Compiling Out Θ from IO . 48

7 Separating IO from Homomorphic Witness Encryption 55
7.1 Overview of Proof Techniques . 56
7.2 The Ideal Model . 57
7.3 Homomorphic Witness Encryption Exists Relative to Ψ 58
7.4 Compiling out Ψ from IO . 62

8 Primitives Implied by Our Variants of Witness Encryption 71
8.1 Predicate Encryption . 71
8.2 Spooky Encryption . 73
8.3 Attribute-Based FHE . 75

2

1 Introduction

Program obfuscation provides an extremely powerful tool to make computer programs “unintelli-
gible” while preserving their functionality. Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan
and Yang [BGI+01] formulated this notion in various forms and proved that their strongest formu-
lation, called virtual black-box (VBB) obfuscation, is impossible for general polynomial size circuits.
However, a recent result of Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13b] presented
a candidate construction for a weaker notion of obfuscation, called indistinguishability obfuscation
(IO). Subsequent work showed that IO, together with one-way functions, enables numerous cryp-
tographic applications making IO a “cryptographic hub” [SW14].

Since the original work of [GGH+13b] many constructions of IO were proposed [GGH+13b,
BGK+14, BR14] [AGIS14, MSW14, AB15, Zim15, BMSZ15, GMM+16]. However, all these con-
structions are based on computational hardness assumptions on multilinear maps [GGH13a, CLT13,
GGH15]. Going a step further, recent works of Lin [Lin16] and Lin and Vaikunthanatan [LV16]
showed how to weaken the required degree of the employed multilinear maps schemes to be a con-
stant. Another line of work showed how to base IO on compact functional encryption [AJ15, BV15].
However, the current constructions of compact functional encryption are in turn based on IO (or,
multilinear maps). In summary, all currently known paths to obfuscation start from multilinear
maps, which are poorly understood. In particular, many attacks on the known candidate multilinear
map constructions have been shown [GGH13a, CHL+15, HJ15, CGH+15, CLLT15, MSZ16].

In light of this, it is paramount that we base IO on well-studied computational assumptions. One
of the assumptions that has been used in a successful way for realizing sophisticated cryptographic
primitives is the Learning with Errors (LWE) assumption [Reg05]. LWE is already known to imply
attribute-based encryption [GVW13] (or even predicate encryption [GVW15]), fully homomorphic
encryption [Gen09b, BV11b, BV11a, GSW13]1, multi-key [CM15, MW16, BP16, PS16] and spooky
homomorphic encryption [DHRW16a]. One thing that all these primitives share is that they are
of an “all-or-nothing” nature. Namely, either someone has the “right” key, in which case they can
decrypt the message fully, or if they do not posses a right key, then they are not supposed to learn
anything about the plaintext.2 In this work, our main question is:

Main question: Can IO be based on any powerful ‘all-or-nothing’ encryption primitive
such as predicate encryption or fully homomorphic encryption?

We show that the answer to the above question is essentially “no.” However, before stating
our results in detail, we stress that we need to be very careful in evaluating impossibility results
that relate to such powerful encryption primitives and the framework they are proved in. For
example, such a result if proved in the fully black-box framework of [IR89, RTV04] has limited
value as we argue below.3 Note that the black-box framework restricts to constructions that use
the primitive and the adversary (in the security reduction) as a black-box. The reason for being
cautious about this framework is that the constructions of powerful encryption primitive offer for a
very natural non-black-box use. In fact, the construction of IO from compact functional encryption

1Realizing full-fledged fully-homomorphic encryption needs additional circular security assumptions.
2This is in contrast with functional encryption where different keys might leak different information about the

plaintext.
3Such results could still have some value for demonstrating efficiency limitations but not for showing infeasibility,

as is the goal of this work.

3

[AJ15, BV15, AJS15] is non-black-box in its use of functional encryption. This is not a coincidence
(or, just one example) and many applications of functional encryption (as well as other powerful
encryption schemes) and IO are non-black-box [Gen09b, SW14, BZ14, GPS16, GPSZ16]. Note that
the difference between these powerful primitives and the likes of one-way functions, hash functions,
etc., is that these powerful primitives include subroutines that take arbitrary circuits as inputs.
Therefore, it is very easy to self-feed the primitive. In other words, it is easy to plant gates of its
own subroutines (or, subroutines of other cryptographic primitives) inside such a circuit that is then
fed to it as input. For example, the construction of IO from FE plants FE’s encryption subroutine
as a gate inside the circuit for which it issues decryption keys. This makes FE a “special” primitive
in that at least one of its subroutines takes an arbitrary circuit as input and we could plant code
of its subroutines in this circuit. Consequently, the obtained construction would be non-black-box
in the underlying primitive. This special aspect is present in all of the primitives that we study
in this work. For example, one of the subroutines of predicate encryption takes a circuit as input
and this input circuit is used to test whether the plaintext is revealed during the decryption or not.
Along similar lines, evaluation subroutine of an FHE scheme is allowed to take as input a circuit
that is executed on an encrypted message.

The above “special” aspects of the encryption functionalities (i.e. that they take as input general
circuits or Turing machines and execute them) is the main reason that many of the applications
of these primitives are non-black-box constructions. Therefore, any effort to prove a meaningful
impossibility result, should aim for proving the result with respect to a more general framework
than that of [IR89, RTV04]. In particular, this more general framework should incorporate the
aforementioned non-black-box techniques as part of the framework itself.

The previous works of Brakerski, Katz, Segev, and Yerukhimovich [BKSY11] and the more
recent works of Asharov and Segev [AS15, AS16] are very relevant to our studies here. All of
these works also deal with proving limitations for primitives that in this work we call special (i.e.
those that take general circuits as input), and prove impossibility results against constructions that
use these special primitives while allowing some form of oracle gates to be present in the input
circuits. A crucial point, however, is that these works still put some limitation on what oracle
gates are allowed, and some of the subroutines are excluded. The work of [BKSY11] proved that
the primitive of Witness Indistinguishable (WI) proofs for NPO statements where O is a random
oracle does not imply key-agreement protocols in a black-box way. However, the WI subroutines
themselves are not allowed inside input circuits. The more recent works of [AS15, AS16] showed
that by using IO over circuits that are allowed to have one-way functions gates one cannot obtain
collision resistant hash functions or (certain classes of) one-way permutations families (in a black-
box way). However, not all of the subroutines of the primitive itself are allowed to be planted as
gates inside the input circuits (e.g., the evaluation procedure of the IO).

In this work, we revisit the models used in [BKSY11, AS15, AS16] who allowed the use of
one-way function gates inside the given circuits and study a model where there is no limitation on
what type of oracle gates could be used in the circuits given as input to the special subroutines,
and in particular, the primitive’s own subroutines could be planted as gates in the input circuits.
We believe a model that captures the “gate plantation” technique without putting any limitation
on the types of gates used is worth to be studied directly and at an abstract level, due to actual
positive results that exactly benefit from this “self-feeding” non-black-box technique. For this goal,
here we initiate a formal study of a model that we call the monolithic model, which captures the
above-described non-black-box technique that is commonplace in constructions that use primitives

4

with subroutines that take arbitrary circuits as input.
More formally, suppose P is a primitive that is special as described above, namely, at least one

of its subroutines might receive a circuit or a Turing machine C as input and executes C internally
in order to obtain the answer to one of its subroutines. Examples of P are predicate encryption,
fully homomorphic encryption, etc. A monolithic construction of another primitive Q (e.g., IO)
from P will be allowed to plant the subroutines of P inside the circuit C as gates with no further
limitations. To be precise, C will be allowed to have oracle gates that call P itself. Some of major
examples of non-black-box constructions that fall into this monolithic model are as follows.

• Gentry’s bootstrapping construction [Gen09a] plants FHE’s own decryption gates inside a
circuit that is given as input to the evaluation subroutine. This trick falls into the monolithic
framework since planting gates inside evaluation circuits is allowed.

• The bootstrapping of IO for NC1 (along with FHE) to obtain IO for P/poly [GGH+13b].
This construction uses P that includes both IO for NC1 and FHE, and it plants the FHE
decryption gates inside the NC1 circuit that is obfuscated using IO for NC1. Analogously,
bootstrapping methods using one-way functions [App14, CLTV15] also fall in our framework.

• The construction of IO from functional encryption [AJ15, BV15, AJS15] plants the functional
encryption scheme’s encryption subroutine inside the circuits for which decryption keys are
issued. Again, such a non-black-box technique does fall into our monolithic framework. We
note that the constructions of obfuscation based on constant degree graded encodings [Lin16]
also fit in our framework.

The above examples show the power of the monolithic model in capturing one of the most commonly
used non-black-box techniques in cryptography and especially in the context of powerful encryption
primitives.

What is not captured by the monolithic model? It is instructive to understand the kinds of
non-black-box techniques not captured by our extension to the black-box model. This model does
not capture non-black-box techniques that break the computation of a primitives sub-routines into
smaller parts — namely, we do not include techniques that involve partial computation of a sub-
routine, save the intermediate state and complete the computation later. In other words, the planted
sub-routines gates must be executed in one-shot. Therefore, in our model given just an oracle that
implements a one-way function it is not possible to obtain garbled circuits that evaluate circuits
with one-way function gates planted in them. For example, Beaver’s OT extension construction
cannot be realized given just oracle access to a random function.

However, a slight workaround (though a bit cumbersome) can still be used to give meaningful
impossibility results that use garbled circuits (or, randomized encodings more generally) in our
model. Specifically, garbled circuits must now be modeled as a special primitive that allows for
inputs that can be arbitrary circuits with OWF gates planted in them. With this change the
one-way function gate planted inside circuit fed to the garbled circuit construction is treated as a
individual unit. With this change we can realize Beaver’s OT extension construction in our model.

In summary, intuitively, our model provides a way to capture “black-box” uses of the known
non-black-box techniques. While the full power of non-black-box techniques in cryptography is yet
to be understood, virtually every known use of non-black-box techniques follows essentially the
same principles, i.e. by plating subroutines of one primitive as gates in a circuit that is fed as

5

input to the same (or, another) primitive. Our model captures any such non-black box use of the
considered primitives.

1.1 Our Results

The main result of this paper is that several powerful encryption primitives such as predicate
encryption and fully-homomorphic encryption are incapable of producing IO via a monolithic con-
struction as described above. (A summary of our results is presented in Figure 1.)

Theorem 1.1 (Main result). Let P be one of the following primitives: fully-homomorphic encryp-
tion, attribute-based encryption, predicate encryption, multi-key fully homomorphic encryption, or
spooky encryption. Then, assuming one-way functions exist and NP 6⊆ coAM, there is no con-
struction of IO from P in the monolithic model where one is allowed to plant P gates arbitrarily
inside the circuits that are given to P as input.

WE

HWE

IHWE 6=⇒
6=⇒

IO

=
⇒

PE

=⇒ =⇒

Spooky Encryption Attribute-Based FHE=⇒ =⇒

Multi-Key FHE =⇒ FHE

Figure 1: Summary of our results. IHWE denotes Instance Hid-
ing WE and HWE denotes Homomorphic Witness Encryption.

All-or-nothing aspect. One
common aspect of all of the prim-
itives listed in Theorem 1.1 is that
they have an all-or-nothing na-
ture. Namely, either someone has
the right key to decrypt a mes-
sage, in which case they can re-
trieve all of the message, or if
they do not have the right key
then they are supposed to learn
nothing. In contrast, in a func-
tional encryption scheme (a prim-
itive that does imply IO) one can
obtain a key kf for a function f
that allows them to compute f(x)
from a ciphertext c containing the
plaintext x. So, they could legit-
imately learn only a “partial” in-
formation about x. Even though we do not yet have a general result that handles such primitives
uniformly in one shot, we still expect that other exotic encryption primitives (that may be devel-
oped in the future) that are of the all-or-nothing flavor will also not be enough for realizing IO. We
expect that our techniques will be useful in deriving impossibility results in such case.

What does our results say about LWE? Even though our separations of Theorem 1.1 covers
most of the powerful LWE-based primitives known to date, it does not imply whether or not we
can actually base IO on LWE. In fact, our result only rules out specific paths from LWE toward
IO that would go through either of the primitives listed in Theorem 1.1. Whether or not a direct
construction from LWE to IO is possible still remains as a major open problem in this area.

Key role of witness encryption. Witness encryption [GGSW13] and its variations play a key
role in the proof or our impossibility results. Specifically, we consider two (incompatible) variants

6

of WE — namely, instance hiding witness encryption and homomorphic witness encryption. The
first notion boosts the security of WE and hides the statement while the second enhances the
functionality of WE with some homomorphic properties. We obtain our separation results in two
steps. First, we show that neither of these two primitives imply IO in a monolithic way. Next, we
show that these two primitives imply extended versions of all the all-or-nothing primitives listed
above in a monolithic way. The final separations follow from a specific transitivity lemma that
holds in the monolithic model.

1.2 Further Related Work

Now we describe previous work on the complexity of assumptions behind IO and previous works
on generalizing the black-box framework of [IR89, RTV04].

Previous lower bounds on complexity of IO. The work of Mahmoody et. al [MMN+16b]
proved lower bounds on the assumptions that are needed for building IO in a fully black-box way.4

They showed that, assuming NP 6= co-NP, one-way functions or even collision resistant hash
functions do not imply IO in a fully black-box way.5 Relying on the works of [CKP15, Pas15,
MMN15] (in the context of VBB obfuscation in idealized models) Mahmoody et. al [MMN+16b]
also showed that building IO from trapdoor permutations or even constant degree graded encoding
oracles (constructively) implies that public-key encryption could be based on one-way functions
(in a non-black-box way). Therefore, building IO from those primitives would be as hard as
basing PKE on OWFs, which is a long standing open question of its own. Relying on the recent
beautiful work of Brakerski, Brzuska, and Fleischhacker [BBF16] that ruled out the existence of
statistically secure approximately correct IO and a variant of Borel-Cantelli lemma, Mahmoody et.
al [MMN+16a] showed how to extend the ‘hardness of constructing IO’ result of [MMN+16b] into
conditional black-box separations.

Other non-black-box separations. Proving separations for non-black-box constructions are
usually extremely hard. However, there are a few works in this area that we shall discuss here. The
work of Baecher, Brzuska, and Fischlin [BBF13] studied various generalizations of the black-box
framework of [RTV04] that also allow some forms of non-black-box use of primitives. The work of
Pass, Venkitasubramaniam and Tseng [PTV11] showed that under (new) believable assumptions
one can rule out non-black-box constructions of certain cryptographic primitives (e.g., one-way
permutations, collision-resistant hash-functions, constant-round statistically hiding commitments)
from one-way functions, as long as the security reductions are black-box. Pass [Pas11] showed that
the security of some well-known cryptographic protocols and assumptions (e.g., the Schnorr identi-
fication scheme) cannot be based on any falsifiable assumptions [Nao03] as long at the security proof
is black-box (even if the construction is non-black-box). The work of Gentry and Wichs [GW11]
showed that black-box security reductions (together with arbitrary non-black-box constructions)
cannot be used to prove the security of any SNARG construction based on any falsifiable crypto-
graphic assumption. Finally, the recent work of Dachman-Soled [DS16] showed that certain classes

4A previous result of Asharov and Segev [AS15] proved lower bounds on the complexity of IO with oracle gates,
which is a stronger primitive. (In fact, how this primitive is stronger is tightly related to how we define extensions of
primitives. See Section 4 where we formalize the notion of such stronger primitives in a general way.).

5Note that since statistically secure IO exists if P = NP, therefore we need computational assumptions for proving
lower bounds for assumptions implying IO.

7

of constructions with some limitations, but with specific non-black-box power given to them are
not capable of reducing public-key encryption to one way functions.

Organization. In Section 2, we present at a high-level the main technical ideas behind this work.
In Section 3, we review the needed preliminaries and also review some of the tools that are developed
in previous work for proving lower bounds on IO. In Section 4, we discuss the monolithic model and
its relation to extended primitives in detail and give a formal definition of monolithic constructions
from witness encryption. In Section 5, we give a full proof of the separation of IO from (even
instance-revealing) extended witness encryption. In Section 6, we give a full proof of the separation
of IO from extended instance-hiding witness encryption. In Section 7, we give a full proof of the
separation of IO from extended homomorphic witness encryption. Finally, in Section 8, we show
how to get different extended primitives from the stronger variants of witness encryption (which
we separated from IO in previous sections) in order to conclude that these extended primitives are
also separated from IO.

2 Technical Overview

2.1 New Extended Framework for Proving Separations

In this section, we describe ideas that lead to an extension to the black-box framework of [IR89,
RTV04], which we call the monolithic framework where a common non-black-box technique is
allowed in the constructions. The goal of this section is to explain and justify the way we define
“monolithic” constructions that use specific primitives such as witness encryption. As it will become
clear later, our definition of monolithic constructions is meaningful with respect to a “special”
primitive with a “special” subroutine that takes a general circuit as input.6 But, to be fully formal,
we will give formal definitions of what this monolithic model means when we use the exact set
of primitives mentioned in our main theorem. This way, we can give full formal definitions as to
what we mean by an monolithic construction for our specific primitives that are needed for the
separations in Theorem 1.1, and we also give full proofs of separations for them under this more
relaxed black-box notion. However, we emphasize that, for a new primitive P, one still has to
give a formal definition of what it means to use P in an monolithic way by specifying its special
subroutines. What we discuss in this section lays down the main intuitive features that, if P
possesses them, a monolithic use of P is possible.

Intuitively, this monolithic model allows the construction of a primitive Q based on another
primitive P to plant oracle gates (or oracle calls) to P itself in the circuits (or Turing machines) in
generic computations done by P whenever Q has the choice of doing so by choosing certain inputs
given to P. For example, to get identification protocols from one-way functions and zero-knowledge
proofs [FS86, FFS88] one has to use the code of one-way functions and feed it to the zero-knowledge
protocol used. This makes the final construction non-black-box according to the [RTV04] definition,
however we would like to define a general abstract extended model of black-box constructions (i.e.
monolithic constructions) that allows such techniques.

In Section 4 we get into the details of how to define black-box reductions for a class of special
primitives with a special subroutine as described above that fall under the monolithic framework.
In this technical overview, however, for sake of simplicity and concreteness at the same time, we

6This is not the formal definition, as the input circuit should be used in certain ways.

8

focus on developing a formal definition of what it means to use witness encryption in a monolithic
way. As we said in the introduction, witness encryption will indeed play a crucial role in deriving
our impossibility results.

2.1.1 A Concrete Definition for Case of WE

Consider the primitive of witness encryption [] (Enc,Dec) where one can run Enc(a,m) = c to
encrypt a message m under a circuit a, and then later on, one can also try to decrypt c by using
a “witness” w for which a(w) = 1.7 A black-box construction (see Definition 3.12) of a primitive
based on witness encryption is limited to only encrypting messages under circuits a that are in the
plain model. That is because the input-output function definition of primitive witness encryption
(as stated above) only accepts plain circuits as input. However, in many applications of witness
encryption, when we use witness encryption, we end up using oracle circuits aO. The reason that
doing so is fine (even though the definition of witness encryption requires plain circuits) that those
procedures of O would be eventually implemented efficiently and could be turned into circuits
(using the Cook-Levin reduction).

A monolithic construction from witness encryption is exactly allowed to do the above trick
(of planting oracle gates in the input circuits) but it does so regardless of having an efficient
implementation for the subroutines of WE. In other words, even if we use an inefficient oracle to
implement WE, we still get an inefficient implementation for the constructed primitive. Now, we
can let a to be an oracle circuit calling either of (Enc,Dec) freely, when (Enc,Dec) themselves are
available as oracle subroutines (and might be inefficiently implemented). We emphasize that, by
allowing this extension, we might eventually get multiple levels of nested oracle calls (since the
circuit given to the decryption, can potentially have decryption gates itself), and allowing this
to happen makes this model more powerful. However we should also be careful that this nested
sequence of calls does not lead to exponential time.

Monolithic construction = fully black-box use of an extended primitive The above-
mentioned example of how a monolithic construction using WE works shows that monolithic con-
structions using witness encryption could be interpreted in an equivalent way in which the construc-
tion is in fact fully black-box (see Definition 3.12), but it uses a stronger “extended” variant of the
WE primitive where we allow oracle gates (calling the same primitive, namely witness encryption)
to be planted in the circuits given as input to the encryption subroutine. Note that the extended
WE is technically a different primitive than WE (because for inefficient implementations of WE,
we would accept inefficient circuits as inputs as well), even though the two primitives are equivalent
in a non-black-box way.

The following is the way we define extended WE in a “symmetric” way such that either the
given input instance is a circuit (by interpreting it so and running it over the witness), or the
instance is actually an input to a circuit and it is the witness that is the circuit. See Definition 4.6
for a more detailed version.

Definition 2.1 (Extended Witness Encryption). Let V be an oracle algorithm that takes “instance”
a and “witness” w as inputs, interprets a as an oracle-aided circuit, then outputs a(·)(w). An
extended witness encryption scheme for a relation given by V consists of two PPT algorithms
(Enc,DecV) defined as follows:

7This way of defining witness encryption is based on the NP complete problem of circuit satisfiability.

9

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗ outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” w, it either outputs a m ∈ {0, 1}∗ or ⊥.

An extended witness encryption scheme satisfies the the same completeness and security properties
as the standard Definition of WE (see Definition 3.3).

We can also define a symmetric variant of extended WE where the relation V interprets w as
the circuit instead and runs w(a). In either case, we note that, since V is a relation that acts as a
universal circuit, the running time of V(w, a) is guaranteed to be poly(n) where n = |a|+ |w|. That
is due to the fact that each recursive call is invoked on inputs of a smaller size (in fact of length
n− 1) which results in a halting execution of time at most O(n2).

Using the same idea, one can define extended variants of many other primitives (see Definition
4.7). Finally, after defining what an extended WE primitive is, we can formally define what it
means to have an monolithic construction that uses WE:

Definition 2.2 (Monolithic Construction of WE). Suppose Q is a primitive and W̃E is an extended
version of WE defined as in Definition 2.1. Any fully black-box construction (see Definition 3.12)

for Q from W̃E (i.e. an extended version of WE) is also a monolithic construction of Q from WE.

Again, the idea extends beyond WE and we apply it to all the other primitives that we deal
with in our main Theorem 1.1.

Monolithic separations through fully black-box separations. The crucial point here is that
because monolithic constructions are in fact fully black-box constructions based on the extended
variants of the same primitive, at least we will have a path to prove impossibility results in this
monolithic model via proving fully black-box constructions; however, the catch is that we have to do
so with respect to a stronger variant of the original primitive, namely its more powerful extensions.

2.1.2 A Transitivity Lemma for Deriving More Separations

The way we defined monolithic constructions (based on black-box constructions using the extended
primitive) allows us to prove a transitivity lemmas that will then pave our way towards proving more
separations in the monolithic framework. Namely, it can be shown that if P,Q,R are cryptographic
primitives and (1) there is an monolithic construction of the extended variant of Q from P and
(2) there is an monolithic construction of R from Q, then there is a monolithic construction of R
from P (see Lemma 4.10 and its proof). Therefore, to prove that a primitive P (e.g., predicate
encryption) does not imply IO, we could employ the following argument outline:

1. Separate IO from WE in the monolithic model. In other words, prove that there is no fully
black-box construction of IO from the extended variant of WE.

2. Prove that the extended variant of the primitive P could be obtained from witness encryption
in a monolithic way.

We will apply the above idea to various forms of witness encryption and different all-or-nothing
encryption primitives P.

10

2.2 Using Variants of Witness Encryption as the Middle Primitive

As described above, to derive more separation lower bounds for IO, e.g., from a primitive Q, we
could define a “middle primitive” P and the following: (1) show that P does not imply IO in the
monolithic model, and (2) show that there is a monolithic construction of the extended version
of Q from P. In this work we will use variants of WE to play the role of this middle primitive
P. Namely we will use the following two variants: (1) “instance-hiding” WE, and (2) “instance-
revealing homomorphic” WE.8 Below we will discuss these notions in more details, but before
doing that we shall point out that these two notions are incomparable strengthenings of the basic
notion of witness encryption. The first one strengthens witness encryption in terms of security
(which is essential for achieving predicate encryption) while the latter strengthening is in terms of
functionality (which is essential for achieving full-homomorphic encryption and its variants). These
two notions are incomparable and in fact strengthen the standard notion of witness encryption in
somewhat incomparable ways. As a side remark, we note that strengthening witness encryption to
incorporate instance hiding property precludes us from also having compact homomorphism along
with. Therefore, we need to consider these two primitives separately. Furthermore, showing that
obfuscation is not possible from either of them poses different technical challenges.

In the following we will first focus on the simpler and basic case of separating IO from WE.
This will allow us to communicate some basic tools that we use from previous work and also discuss
some of our new ideas, and then we will turn into the specific variants of WE that we mentioned
and explain the new ideas that each case requires. However, we first quickly recap the recent
developments in previous work that provides us with a recipe of how to prove fully black-box lower
bounds for IO. As we discussed above, that framework could still be used by us to prove lower
bounds for IO in the monolithic model, but we have to do so with respect to the stronger variants
of our primitives of interest (e.g., WE).

2.2.1 Known Recipe for Proving Lower Bounds for IO

A sequence of recent work [CKP15, MMN15, Pas15, MMN+16b, BBF16, MMN+16a] has led to
the following (informally stated) lemma which provides a way to prove fully lower bounds for IO.

Lemma 2.3 (Lemma for Proving Lower Bounds for IO). Suppose I is an idealized oracle and
suppose we can “compile out” I from any IO construction in a world where I is accessible to get
an IO scheme in the plain model where the new scheme is only approximately correct: it computes
the correct answer only over 99/100 fraction of the input. Also suppose primitive P can be securely
implemented in the model I. Then there is no fully black-box construction of IO from P.

See Section 3.4 (particularly Lemma 3.26 there) for details of how to derive this lemma from
previous works. Below we discuss how we apply this approach to the case of variants of witness
encryption.

2.2.2 The Warm-Up Case: Applying Lemma 2.3 to the Basic Case of WE

To separate IO from the extended variant of WE (i.e., separating IO from WE in the monolithic
model) we can try to apply Lemma 2.3 and prove a fully black-box separation for IO from the

8In fact, to be able to use these primitives to derive other primitives we will need these WE variants to have some
“extractability” properties as well. However, in this technical overview we will not focus on that aspect and will
describe only the main ideas through the simpler (non-extractable) versions of these primitives.

11

extended variant of WE. Suppose V is the oracle universal circuit algorithm that defines the witness
verification of the extended WE primitive we would like to separate from IO. As a first try, let see
what happens if we try to use the following simple oracle to implement this extended WE primitive.

The Idealized WE Oracle I. We use a random injective oracle Enc(a,m) 7→ c to encrypt
any message m under the attribute/instance a. The other oracle subroutine DecV(w, c) does the
decryption with respect to V as follows:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise:

2. Find x such that Enc(x) = c and parse it as x = (a,m).

3. If VΘ(w, a) = 0 output ⊥. (Note that this step might need launching some recursive oracle
calls.) Otherwise, output m.

Now our goal is two-fold: showing that this oracle indeed gives us a secure implementation of
the extended WE primitive (defined by relation V) and that the oracle I can be securely compiled
out of any IO construction (while keeping the approximate correctness). Proving that this oracle
gives us a secure extended WE, while requiring an analysis that is quite involved, is often safe to
believe is true due to the ideal nature of I. Thus, the challenge lies in the second goal of proving
that we can compile out I from an IO scheme while preserving correctness, and so we will discuss
this in more detail.

Trying to compile out I from any IO scheme IOI. Let IOI be an obfuscation in some ide-
alized model I that implements the extended WE primitive. As mentioned above, one of our main
tasks is to “compile-out” the oracle from an ideal model secure obfuscator to get an approximate
plain-model obfuscator IO′ that is also secure. To do so we use the ideas developed in the work of
[CKP15, MMN15, Pas15] which is based on learning the “heavy queries” asked by the obfuscated
code to the oracle and hard-coding them into the obfuscated code in the plain model.9 Specifically,
the new plain-model obfuscator IO′, given a circuit C to obfuscate would work in two steps. The
first step of IO′ is to emulate IOI(C) to get an ideal-model obfuscation B, making sure to lazily
evaluate (i.e., emulate) any queries issued to I. The second step of IO′ is to learn the queries that
are “likely” to be asked by BI(x) for a random input x. We do this by executing BI(xi) (while
we emulate the queries to I consistently) enough number of times for different xi in an effort to
learn all the highly probable queries, which we denote by QB. The output of IO′ is the plain-model
obfuscation B′ = (B,QB), where B is the ideal-model obfuscation and QB is the set of learned
queries. To evaluate the obfuscation over a new random input x, we simply execute B′(x) = BI(x)
while emulating any queries to I consistently relative to QB.

Security of compiler: only include simulatable information in B′. The security of the
new plain-model obfuscator crucially depends on whether the queries QB that we publish are
simulatable. In other words, we want to prove that if the adversary A against this new plain-
model does not gain any additional advantage because these queries can be simulated by having
A itself run BI(xi) several times. As a result, we will only put queries in QB (forwarded to be

9Note that this compiling out process is not independent of the oracle being removed since different oracles may
require different approaches to be emulated. However, the general high-level idea is the same.

12

part of the plain-model obfuscator) where these queries could be obtained by the adversary as well.
Doing so allows us to immediately reduce the security to that of the ideal-model obfuscation. It
is therefore important to release only those queries that can be simulated to ensure security is
preserved (for example, we cannot publish the queries asked during the emulation in step 1 as they
are not simulatable).

The other task we will have is to prove the approximate correctness of the new model, which
informally states that an execution B′(x) should be correct with high probability over x. Note
that unless we ask an unlearned query to I that was previously asked by some hidden part of the
emulation process (e.g. during step 1), the execution should be statistically distributed to an ideal
execution of BI(x) where the queries are not emulated but answered using a real oracle. In fact if
the oracle I did not involve any “internal/hidden” query asked by V, we could use the arguments
given [CKP15, MMN15] to show that: the probability that we ask an unlearned hidden query
occurs with sufficiently small probability.

Main challenge for proving the correctness A subtle, but extremely important point here
that prevents us from proving the approximate correct is that when we run a decryption query
of the form DecV(w, c) in the actual ideal model, we will not see what queries the verifier V asks
from the oracle itself. That is the reason that we call any such query a “hidden” or “indirect”
query (in eyes of the person asking the query DecV(w, c) in the ideal model). Therefore, for sake of
security we are not allowed to provide this information to the final plain-model obfuscated code,
even though we have emulated all of these oracle query/answers from the beginning on our own!
This is exactly the reason that the approximate correctness of the final plain-model obfuscated code
B′ could be risked, because we might no longer be able to continue emulating the oracle consistently
while executing B′(x) on a random point x.

Resolving the Challenge. The way we handle the above issue of finding the heavy queries,
even if they are of the hidden/indirect type is as follows. We will make them to be clear! We will
do so through a new subroutine in the oracle that will always reveal the instance/attribute a inside
a plaintext c. Namely, we add the following subroutine to I:

• Rev(c) : given ciphertext c outputs a for which Enc(a,m) = c.

Now, we can pretend that any algorithm who wants to call a decryption query of the form DecV(w, c)
to our oracle, it will first obtain the relevant instance/attribute a = Rev(c), run the verifier V(a,m)
on its own, and if the test passes V(a,m) = 1 the algorithm will indeed ask the query DecV(w, c).
This is a simple “canonicalization” of the algorithms in the idealized model I, however this will
be enough to guarantee that no internal/indirect query asked by V during the computation of
DecV(w, c) remains hidden! In other words, by running the obfuscated code on enough number of
random points, we will be able to discover all the heavy queries that are needed for a successful
execution of the new obfuscated code in the plain model.

We shall finally emphasize that the above trick of adding a new subroutine Rev(c) does not
violate the security of (extended) WE relative to our oracle I.

2.3 Separating IO from Instance-Hiding WE

To derive our separations for primitives such as predicate encryption, we will first separate IO
from a variant of WE which we call “instance hiding” WE, and we also show that this primitive

13

is strong enough to imply (even extended) PE in a monolithic way.10 An instance hiding WE
is a variant of WE where two ciphertexts Enc(a0,m0) = c0,Enc(a1,m1) = c1 that hide different
instance/attributes a0 6= a1 are indistinguishable so long as there is no witness that satisfies either
of these instances; namely V(ab, w) = 0 for all w and b ∈ {0, 1} (see Definition 3.5). The reason
that we will need such variant of WE for constructing PE is that PE itself has the same nature
and different ciphertexts under unsatisfiable attributes should remain indistinguishable.

Challenge: we cannot have Rev(·) as part of oracle. It becomes immediately clear that
we cannot use the same oracle of the previous section (for the case of basic WE) to prove our
separation for IHWE anymore. The reason is that the subroutine Rev(c) = a clearly destroys the
instance hiding property that we want to keep!

Idea: revealing attribute a conditionally, at decryption time. The new idea that we will
introduce in for the case of IHWE is that we will still “weaken” the security (towards helping the
discovery of the hidden queries asked by V(w, a) for a decryption oracle query). However, we will
do so in a conditional way so that it will not contradict the instance hiding property. Namely, we
will only reveal a if the decryption succeeds. More formally, we will use the following decryption
subroutine. DecV(w, c) does the decryption with respect to V as follows:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise:

2. Find x such that Enc(x) = c and parse it as x = (a,m).

3. If VΘ(w, a) = 0 output ⊥. (Note that this step might launch some recursive oracle calls.)
Otherwise, output both of (a,m).

Note that the above modified way of decryption ciphertexts will not interfere with the instance
hiding property of the scheme. However, it will be hugely important for us to still be able to discover
the heavy queries of the obfuscated code in the idealized model (and so we can still compile out
the idealized oracle from any IO construction). Unfortunately, we are not able to discover all the
hidden/internal queries of a decryption query immediately, but we can do so only conditionally.
Specifically, whenever the obfuscated circuit calls a decryption query Dec(w, c) and the underlying
message x is successfully decrypted, the obfuscated circuit can now run VΘ(w, a) = 1 to reveal
the queries asked. This can be thought of as a weaker form of canonicalization of the code of the
verifier that still sometimes reveals the hidden parts of the oracle computation. That is because,
it is possible that the decryption fails, in which case we may have some hidden queries QV asked
by an underlying VΘ(w, a) = 0 that cannot be revealed or learned. Nonetheless, we show using a
careful argument that by doing enough rounds of learning (over random inputs) and “opening up”
the internal hidden parts of the verification queries as much as possible, we will still get enough
information to run the final (plain model) obfuscated code B′ with approximate correctness close
to 1. We refer the reader to the next sections for formal proofs.

2.4 Separating IO from Homomorphic WE

For obtaining our separations for IO from the set of “homomorphic” primitives listed in Theorem 1.1
we will employ a “middle” primitive called “homomorphic (instance revealing) witness encryption”.

10To be more formal, we need this primitive to be “extractable” instance hiding WE, but for sake of simplicity we
defer the extractability issue to the later sections where we define everything formally.

14

Roughly speaking, this primitive allows homomorphic operations over the ciphertexts that are
encrypted under the same attribute/instance. However, it is possible to always extract this attribute
efficiently (this is exactly how we modified the witness encryption in our basic case to be able to
prove the separation from IO). In other words, we will need an extra functionality over the instance
revealing WE as described in previous section.

New challenge: homomorphic queries. Due to the fact that we are still working with an
instance revealing form of WE, this simplifies our job and we will not fall into the challenges that
we faced for the case of Instance-hiding WE. However, we will have a new challenge: we need to
find the heavy queries that are asked during the evaluation procedure! This is something that did
not exist in the basic and instance hiding versions of WE. In Section 7 we will show that, essentially,
the same learning procedure will allow us to learn enough information to simulate the last final
(real) execution of the obfuscated code on a given input. In particular, for an evaluation query
EvalF(c1, . . . , ck) that computes some homomorphic evaluation F(m1, . . . ,mk) over the plaintexts
inside (c1, . . . , ck), there are two cases: either we already have learned the messages m1, . . . ,mk in
which case we can also run the algorithm F(m1, . . . ,mk), but we do not know any of these messages,
we will simply generate a random answer and use it to emulate the answer to the homomorphic
operation. A careful analysis is needed to prove that this in fact leads to an approximately correct
execution of the code in the plain model.

2.5 Primitives Implied by Our Variants of WE

We now describe our ideas on how the previously described variants of WE can be used to imply
extended PE and extended FHE. Building on similar principles we can also obtain extended spooky
encryption and extended attribute-based FHE. In realizing these primitives we use the extended
and extractable versions of these variants of WE. The constructions are based on ideas developed to
demonstrate how WE [GGSW13] and extractable WE [BCP14, ABG+13] can be used to construct
various exotic cryptographic primitives.

2.5.1 Getting Extended PE from Instance Hiding WE

We start by showing how instance-hiding WE implies extended selectively-secure PE for the pred-
icate P(k, a) where k ∈ K and a ∈ A.11 The idea is straightforward. A secret key for a string k
is just a signature on it and a ciphertext encrypting a message x = (a,m) is an (instance hiding)
witness encryption with respect to the attribute C that represents a Boolean circuit for verifying
the signature and checking that P (k, a) = 1.

To decrypt the ciphertext, we use the decryption of the (instance hiding) witness encryption that
takes as input the signature skk (acting as a key for the string k) and outputs m if C(k, skk, a) = 1.
Security of this construction follows directly from the security of the extractable instance-hiding
witness encryption scheme and the existential unforgeability of the underlying signature scheme.
More specifically, by security of witness encryption we have that any adversary distinguishing wit-
ness encryption ciphertexts can be used to recover a witness which our case serves as an existential
forger. Note that P is allowed to have gates of the PE subroutines planted in them. In the main
body, we argue that the above described construction supports this.

11Details on strengthening the result to full-security have been postponed to the main body.

15

2.5.2 Getting Extended FHE from Homomorphic WE

Realizing extended FHE from instance-revealing homomorphic witness encryption is essential the
same as the Garg et al. [GGSW13] construction of public-key encryption from WE and PRG. The
public-key for the FHE is just the output PK = G(s) of a PRG G on input a seed s and ciphertext
is just a witness encryption ciphertext encrypting m for V where V(w,CPK) = 1 if and only if
CPK(w) = 1 where CPK(w) checks if PK = G(w), outputs 1 if it is the case and 0 otherwise.
Now by the homomorphic property of the witness encryption this new encryption scheme is also
homomorphic. On the other hand, security follows directly from the security of the PRG and the
WE scheme. Note that the evaluation procedure of the homomorphic encryption scheme is allowed
to have gates of its subroutines planted in it. In the main body, we argue that the above described
construction supports this.

3 Preliminaries

Notation. We use “||” to concatenate strings and we use “,” for attaching strings in a way that
they could be retrieved. Namely, one can uniquely identify x and y from (x, y). For example
(00||11) = (0011), but (0, 011) 6= (001, 1). When writing the probabilities, by putting an algorithm
A in the subscript of the probability (e.g., PrA[·]) we mean the probability is over A’s randomness.
We will use n or κ to denote the security parameter. We call an efficient algorithm V a verifier
for an NP relation R if V(w, a) = 1 iff (w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈ R} the
corresponding NP language. By PPT we mean a probabilistic polynomial time algorithm. By an
oracle PPT/algorithm we mean a PPT that might make oracle calls.

3.1 Primitives

In this subsection we define the primitives that we deal with in this work and are defined prior to
our work. In the subsequent sections we will define variants of these primitives.

The definition of IO below has a subroutine for evaluating the obfuscated code. The reason
for defining the evaluation as a subroutine of its own is that when we want to construct IO in
oracle/idealized models, we allow the obfuscated circuit to call the oracle as well. Having an
evaluator subroutine to run the obfuscated code allows to have such oracle calls in the framework
of black-box constructions of [RTV04] where each primitive Q is simply a class of acceptable
functions that we (hope to) efficiently implement given oracle access to functions that implement
another primitive P (see Definition 3.12).

Definition 3.1 (Indistinguishability Obfuscation (IO)). An Indistinguishability Obfuscation (IO)
scheme consists of two subroutines:

• Obfuscator iO is a PPT that takes as inputs a circuit C and a security parameter 1κ and
outputs a “circuit” B.

• Evaluator Ev takes as input (B, x) and outputs y.

The completeness and soundness conditions assert that:

• Completeness: For every C, with probability 1 over the randomness of iO, we get B ←
iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

16

• Security: for every poly-sized distinguisher D there exists a negligible function µ(·) such that
for every two circuits C0, C1 of the same size and compute the same function we have:

|Pr
iO

[D(iO(1κ, C0) = 1]− Pr
iO

[D(iO(1κ, C1) = 1]| ≤ µ(κ).

Definition 3.2 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-approximate IO scheme is
defined similarly to an IO scheme with a relaxed completeness condition:

• ε-approximate completeness. For every C and n we have:

Pr
x,iO

[B = iO(1κ, C), Ev(B, x) = C(x)] ≥ 1− ε(κ).

Definition 3.3 (Witness Encryption (WE) Indexed by Verifier V). Let L be an NP language with
a corresponding efficient relation verifier V (that takes instance a and witness w and either accepts
or rejects). A witness encryption scheme for relation defined by V consists of two PPT algorithms
(Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security param-
eter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a m ∈ {0, 1}∗ or ⊥.

We also need the following completeness and security properties:

• Completeness. For any security parameter κ, any (a,w) such that V(a,w) = 1, and any m
it holds that

Pr
Enc,DecV

[DecV(w,Enc(a,m, 1κ)) = m] = 1.

• Security. For any PPT adversary A, there exists a negligible function µ(.) such that for all
a /∈ LV (i.e., that there is no w for which V(a,w) = 1) and any m0 6= m1 of the same length
|m0| = |m1| the following holds:

|Pr[A(Enc(a,m0, 1
κ)) = 1]− Pr[A(Enc(a,m1, 1

κ)) = 1]| ≤ µ(κ).

When we talk about the witness encryption as a primitive (not an indexed family) we refer to the
special case of the ‘complete’ verifier V which is a universal circuit algorithm and V(w, a) = 1 if
a(w) = 1 where a is a circuit evaluated on witness w.

We also define variants of witness encryption, which are both a strengthening of the Defini-
tion 3.3, one of them strengthens WE’s functionality and the other one strengthens its security.
Therefore these variants of WE are incompatible in their capabilities and, hence, a witness encryp-
tion scheme may possess either one or the other extra feature (but not both).

Definition 3.4 (Instance-Revealing Witness Encryption (IRWE)). A witness encryption scheme is
said to be instance-revealing if it satisfies the properties of Definition 3.3 and, in addition, includes
the following subroutine.

17

• Instance-revealing functionality. Rev(c) given ciphertext c outputs a ∈ {0, 1}s ∪ {⊥},
and for every a,m, κ:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

Definition 3.5 (Instance-hiding Witness Encryption (IHWE)). A witness encryption scheme is
said to be instance-hiding if it satisfies the properties of Definition 3.3 except that the security
property is replaced with the following (stronger) security guarantee:

• Instance-hiding security. For any PPT adversary A, there exists a negligible function
µ(.) such that for all a0, a1 /∈ V for which |a0| = |a1| and m0,m1 for which |m0| = |m1|, the
following holds:

|Pr[A(Enc(a0,m0, 1
κ)) = 1]− Pr[A(Enc(a1,m1, 1

κ)) = 1]| ≤ µ(κ).

Definition 3.6 (Predicate Encryption (PE) [BSW10]). Let PK,A : K × A → {0, 1} be an ef-
ficiently computable predicate defined over some key space K (that contains a special empty
key ε) and attribute space A and P is an efficient Turing machine computing the relation PK,A.
A predicate encryption scheme for a class of predicates PK,A consists of four PPT algorithms
(Setup,KGen,Enc,DecP) defined as follows:

• Setup(1κ): given the security parameter, it outputs a master public key MPK and a master
secret key MSK.

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the decryption
key skk. If k = ε, it outputs ε.

• Enc(MPK, (m, a)): given the master public key MPK, attribute a ∈ A, and message m,
outputs ciphertext c.

• DecP(skk, c): given a secret key for k ∈ K and a ciphertext c, outputs a string m (or ⊥).

The following completeness and security properties must be satisfied:

• Completeness. For any security parameter κ, key k ∈ K, attribute a ∈ A, we have:

DecP(skk,Enc(MPK, (m, a))) =


(|a|, |m|) if k = ε

m if k 6= ε and P(k, a) = 1

⊥ Otherwise

where skk ← KGen(MSK, k) and (MSK,MPK)← Setup(1κ).

• Security. For any PPT adversary A, there exists a negligible function negl(.) such that the
following holds:

Pr[INDPE
A (1κ) = 1] ≤ 1

2
+ negl(κ).

where INDPE
A is shown in Figure 2, and for each key query k that A sends to the KGen oracle,

it must hold that P(k, a0) = P(k, a1) = 0.

18

Experiment INDPE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1)← AKGen(MSK,.)(MPK) where xb = (ab,mb) for b ∈ {0, 1}, |a0| = |a1| and |m0| = |m1|
and for each prior query k we require that P(k, a0) = P(k, a1) = 0

3. b
$←− {0, 1}

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) = P(k, a1) = 0
6. Output 1 if b = b′ and 0 otherwise.

Figure 2: The INDPE
A Experiment

When P is clear from the context, we might simply write Dec instead of DecP.

We also present the definition of attribute-based encryption, which is a special case of predicate
encryption where the attribute of the encrypted message could be potentially extracted efficiently
from the ciphertext12.

Definition 3.7 (Attribute-Based Encryption (ABE)). An attribute-based encryption scheme is a
predicate encryption scheme for a class of predicates PK,A (defined through efficient test P(k, a) ∈
{0, 1}) satisfying the properties of Definition 3.6 except that the completeness and security condi-
tions are replaced with the following:

• Completeness. For any security parameter κ, key k ∈ K, attribute a ∈ A, and message
m ∈M , the following holds:

DecP(skk,Enc(MPK, (m, a))) =


(a, |m|) if k = ε

m if k 6= ε and P(k, a) = 1

⊥ Otherwise

where skk ← KGen(MSK, k) and (MSK,MPK)← Setup(1κ).

• Security. For any PPT adversary A, there exists a negligible function negl(.) such that the
following holds:

Pr[INDABE
A (1κ) = 1] ≤ 1

2
+ negl(κ).

where INDABE
A is shown in Figure 3, and for each key query k that A sends to the KGen

oracle, it must hold that P (k, a) = 0.

Experiment INDABE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1) ← AKGen(MSK,.)(MPK) where xb = (a,mb) for b ∈ {0, 1}, |m0| = |m1| and for each
prior query k we require that P (k, a) = 0

3. b
$←− {0, 1}

12The work of [BSW10] refers to this sub-class as predicate encryption with public index

19

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P (k, a) = 0
6. Output 1 if b = b′ and 0 otherwise.

Figure 3: The INDABE
A Experiment

Definition 3.8 (Fully Homomorphic Encryption (FHE)). Let F be a PPT algorithm that accepts
as input string f and messages m1, ...,mt and outputs a string m′. For any security parameter
κ, a homomorphic scheme HE for F is composed of four PPT algorithms (Setup,Enc,Dec,EvalF)
defined as follows:

• Setup(1κ): given the security parameter κ, outputs the master public key MPK and the
master secret key MSK.

• Enc(MPK,m): given MPK and a message m ∈ {0, 1}, outputs an encryption c.

• EvalF(MPK, f, c1, ..., ct): given master public key MPK, string f , and a sequence of ciphertexts
c1 = Enc(MPK,m1), ..., ct = Enc(MPK,mt), outputs another ciphertext cf .

• Dec(MSK, c): given MSK and ciphertext c, outputs a bit m ∈ {0, 1}.

A HE scheme is said to be fully homomorphic if the class of circuits supported for evaluation
consists of all polynomially-sized circuits (i.e. P/poly). Furthermore, an FHE scheme must satisfy
the following properties:

• Completeness. For any security parameter κ, string f and messages m1, . . . ,mt ∈ {0, 1}, it
holds that:

Pr[Dec(MSK,EvalF(MPK, f, c1, ..., ct)) = F(f,m1, ...,mt)] = 1.

where (MSK,MPK)← Setup(1κ) and ci = Enc(MPK,mi) for i ∈ [t].

• Compactness. There exists a fixed polynomial p(.) such that, for every string f , the size
of the evaluated ciphertexts |EvalF(MPK, f, c1, . . . , ct)| is at most p(κ) where, for all i ∈ [t],
ci ← Enc(MPK,mi) for some mi ∈ {0, 1}.

• Security. For any PPT adversary A, there exists a negligible function µ(.) such that the
following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ).

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and Enc.

We also provide two stronger variants of FHE where one may evaluate on multiple encryptions
that were generated from different public keys but can only decrypt the newly evaluated ciphertext
if one has access to some subset of the corresponding secret keys.

Definition 3.9 (Multi-key FHE (MFHE) [LATV12, MW16]). A multi-key FHE scheme is an FHE
scheme where the evaluation sub-routine is replaced with the following:

20

• Eval(
−−−→
MPK, f, c1, ..., ct): given a sequence of L distinct and independently generated keys

−−−→
MPK = (MPK1, ...,MPKL), a circuit f ∈ {0, 1}∗, and a sequence of ciphertexts (c1, ..., ct)
where for all i ∈ [t] there exists some j ∈ [L] such that ci = Enc(MPKj ,mi), outputs another
ciphertext cf .

Furthermore, the following properties must be satisfied:

• Completeness. For any security parameter κ, messages mi ∈ {0, 1} and function f , we
have:

Pr[Dec(
−−−→
MSK,Eval(

−−−→
MPK, f, c1, ..., ct)) = f(m1, ...,mt)] = 1

where
−−−→
MSK = (MSK1, ...,MSKL),

−−−→
MPK = (MPK1, ...,MPKL), and for all j ∈ [L], (MSKj ,MPKj)←

Setup(1κ) and for all i ∈ [t] there exists j ∈ [L] such that ci ← Enc(MPKj ,mi).

• Compactness. There exists a fixed polynomial p(., .) such that the size of the evaluated

ciphertexts Eval(
−−−→
MPK, f, c1, ..., ct)| is at most p(κ, L) for any f ∈ {0, 1}∗.

• Security. For any PPT adversary A, there exists a negligible function µ(.) such that the
following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and Enc.

Definition 3.10 (Spooky Encryption [DHRW16b]). Let F be a PPT algorithm that accepts as
input a string f and messages m1, ...,mt and outputs a sequence of messages m′1, ...,m

′
t. A F-spooky

encryption scheme is an HE scheme for (possibly randomized) F where evaluation is replaced with
the following:

• EvalF(f, (MPK1, c1), ..., (MPKt, ct)): given a sequence of pairs of public key-ciphertext pairs
(MPKi, ci), would output a sequence of ciphertexts (c′1, ..., c

′
t).

Furthermore, the following properties must be satisfied:

• Completeness. For any security parameter κ, string f and messages (m1, ...,mt) where
mi ∈ {0, 1}poly(κ) for all i ∈ [t], it holds that:

{(Dec(MSK1, c
′
1), ...,Dec(MSKt, c

′
t))}κ ≈c {F(f,m1, ...,mt)}κ

where for all i ∈ [t], (MSKi,MPKi) ← Setup(1κ), ci ← Enc(MPK,mi), and the evaluated
ciphertexts are given as c′i ← EvalF(f, (MPK1, c1), ..., (MPKt, ct)).

• Security. For any PPT adversary A, there exists a negligible function µ(.) such that the
following holds:

|Pr[A(Enc(MPK, 0)) = 1]− Pr[A(Enc(MPK, 1)) = 1]| ≤ µ(κ)

where (MSK,MPK)← Setup(1κ) and the probability is over the randomness of A and Enc.

In [DHRW16b], a special case of spooky encryption called additive function sharing (AFS)
spooky encryption was defined, which is essentially F-spooky encryption where F accepts and
executes a circuit fh that outputs a random n-out-of-n additive secret share of h(m1, ...,mt). Note
that F-spooky encryption supporting the class of all polynomially-sized circuits is a generalization
of multi-key FHE [LATV12, MW16]. In particular, if we allowed repetition of public keys in the
evaluation algorithm of the MFHE scheme, then we can define the evaluation algorithm of MFHE
to simply use the evaluation of the spooky encryption scheme and output cf = (c′1, ..., c

′
t).

21

Universal variants of primitives. In all the primitives that we have defined in this section
(with the exception of IO), there exists an efficient relation R that is part of the definition of this
(family of) primitives. However, in our work, whenever we reference such a primitive, we will
use a standard universal circuit evaluator relation RU (see Definition ??) that captures the most
‘complete’ version of such a primitive and allows us to obtain the primitive in terms of any other
relation. More specifically, the universal relation is defined as follows for each relevant primitive:

• Witness encryption: The relation RU with corresponding verifier V is defined so that for any
input pair (w, a), V(w, a) = a(w). Thus, this relation gives rise to the language LV = {a |
∃w : a(w) = 1}, which is essentially the language of circuit satisfiability.

• Predicate and attribute-based encryption: The universal predicate class PK,A with corre-
sponding P is defined so that for any k ∈ K and a ∈ A, P(k, a) = k(a). Thus, this relation
gives rise to the language LP = {k | ∃a : k(a) = 1}.

• (Multi-key) FHE and spooky encryption: The algorithm F representing the scheme is defined
so that for any input sequence (f,m1, ...,mt), F(f,m1, ...,mt) = f(m1, ...,mt).

Given a primitive defined with universal relation RU with associated verifier V, we can construct
the same primitive for any other arbitrary efficiently computable relation R′ with associated verifier
V′. This is achieved by defining an instance a to be verified by V as a circuit a := V′(., a′) where a′

is an instance to be verified by V′. In that case, we have that, for any (w, a′), V′(w, a′) = 1 if and
only if V(w, a) = 1 since V(w, a) = a(w) = V′(w, a′).

We can also define a symmetric variant of the universal relation. For example, for PE or ABE,
we can let P(k, a) = a(k) instead13. In either case, we will explicitly mention which input is to act
as the circuit when we make use of these relations.

3.2 Black-Box Constructions and Separations

Impagliazzo and Rudich [IR89] were the first to formally study the power of “black-box” con-
structions that relativize to any oracle. Their notion was further explored in detail by Reingold,
Trevisan, and Vadhan [RTV04]. The work of Baecher, Brzuska, and Fischlin [BBF13] further stud-
ied the black-box framework and studied variants of the definition of black-box constructions. We
first start by recalling the definition of cryptographic primitives, and then will go over the notion
of (fully) black-box constructions.

Definition 3.11 (Cryptographic Primitives [RTV04]). A primitive P = (F ,R) is defined as set
of functions F and a relation R between functions. A (possibly inefficient) function F ∈ {0, 1}∗ →
{0, 1}∗ is a correct implementation of P if F ∈ F , and a (possibly inefficient) adversary A breaks
an implementation F ∈ F if (A,F) ∈ R.

Definition 3.12 (Black-Box Constructions [RTV04]). A black-box construction of a primitive Q
from a primitive P consists of two PPT algorithms (Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.

13In fact, these symmetric notions have been previously defined in the literature in the context of predicate en-
cryption as key policy [GPSW06] and ciphertext policy [BSW07].

22

2. Security reduction: for any oracle P implementing P and for any (computationally un-
bounded) oracle adversary A breaking the security of QP , it holds that SP,A breaks the
security of P .

Definition 3.13 (Black-box Constructions of IO). A fully-black-box construction of IO from any
primitive P could be defined by combining Definitions 3.12 and 3.1.

By considering the role of the security parameter we can distinguish between attacks that
succeed over an “infinitely often” vs. “almost everywhere” security parameters. Therefore, we
will work with a more refined definition of cryptographic primitives (and constructions) where
the parties also receive a security parameter κ as input. Thus, any function P implementing a
primitive P will take as input a “security parameter” κ and (according to the standard definition
of security in cryptography) any adversary A who successfully breaks P would have to “win” over
an infinite number of security parameters for a “noticeable” advantage (e.g. only winning over
security parameters that are powers of two will suffice to call it a successful attack). This subtle
issue will be important for us to derive lower bounds on the complexity of IO as our attacks (as
part of the separation proofs) only succeed with a constant probability, and that only allows us to
derive attacks that succeed over an infinite number of security parameters (see Section 3.4).

The issue of oracles gates. Note that, in any such construction of Definition 3.13, the input
circuits to the obfuscation subroutine do not have any oracle gates in them, while the obfuscation
algorithm and the evaluation procedure are allowed to use the oracle implementing P. In Section 4
we will see that one can also define an extended variant of the IO primitive (as it was done in
[AS15, AS16]) in which the input circuits have oracle gates.

3.3 Measure Theoretic Tools

By a probability space we mean a measure space with total measure equal to one, and by Pr[E] we
denote the measure of E. For a sequence of measurable sets E = (E1, E2, . . .), the limit supremum
of E is defined as limSup(E) =

⋂∞
n=1

⋃∞
m=nEm.

Lemma 3.14 (Borel–Cantelli [Bor09, Can17]). Let E = (E1, E2, . . .) be a sequence of measurable
sets over some probability space, and

∑∞
n=1 Pr[Ei] = O(1). Then limSup(E) has measure zero.

The following lemma (also used in [MMN+16a]) follows from Exercise 2 of Section 7.3 of [GS01].

Lemma 3.15. If E = (E1, E2, . . .) is a sequence of measurable sets over some probability space,
and Pr[Ei] ≥ δ for all i ∈ N, then Pr[limSup(E)] ≥ δ.

3.4 Black-Box Separations

In this section we recall lemmas that can be used for proving black-box impossibility results (a.k.a.
separations). The arguments described in this section are borrowed from a collection of recent
works [CKP15, MMN15, Pas15, MMN+16b, BBF16, MMN+16a] where a framework for proving
lower bounds for (assumptions behind) IO are laid out. However, the focus in those works was to
prove lower bounds for IO in the (standard) black-box model rather than the monolithic model.
We will indeed use those tools/lemmas by relating the monolithic model to the black-box model.

23

Idealized models/oracles and probability measures over them. An idealized model I is a
randomized oracle that supposedly implements a primitive (with high probability over the choice of
oracle); examples include the random oracle, random trapdoor permutation oracle, generic group
model, graded encoding model, etc. An I ← I can (usually) be represented as a sequence (I1, I2, . . .)
of finite random variables, where In is the description of the prefix of I that is defined for inputs
whose length is parameterized by (a function of) n. The measure over the actual infinite sample
I ← I could be defined through the given finite distributions Di over Ii.

14

Definition 3.16 (Oracle-Fixed Constructions in Idealized Models [MMN+16b]). We say a primitive
P has an oracle-fixed construction in idealized model I if there is an oracle-aided algorithm P where:

• Completeness. P I implements P correctly for every I ← I.

• Black-box security. Let A be an oracle-aided adversary AI where the query complexity of
A is bounded by the specified complexity of the attacks for primitive P. For example if P is
polynomially secure (resp., quasi-polynomially secure), then A only asks a polynomial (resp.,
quasi-polynomial) number of queries but is computationally unbounded otherwise. Then, for

any such A, with measure one over the choice of I
$←I, it holds that A does not break P I .15

Remark 3.17. Definition 3.16 is different from saying that P would exists in a relativized world
I ← I with measure one. If the security condition was defined with respect to efficient attackers,
then we could use the Borel–Cantelli lemma to do a union bound over all such attackers, but
the number of bounded-query attacking algorithms is not countable. Working with Definition 3.16
allows us to still use idealized model I for the purpose of proving black-box separations (where we
want to say P is not enough to obtain another primitive Q). Definition 3.16 is called “oracle-fixed”
in contrast to another “oracle-mixed” definition in which the same security condition holds (with
measure one) over the randomness of the I and A at the same time.

Definition 3.18 (Oracle-Mixed Constructions in Idealized Models [MMN+16a]). We say a primi-
tive P has an oracle-mixed black-box construction in idealized model I if there is an oracle-aided
algorithm P such that:

• Oracle-mixed completeness. P I implements P correctly where the probabilities are also
over I ← I.16 For the important case of perfect completeness, this definition is the same as
oracle-fixed completeness.

• Oracle-mixed black-box security. Let A be an oracle-aided algorithm in idealized model
I whose query complexity is bounded by the specified complexity of the attacks defined for
primitive P. We say that the oracle-mixed black-box security holds for P I if for any such
A there is a negligible µ(n) such that the advantage of A breaking P I over the security
parameter n is at most µ(n) where this bound is also over the randomness of I.

14Caratheodory’s extension theorem shows that such finite probability distributions could always be extended
consistently to a measure space over the full infinite space of I ← I. See Theorem 4.6 of [Hol15] for a proof.

15For breaking a primitive, the adversary needs to ‘win’ with ‘sufficient advantage’ (this depends on what level of
security is needed) over an infinite sequence of security parameters.

16For example, an oracle-mixed construction of an ε-approximate IO only requires approximate correctness while
the probability of approximate correctness is computed also over the probability of the input as well as the oracle.

24

Lemma 3.19 (The Composition Lemma [MMN+16b]). Suppose Q is a fully-black-box construction
of primitive Q from primitive P, and suppose P is an oracle-fixed construction for primitive P
relative to I (according to Definition 3.16). Then QP is an oracle-fixed implementation of Q
relative to the same idealized model I.

Using a variant of the Borel–Cantelli lemma, [MMN+16a] proved that oracle-mixed attacks with
constant advantage leads to breaking oracle-fixed constructions.

Lemma 3.20 ([MMN+16a]). If there is an algorithm A that oracle-mixed breaks a construction P I

of P in idealized model I with advantage ε(n) ≥ Ω(1) for an infinite sequence of security parameters,
then the same attacker A oracle-fixed breaks the same construction P I over a (perhaps more sparse
but still) infinite sequence of security parameters.

The following lemmas follows as a direct corollary to Lemmas 3.19 and 3.20.

Lemma 3.21 (Separation Using Idealized Models). Suppose I is an idealized model, and the
following conditions are satisfied:

• Proving oracle-fixed security of P. There is an oracle fixed black-box construction of P
relative to I.

• Breaking oracle-mixed security of Q with Ω(1) advantage. For any construction QP

of Q relative to I there is a computationally-unbounded query-efficient attacker A (whose
query complexity is bounded by the level of security demanded by P) such that for an infinite
sequence of security parameters n1 < n2 < . . . the advantage of A in oracle-mixed breaking
P I is at least ε(ni) ≥ Ω(1).

Then there is no fully black-box construction for Q from P.

3.5 Tools for Getting Black-Box Lower Bounds for IO

The specific techniques for proving separations for IO that is developed in [CKP15, MMN+16b,
BBF16, MMN+16a] aims at employing Lemma 3.21 by “compiling” out an idealized oracle I from
an IO construction. Since we know that statistically secure IO does not exist in the plain model
[GR07] this indicates that perhaps we can compose the two steps and get a query-efficient attacker
against IO in the idealized model I. The more accurate line of argument is more subtle and
needs to work with approximately correct IO and uses a recent result of Brakerski, Brzuska, and
Fleischhacker [BBF16] who ruled out the existence of statistically secure approximate IO.

To formalize the notion of “compiling out” an oracle in more than one step we need to formalize
the intuitive notion of sub oracles in the idealized/randomized context.

Definition 3.22 (Sub-models). We call the idealized model/oracle O a sub-model of the idealized
oracle I with subroutines (I1, . . . , Ik), denoted by O v I, if there is a (possibly empty) S ⊆
{1, . . . , k} such that the idealized oracle O is sampled as follows:

• First sample I ← I where the subroutines are I = (I1, . . . , Ik).

• Then provide access to subroutine Ii if and only if i ∈ S (and hide the rest of the subroutines
from being called).

25

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 3.23 (Simulatable Compiling Out Procedures for IO). Suppose O @ I. We say that
there is a simulatable compiler from IO in idealized model I into idealized model O with correctness
error ε if the following holds. For every implementation PI = (iOP , EvP) of δ-approximate IO in
idealized model I there is a implementation PO = (iOO, EvO) of (δ+ε)-approximate IO in idealized
model O such that the only security requirement for these two implementations is that they are
related as follows:
Simulation. There is an efficient PPT simulator S and a negligible µ(·) such that for any C:

∆(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ µ(κ)

where ∆(·, ·) denotes the statistical distance between random variables.

It is easy to see that the existence of the simulator according to Definition 3.23 implies that
PO in idealized model O is “as secure as” PI in the idealized model I. Namely, any oracle-mixed
attacker against the implementation PO in model O with advantage δ (over an infinite sequence of
security parameters) could be turned in to an attacker against PI in model I that breaks against
PI with advantage δ − negl(κ) over an infinite sequence of security parameters. Therefore one can
compose the compiling out procedures for a constant number of steps (but not more, because there
is a polynomial blow up in the parameters in each step).

By composing a constant number of compilers and relying on the recent result of Brakerski,
Brzuska, and Fleischhacker [BBF16] one can get a general method of breaking IO in idealized
models. We first state the result of [BBF16].

Theorem 3.24 ([BBF16]). Suppose one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→ [0, 1]
are such that 2ε(n) + 3δ(n) < 1− 1/poly(n), then there is no (ε, δ)-approximate statistically-secure
IO for all poly-size circuits.

The above theorem implies that if we get any implementation for IO in the plain model that
is 1/100-approximately correct, then there is a computationally unbounded adversary that breaks
the statistical security of IO with advantage at least 1/100 over an infinite sequence of security
parameters. Using this result, the following lemma shows a way to obtain attacks against IO in
idealized models.

Lemma 3.25 (Attacking IO Using Nested Oracle Compilers). Suppose ∅ = I0 v I1 · · · v Ik = I
for constant k = O(1) are a sequence of idealized models. Suppose for every i ∈ [k] there is a
simulatable compiler for IO in model Ii into model Ii−1 with correctness error εi < 1/(100k). Then,
assuming one-way functions exist, NP 6⊆ coAM, any implementation P of IO in the idealized
model I could be oracle-mixed broken by a polynomial-query adversary A with a constant advantage
δ > 1/100 for an infinite sequence of security parameters.

Proof. Starting with our initial ideal-model construction PI = PIk , we iteratively apply the sim-
ulatable compiler to get PIi−1 from PIi for i = {k, ..., 1}. Note that the final correctness error
that we get is εI0 < k/(100k) < 1/100, and thus by Theorem 3.24 there exists a computationally
unbounded attacker AI0 against PI0 with constant advantage δ. Now, let Si be the PPT simulator
whose existence is guaranteed by Definition 3.23 for the compiler that transforms PIi into PIi−1 .
We inductively construct an adversary AIi against PIi from an adversary AIi−1 for PIi−1 starting

26

with AI0 . The construction of AIi simply takes its input obfuscation in the Ii ideal-model iOIi ,
runs Si(iO

Ii) and feeds the result to AIi−1 to get its output. Note that, after constant number k,
we still get δ′ < δ − k negl(κ) a constant advantage over infinite sequence of security parameters
against PIk .

Finally, by putting Lemma 3.25 and 3.21 together we get a lemma for proving black-box lower
bounds for IO.

Lemma 3.26 (Lower Bounds for IO using Oracle Compilers). Suppose ∅ = I0 v I1 · · · v Ik = I
for constant k = O(1) are a sequence of idealized models. Suppose for every i ∈ [k] there is a
simulatable compiler for IO in model Ii into model Ii−1 with correctness error εi < 1/(100k). If
primitive P can be oracle-fixed constructed in the idealized model I, then there is no fully black-box
construction of IO from P.

We will indeed use Lemma 3.26 to derive lower bounds for IO even in the monolithic model by
relating such constructions to fully black-box constructions.

4 Monolithic Constructions: An Abstract Extension of the Black-
Box Model

In what follows, we will gradually develop an extended framework of constructions that includes the
fully black-box framework of [RTV04] and allows certain non-black-box techniques by default. This
model uses steps already taken in works of Brakerski, Katz, Segev, and Yerukhimovich [BKSY11]
and the more recent works of Asharov and Segev [AS15, AS16] and takes them to the next level by
allowing even non-black-box techniques involving ‘self-calls’ [AJ15, BV15, AJS15]. In a nutshell,
this framework applies to ‘special’ primitives that accept generic circuits as input and run them
on other inputs; therefore one can plant oracle gates to the same primitives inside those circuits.
We will define such constructions using the fully black-box framework by first extending these
primitives and then allowing the extensions to be used in a black-box way.

Special primitives receiving circuits as input. At a very high level, we call a primitive
‘special’, if it takes circuits as input and run those circuits as part of the execution of its subroutines,
but at the same time, the exact definition depends on the execution of the input circuit only as
a ‘black-box’ while the exact representation of the input circuits do not matter. In that case one
can imagine an input circuit with oracle gates as well. We will simply call such primitives special
till we give formal definitions that define those primitives as ‘families’ of primitives indexed by an
external universal algorithm.

Here is a list of examples of special primitives.

• Zero-knowledge proofs of circuit satisfiability (ZK-Cir-SAT). A secure protocol for
ZK-Cir-SAT is an interactive protocol between two parties, a prover and a verifier, who
take as input a circuit C. Whether or not the prover can convince the verifier to accept
the interaction depends on the existence of x such that C(x) = 1. This definition of the
functionality of ZK-Cir-SAT does not depend on the specific implementation of C and only
depends on executing C on x ‘as a black-box’.

27

• Fully homomorphic encryption (FHE). FHE is a semantically secure public-key encryp-
tion where in addition we have an evaluation sub-routine Eval that takes as input a circuit f
and ciphertexts c1, . . . , ck containing plaintexts m1, . . . ,mk, and it outputs a new ciphertext
c = Eval(f, c1, . . . , ck) such that decrypting c leads to f(m1, . . . ,mk). The correctness defini-
tion of the primitive FHE only uses the input-output behavior of the circuit f , so FHE is a
special primitive.

• Encrypted functionalities. Primitives such as attribute, predicate, and functional encryp-
tion all involve running some generic computation at the decryption phase before deciding
what to output. There are two ways that this generic computation could be fed as input to
the system:

– Key policy [SW05, GPSW06]: Here the circuit C is given as input to the key generation
algorithm and then C(m) is computed over plaintext m during the decryption.

– Ciphertext policy [BSW07]: Here the circuit C is the actual plaintext and the input m
to C is used when issuing the decryption keys.

Both of these approaches lead to special primitives. For example, for the case of predicate
encryption, suppose we use a predicate verification algorithm P that takes (k, a), interprets
k as circuit and runs k(a) to accept or reject. Such P would give us the key policy predicate
encryption. Another P algorithm would interpret a as a circuit and runs it on k, and this
gives us the ciphertext policy predicate encryption. In other words, one can think of the
circuit C equivalent to P(k, ·) (with k hard coded in it, and a left out as the input) being
the “input” circuit given to the KGen subroutine, or alternatively one can think of P(·, a)
(with a hardcoded in it, and k left out as the input) to be the “input” circuit given to the
Enc subroutine. In all cases, the correctness and security definitions of these primitives only
depend on the input-output behavior of the given circuits.

• Witness encryption. The reason that witness encryption is a special primitive is very
similar to the reason described above for the case of encrypted functionalities. Again we
can think of V(·, a) as the circuit given to the Enc algorithm. In this case, the definition of
witness encryption (and it security) only depend on the input-output behavior of these ‘input
circuits’ rather their specific implementations.

• Indistinguishability obfuscation. An indistinguishability obfuscator takes as input a cir-
cuit C and outputs B that can be used later on the compute the same function as C does.
The security of IO ensures that for any two different equally-sized and functionally equivalent
circuits C0, C1, it is hard to distinguish between obfuscation of C0 and those of C1. Therefore,
the correctness and security definitions of IO depend solely on the input-output behavior (and
the sizes) of the input circuits.

When a primitive is special, one can talk about “extensions” of the same primitive in which the
circuits that are given as input could have oracle gates (because the primitive is special and so the
definition of the primitive still extends to such inputs).

4.1 Monolithic Extensions of Special Primitives

We define special primitives as ‘restrictions’ of (a family of) primitives indexed by a subroutine W
to the case that W is a universal circuit evaluator. We then define the extended version to be the

28

case that W accepts oracle-aided circuits. More formally we start by defining primitives indexed
by a class of functions.

Definition 4.1 (Family of Indexed Primitives). Let W be a set of (possibly inefficient) functions.
A W-indexed family of primitives P[W] is a set of primitives {P[W]}W∈W each indexed by some
W ∈ W where, for each W ∈ W, P[W] = (F [W],R[W]) is a primitive according to Definition 3.11.
We call the primitive P[W] the W -indexed member of the family P[W].

We are particularly interested in primitives indexed by the universal circuit evaluation algorithm
(defined below) as a member of an indexed family of primitives. This is the case for all the primitives
of witness encryption, predicate encryption,17 fully homomorphic encryption, and IO. All of the
examples of the special primitives discussed in previous section fall into this category.

Definition 4.2 (Universal Circuit Evaluator). By oracle-aided algorithm Univ(·) we denote the
oracle-aided universal circuit evaluator which accepts a pair of inputs (C, x) where C is an oracle-
aided circuit and x is a string in the domain of C, and Univ(C, x) outputs C(·)(x) by forwarding
all of C’s oracle queries to its own oracle. By algorithm Univ we simply denote the plain model
universal circuit evaluator which accepts a pair of inputs (C, x) where C is a plain model circuit
and x is a string in the domain of C, and Univ(C, x) outputs C(x).

Many primitives of interest in this work can be seen as the universal member of an indexed
family of primitives. For example, in the case of witness encryption, its definition can be written
using a generic witness relation V that checks the relation between the instance and the witness.
However, in the standard definition of the witness encryption, the relation V is universal; namely,
the relation between witness w and attribute a is verified by running a as a circuit over w and
outputting the first bit of this computation. In order to generalize the notion of universal members
of indexed primitives (i.e., special primitives for short) we need the following definition.

The following definition defines primitives that have a “recursive” nature using an oracle algo-
rithm V (·) that calls the implementation F of the primitive itself.

Definition 4.3 (V (·)-Indexed Primitives). For aW-indexed family P[W] = {(F [W],R[W])}W∈W ,
and an oracle algorithm V (·), consider the following primitive Q = (FQ,RQ) defined as follows.
For all W ∈ W and F ∈ F [W], if W = V F , then we include F in FQ, and for any such W,F , if
(F,A) ∈ R[W], then we include (F,A) in RQ as well. Even though V (·) is not a fixed algorithm
(and recursively depends on the implementation function), and although Q might not be a member
of the indexed family P[W] for any W ∈ W, we still call Q the V (·)-indexed primitive defined by
(or, from) P[W] and denote it as P[V (·)].

Definition 4.4 (Monolithic Extension of Indexed Primitives). For any indexed family P[W] and
V ∈ W, we call the V (·)-indexed primitive P[V (·)] the monolithic extension (or simply the extension)
of the V -indexed primitive P[V] (both with respect to the family P[W]). Whenever P[W] is clear
form the context, we simply call P[V (·)] the monolithic extension of P[V].

We are particularly interested in monolithic extensions of the Univ-indexed primitive P[Univ]
from a family of primitives P[W], which is automatically defined as P[Univ(·)]. However, note that
in order to even define P[Univ(·)] we always need to first define the corresponding indexed family
of primitives P[W].

17Even in this case, we can imagine that we are running a circuit on another input and take the first bit of it as
the predicate.

29

Remark 4.5 (Non-black-box relation between the universal and extended primitives). Even though
the universal selection P[Univ] and its monolithic extension P[Univ(·)] (with respect to family P[W])
are tightly related, they are indeed different cryptographic primitives according to Definition 3.12,
e.g., because their input formats could be potentially different. However, for ‘natural’ primitives,
and in particular for all the primitives studied in this work, one can get one from the other one
in a non-black-box way. The intuition is that one can us the code of P[Univ] to open up the gates
planted in the circuits given to the oracle-aided universal circuit Univ(·) used in the definition of
P[Univ(·)] (see example below).

Special case of witness encryption. Here we show how to derive the definition of extended
witness encryption as a special case. First note that witness encryption’s decryption is indexed by
an algorithm V (a,w) that could be any predicate function. In fact, it could be any function where
we pick its first bit and interpret it as a predicate. So WE is indeed indexed by V ∈ W which is the
set of all predicates. Then, the standard definition of witness encryption for circuit satisfiability
(which is the most powerful WE among them all) is simply Univ-indexed primitive WE[Univ] with
respect to the family WE[W], and the following will be exactly the definition of the monolithic
extension of WE[Univ], which we simply call extended WE.

Definition 4.6 (Extended Witness Encryption). Let V(Enc,Dec)(w, a) := Univ(Enc,Dec)(a,w) be the
‘universal circuit-evaluator’ Turing machine as defined in Definition 4.2. The extended witness
encryption scheme (defined by V) consists of two PPT algorithms (Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : is a randomized algorithm that given an instance a ∈ {0, 1}∗ and a message
m ∈ {0, 1}∗, and security parameter κ (and randomness as needed) outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it either outputs a m ∈ {0, 1}∗ or ⊥.

• Correctness and security are defined similarly to Definition 3.3. But the key point is that
here the relation V(Enc,Dec) is somehow recursively depending on the (Enc,Dec = DecV) on
smaller input lengths (and so it is well defined).

Definition 4.7 (Extended Variants of More Primitives). Extended variants for the following prim-
itives are defined similarly to Definition 4.6 by allowing their special subroutine to be based on an
oracle algorithm that is the universal circuit evaluator Univ:

• For attribute-based or predicate encryption, we allow the predicate algorithm P(k, a) to be
an oracle algorithm that interprets k as an oracle-aided circuit and runs a on k.

• For FHE and Spooky encryption we allow the evaluation function F(f,m1, ...,mt) to be an
oracle algorithm that that interprets f as an oracle-aided circuit and runs f on (m1, ...,mt).

4.2 Defining Monolithic Constructions Using Monolithic Extensions

We are finally ready to define our monolithic framework. Here we assume that for a primitive
P = P[V] ∈ P[W] we have already defined its monolithic extension P̃ = P[V (·)] (with respect to
P[W]).

Definition 4.8 (Monolithic Constructions). Suppose Q is a primitive and P̃ is the monolithic
extension of the primitive P. Any fully black-box construction for Q from P̃ (i.e. the monolithic
extension of P) is called a monolithic construction of Q from P.

30

Examples. Below are some examples of non-black-box constructions in cryptography that fall
into the monolithic framework of Definition 4.8.

• Gentry’s bootstrapping construction [Gen09a] plants FHE’s own decryption in a circuit for
the evaluation subroutine. This trick falls into the monolithic framework since planting gates
inside evaluation circuits is allowed.

• The construction of IO from functional encryption by [AJ15, BV15] uses the encryption oracle
of the functional encryption scheme inside the functions for which decryption keys are issued.
Again, such non-black-box technique does fall into our monolithic framework.

Definition 4.9 (Formal Definition of Monolithic Constructions for Specific Primitives). Let P be
any of the following primitives: attribute, predicate, functional, or witness encryption, FHE, multi-
key FHE, or spooky encryption. Then a monolithic construction using P is defined by first defining
the monolithic extension P̃ for primitive P according to Definitions 4.6 and 4.7, then applying
Definition 4.8 (which is based on previously defined notion of fully black-box constructions).

The following transitivity lemma (which is a direct corollary to the transitivity of fully black-box
constructions) allows us to derive more impossibility results.

Lemma 4.10 (Composing Monolithic Constructions). Suppose P, Q,R are cryptographic primi-
tives. If there is a monolithic construction of the monolithic extension Q̃ from P and if there is a
monolithic construction of R from Q, then there is a monolithic construction of R from P.

Proof. Since there is a monolithic construction of R from Q, by Definition 4.8 it means that there
exists a monolithic extension Q̃ of Q such that there is a fully black-box construction of R from Q̃.
On the other hand, again by Definition 4.8, for any monolithic extension of Q, and in particular Q̃,
there is a fully black-box construction of Q̃ from some monolithic extension P̃ of P. Therefore, since
fully-black-box constructions are transitive under nested compositions, there is a fully construction
of R from P̃ which (by Definition 4.8) means we have a monolithic construction of R from P.

Getting more separations. A corollary of Lemma 4.10 is that if one proves: (a) There is no
monolithic construction of R from P and (b) there is a monolithic construction of any monolithic
extension R̃ (of R) from Q, then these two together imply that: there is no monolithic construction
of Q from P. We will use this trick to derive our impossibility results from a core of two separations
regarding variants of witness encryption.

5 Separating IO from Instance Revealing Witness Encryption

In this section, we formally prove our first main separation theorem which states that there is
no monolithic construction of IO from WE (under believable assumptions). It equivalently means
that there will be no fully black-box construction of indistinguishability obfuscation from extended
witness encryption scheme.

Theorem 5.1. Assume the existence of one-way functions and that NP 6⊆ coAM. Then there
exists no monolithic construction of indistinguishability obfuscation from witness encryption .

31

In fact, we prove a stronger result by showing a separation of IO from a stronger (extended) ver-
sion of witness encryption, which we call extractable instance-revealing witness encryption. Looking
ahead, we require the extractability property to construct (extended) attribute-based encryption
(ABE) from this form of witness encryption. By using Lemma 4.10, this would also imply a
separation of IO from extended ABE.

Definition 5.2 (V-Indexed Extractable Instance-Revealing Witness Encryption). Let W be the
set of all predicates. For any given security parameter κ and any V ∈ W, a V-indexed ex-
tractable instance-revealing witness encryption scheme EIRWE[V] consists of three PPT algorithms
(Enc,Rev,Dec) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security param-
eter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.

• Dec(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

A V-indexed extractable instance-revealing witness encryption family satisfies the following com-
pleteness and security properties:

• Decryption correctness. For any security parameter κ, any (a,w) such that V(a,w) = 1,
and any m it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1.

• Instance-revealing correctness. For any security parameter κ and any (a,m) we have:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) = c it holds that
Rev(c) = ⊥.

• Extractability. For any PPT adversary A and polynomial p1(.), there exists a PPT (black-
box) straight-line extractor E and a polynomial function p2(.) such that the following holds.
For any security parameter κ, for all a ∈ {0, 1}∗, and any m0 6= m1 of the same length
|m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(a,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

then

Pr[EA(a) = w ∧ V(w, a) = 1] ≥ 1

p2(κ)
.

Definition 5.3 (Extended Extractable Instance-Revealing Witness Encryption). An extended ex-
tractable instance-revealing witness encryption scheme (ex-EIRWE) is defined as the monolithic
extension EIRWE[V(·)] (see Definition 4.4) of the V-indexed EIRWE scheme EIRWE[V] where V is
the oracle-aided universal circuit evaluator Univ(·).

32

Given the above definition of ex-EIRWE, we prove the following theorem, which states that
there is no fully black-box construction IO from extended EIRWE.

Theorem 5.4. Assume the existence of one-way functions and that NP 6⊆ coAM. Then there ex-
ists no monolithic construction of indistinguishability obfuscation from extractable instance-revealing
witness encryption.

Since extended EIRWE implies witness encryption as defined in Definition 3.3, Theorem 5.1
trivially follows from Theorem 5.4, and thus for the remainder of this section we will focus on
proving Theorem 5.4.

5.1 Overview of Proof Techniques

To prove Theorem 5.4, we will apply Lemma 3.26 for the idealized extended IRWE model Θ
(formally defined in Section 5.2) to prove that there is no black-box construction of IO from any
primitive P that can be oracle-fixed constructed (see Definition 3.16) from Θ. In particular, we will
do so for P that is the extended EIRWE primitive. Our task is thus twofold: (1) to prove that P
can be oracle-fixed constructed from Θ and (2) to show a simulatable compilation procedure that
compiles out Θ from any IO construction. The first task is proven in Section 5.3 and the second
task is proven in Section 5.4. By Lemma 3.26, this would imply the separation result of IO from P
and prove Theorem 5.4.

Our oracle, which is more formally defined in Section 5.2, resembles an idealized version of a
witness encryption scheme, which makes the construction of extended EIRWE straightforward. As
a result, the main challenge lies in showing a simulatable compilation procedure for IO that satisfies
Definition 3.23 in this idealized model.

5.2 The Ideal Model

In this section, we define the distribution of our ideal randomized oracle.

Definition 5.5 (Random Instance-Revealing Witness Encryption Oracle). Let V be an oracle-aided
universal circuit-evaluator Turing machine (as defined in Definition 4.2) that takes as input (a,w)
where a is a Boolean oracle circuit. We define the following random instance-revealing witness
encryption (rIRWE) oracle Θ = (Enc,Rev,DecV) as follows. We specify the sub-oracle Θn whose
inputs are parameterized by n, and the actual oracle will be Θ = {Θn}n∈N.

• Enc: {0, 1}n → {0, 1}2n is a random injective function.

• Rev: {0, 1}2n → {0, 1}∗ ∪ ⊥ is a function that, given an input c ∈ {0, 1}2n, would output
the corresponding attribute a for which Enc(a,m) = c. If there is no such attribute then it
outputs ⊥ instead.

• DecV : {0, 1}s → {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}s, Dec(w, c) allows us to decrypt the
ciphertext c and get x = (a,m) as long as the predicate test is satisfied on (a,w). More
formally, do as follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

2. Find x such that Enc(x) = c.

33

3. If VΘ(a,w) = 0 output ⊥. Otherwise, output x = (a,m).

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Dec,Rev} with
some answer β as (q 7→ β)T . The oracle Θ provides the subroutines for all inputs lengths but, for
simplicity, and when n is clear from the context, we use Θ = (Enc,Rev,DecV) to refer to Θn for a
fixed n.

Remark 5.6. We note that since V is a universal circuit-evaluator, the number of queries that it
will ask (when we recursively unwrap all internal queries to Dec) is at most a polynomial. This is
due to the fact that the sizes of the queries that V asks will be strictly less than the size of the
inputs to V. In that respect, we say that V has the property of being extended poly-query.

5.3 Witness Encryption exists relative to Θ

In this section, we show how to construct a semantically-secure extended extractable IRWE relative
to Θ = (Enc,Rev,DecV). More formally, we will prove the following lemma.

Lemma 5.7. There exists a correct and subexponentially-secure oracle-fixed implementation (Def-
inition 3.16) of extended extractable instance-revealing WE in the ideal Θ oracle model.

We will in fact show how to construct a primitive (in the Θ oracle model) that is simpler to
prove the existence of and for which we argue that it is sufficient to get the desired primitive of
extended EIRWE. We give the definition of the indexed and extended variant of this primitive
followed by a construction.

Definition 5.8 (V-Indexed Extractable One-Way Witness Encryption). Let W be the set of all
predicates. For any given security parameter κ and any V ∈ W, a V-indexed extractable one-way
witness encryption scheme EOWE[V] consists of the following PPT algorithms (Enc,Rev,DecV)
defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security parameter κ
(and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

A V-indexed extractable one-way witness encryption scheme satisfies the same correctness proper-
ties as Definition 5.3 but the extractability property is replaced with the following:

• Extractable one-wayness. For any PPT adversary A and polynomial p1(.), there exists
a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such that the
following holds. For any security parameter κ, k = poly(κ), and for all a, if:

Pr
[
A(1κ, c) = m | m $←− {0, 1}k, c← Enc(a,m, 1κ)

]
≥ 1

p1(κ)

then

Pr[EA(a) = w ∧ V(a,w) = 1] ≥ 1

p2(κ)
.

34

Definition 5.9 (Extended Extractable One-Way Witness Encryption). An extended extractable
one-way witness encryption scheme (ex-EOWE) is defined as the monolithic extension EOWE[V(·)]
(see Definition 4.4) of the V-indexed EOWE scheme EOWE[V] where V is the oracle-aided universal
circuit evaluator Univ(·).

Construction 5.10 (Extended Extractable One-Way Witness Encryption). For any security pa-
rameter κ and oracle Θ sampled according to Definition 5.5, we will implement an extended EOWE
scheme using Θ = (Enc,Rev,DecV) (where recall that V in Θ is defined as to be the universal circuit
evaluator) as follows:

• WEnc(a,m, 1κ) : Given security parameter 1κ, a ∈ {0, 1}∗, and message m ∈ {0, 1}n/2 where
n = 2 max(|a|, κ), output Enc(x) where x = (a,m).

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥, parse as
x′ = (a′,m′) and output m′. Otherwise, output ⊥.

Remark 5.11 (From one-wayness to indistinguishability.). We note that the primitive ex-EOWE,
which has one-way security, can be used to build an ex-EIRWE, which is indistinguishability-based,
through a simple application of the Goldreich-Levin thoerem [GL89]. Namely, to encrypt a one-bit
message b under some attribute a, we would output the ciphertext c = (Enc(a, r1), r2, 〈r1, r2〉 ⊕
b) where r1, r2 are randomly sampled and 〈r1, r2〉 is the hardcore bit. To decrypt a ciphertext
c = (y1, r2, y3) we would run r1 = Dec(w, y1), find the hardcore bit p = 〈r1, r2〉 then output
b = p ⊕ y3. We obtain the desired indistinguishability security since, by the hardcore-bit security
of the one-way function Enc′a(r1, r2) := (Enc(a, r1), r2), we have (Enc(a, r1), r2, 〈r1, r2〉 ⊕ 0) ≈
(Enc(a, r1), r2, 〈r1, r2〉 ⊕ 1) for any fixed a.

Lemma 5.12. Construction 5.10 is a correct and subexponentially-secure oracle-fixed implemen-
tation (Definition 3.16) of extended extractable one-way WE in the ideal Θ oracle model.

Proof. To prove the security of this construction, we will show that if there exists an adversary
A against Construction 5.10 (in the Θ oracle model) that can invert an encryption of a random
message with non-negligible advantage then there exists a (fixed) deterministic straight-line (non-
rewinding) extractor E with access to Θ = (Enc,Rev,DecV) that can find the witness for the
underlying instance of the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε. Then the extractor
E would works as follows: given a as input and acting as the challenger for adversary A, it chooses

m
$←− {0, 1}k uniformly at random then runs AΘ(1κ, c∗) where c∗ ←WEnc(a,m, 1κ) is the challenge.

Queries issued by A are handled by E as follows:

• To answer any query Enc(x) asked by A, it forwards the query to the oracle Θ and returns
some answer c.

• To answer any query Rev(c) asked by A, it forwards the query to the oracle Θ and returns
some answer a.

• To answer any query DecV(w, c) asked by A, the extractor first issues a query Rev(c) to get
some answer a. If a 6= ⊥, it would execute VΘ(w, a), forwarding queries asked by V to Θ
similar to how it does for A. Finally, it forwards the query Dec(w, c) to Θ to get some answer
x. If a = ⊥, it returns ⊥ to A otherwise it returns x.

35

While handling the queries made by A, if a decryption query DecV(w, c∗) for the challenge ciphertext
is issued by A, the extractor will pass this query to Θ, and if the result of the decryption is x 6= ⊥
then the extractor will halt execution and output w as the witness for instance x. Otherwise, if
after completing the execution of A, no such query was asked then the extractor outputs ⊥. We
prove the following lemma.

Lemma 5.13. For any PPT adversary A, instances a, if there exists a non-negligible function ε(.)
such that:

Pr
[
AΘ(1κ, c) = m | m $←− {0, 1}k, c←WEnc(a,m, 1κ)

]
≥ ε(κ) (1)

then there exists a PPT straight-line extractor E such that:

Pr
[
EΘ,A(a) = w ∧ VΘ(w, a) = 1

]
≥ ε(κ)− negl(κ). (2)

Proof. Let A be an adversary satisfying Equation (1) above and let AdvWin be the event that A
succeeds in the inversion game. Furthermore, let ExtWin be the event that the extractor succeeds
in extracting a witness (as in Equation (2) above). Observe that:

Pr
Θ,m

[ExtWin] ≥ Pr
Θ,m

[ExtWin ∧ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∨ AdvWin]

= 1− Pr
Θ,m

[ExtWin ∧ AdvWin]− Pr
Θ,m

[AdvWin].

Since Pr[AdvWin] ≥ ε for some non-negligible function ε, it suffices to show that Pr[ExtWin∧AdvWin]
is negligible. Note that, by our construction of extractor E, this event is equivalent to saying that
the adversary succeeds in the inversion game but never asks a query of the form DecV(w, c∗) for
which the answer is x 6= ⊥ and so the extractor fails to recover the witness. For simplicity of
notation define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle Θ, the probability
of Win happening is negligible. That is, we will prove the following claim:

Claim 5.14. For any negligible function δ, PrΘ

[
Prm[Win] ≥

√
δ
]
≤ negl(κ).

Proof. Define Bad to be the event that A asks (directly or indirectly) a query of the form DecV(w, c′)
for some c′ 6= c∗ for which it has not asked Enc(x) = c previously. We have that:

Pr
Θ,m

[Win] ≤ Pr
Θ,m

[Win ∧ Bad] + Pr
Θ,m

[Bad].

The probability of Bad over the randomness of Θ is at most 1/2n as it is the event that A hits an
image of a sparse random injective function without asking the function on the preimage beforehand.
Thus, PrΘ,m[Bad] ≤ 1/2n.

It remains to show that PrΘ,m[Win ∧ Bad] is also negligible. We list all possible queries that A
could ask and argue that these queries do not help A in any way without also forcing the extractor
to win as well. Specifically, we show that for any such A that satisfies the event (Win∧Bad), there
exists another adversary Â that depends on A and also satisfies the same event but does not ask
any decryption queries (only encryption queries). This would then reduce to the standard case of
inverting a random injective function, which is known to be hard. We define the adversary Â as
follows. Upon executing A, it handles the queries issued by A as follows:

36

• If A asks a query of the form Enc(x) then Â forwards the query to Θ to get the answer.

• If A asks a query of the form Rev(c) then since Bad does not happen, it must be the case
that c = Enc(a,m) is an encryption that was previously asked by A and therefore Â returns
a as the answer.

• If A asks a query of the form Dec(w, c∗) then w must be a string for which V(w, a∗) = 0
or otherwise the extractor wins, which contradicts that ExtWin happens. If that is the case,
since w is not a witness, Â would return ⊥ to A after running VΘ(w, a∗) and answering its
queries appropriately.

• If A asks a query of the form Dec(w, c′) for some c′ 6= c∗ then, since Bad does not happen, it
must be the case that A has asked a (direct or indirect) visible encryption query Enc(x′) = c′.
Therefore, Â would have observed this encryption query and can therefore run VΘ(w, a′) and
return the appropriate answer (x or ⊥) depending on the answer of V.

Given that Â perfectly emulates A’s view, the only possibility that A could win the inversion
game is by asking Enc(x∗) = c∗ and hitting the challenge ciphertext, which is a negligible prob-
ability over the randomness of the oracle. By a standard averaging argument, we find that since
PrΘ,m[Win ∧ Bad] ≤ δ(κ) for some negligible δ then PrΘ[Prm[Win ∧ Bad] ≤

√
δ] ≥ 1 −

√
δ, which

yields the result.

To conclude the proof of Lemma 5.13, we can see that the probability that the extractor wins
is given by Pr[ExtWin] ≥ 1 − Pr[ExtWin ∧ AdvWin] − Pr[AdvWin] ≥ ε(κ) − negl(κ) where ε is the
non-negligible advantage of the adversary A.

It is clear that Construction 5.10 is a correct implementation. Furthermore, by Lemma 5.13, it
satisfies the extractability property. Thus, this concludes the proof of Lemma 5.12.

Proof of Lemma 5.7. The existence of extractable instance-revealing witness encryption in the Θ
oracle model follows from Lemma 5.12 and Remark 5.11.

5.4 Compiling Out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We adapt the approach
outlined in Section 5.1 to the ideal IRWE oracle Θ = (Enc,Rev,DecV) while making use of Lemma
3.25, which allows us to compile out Θ in two phases: we first compile out part of Θ to get an
approximately-correct obfuscator ÔR in the random oracle model (that produces an obfuscation
B̂R in the RO-model), and then use the previous result of [CKP15] to compile out the random
oracle R and get an obfuscator O′ in the plain-model. Since we are applying this lemma only a
constant number of times (in fact, just twice), security should still be preserved. Specifically, we
will prove the following claim:

Lemma 5.15. Let R v Θ be a random oracle where “v” denotes a sub-model relationship (see
Definition 3.22). Then the following holds:

37

• For any IO in the Θ ideal model, there exists a simulatable compiler with correctness error
ε < 1/200 for it that outputs a new obfuscator in the random oracle R model.

• [CKP15] For any IO in the random oracle R model, there exists a simulatable compiler with
correctness error ε < 1/200 for it that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 5.15 follows directly by [CKP15], and thus we focus on proving
the first part of the claim. Before we start describing the compilation process, we present the
following definition of canonical executions that is a property of algorithms in this ideal model and
dependent on the oracle being removed.

Definition 5.16 (Canonical Executions). Web define an oracle algorithm AΘ relative to rIRWE to
be in canonical form if before asking any DecV(w, c) query, A would first get a← Rev(c) then run
VΘ(w, a) on its own, making sure to answer any queries of V using Θ. Furthermore, after asking
a query DecV(w, c) for which the returned answer is some message m 6= ⊥, it would ask Enc(x)
where x = (a,m). Note that any oracle algorithm A can be easily modified into a canonical form by
increasing its query complexity by at most a polynomial factor (since V is an extended polynomial
query algorithm).

Definition 5.17 (Query Types). For any (not necessarily canonical) oracle algorithm A with access
to a rIRWE oracle Θ, we call the queries that are asked by A to Θ as direct queries and those queries
that are asked by VΘ due to a call to Dec as indirect queries. Furthermore, we say that a query
is visible to A if this query was issued by A and thus it knows the answer that is returned by Θ.
Conversely, we say a query is hidden from A if it is an indirect query that was not explicitly issued
by A (for example, A would have asked a DecV query which prompted VΘ to ask its own queries
and the answers returned to V will not be visible to A). Note that, once we canonicalize A, all
indirect queries will be made visible since, by Definition 5.16, A will run VΘ before asking DecV
queries and the query-answer pairs generated by V will be revealed to A.

We now proceed to present the construction of the random-oracle model obfuscator that, given
an obfuscator in the Θ model, would compile out and emulate queries to Dec and Rev while
forwarding any Enc queries to R. Throughout this process, we assume that the obfuscators and
the obfuscated circuits are all canonicalized according to Definition 5.16.

5.4.1 The New Obfuscator ÔR in the Random Oracle Model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given a
δ-approximate obfuscator O = (iO,Ev) in the rIRWE oracle model, we construct an (δ + ε)-

approximate obfuscator Ô = (îO, Êv) in the random oracle model.

Subroutine îO
R

(C).

1. Emulation phase: Emulate iOΘ(C). Let TO be the transcript of this phase and initialize
QO := Q(TO) = ∅. For every query q asked by iOΘ(C), call ρq ← EmulateCallR(QO, q) and
add ρq to QO.

Note that, since iO is a canonical algorithm, there are no hidden queries resulting from queries
asked by V (via Dec queries) since we will always run VΘ before asking/emulating a Dec query.

38

Algorithm 1: EmulateCall

Input: Query-answer set Q, query q
Oracle: Random Oracle R
Output: ρq a query-answer pair containing the answer of query q
Begin.
if q is a query of type Enc(x) then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x 7→ c)Enc ∈ Q where x = (a,m) then
Set ρq = (c 7→ a)Rev

else
Set ρq = (c 7→ ⊥)Rev

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x 7→ c)Enc ∈ Q then
Initialize QV = ∅ and emulate b← VΘ(w, x)
for each query qV asked by V do

ρV ← EmulateCallR(Q ∪QV, qV)
QV = QV ∪ ρV

end
if b = 1 then

Set ρq = ((w, c) 7→ x)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
Return ρq

2. Learning phase: Set QB = ∅ to be the set of query-answer pairs learned during this phase.
Set m = 2`O/ε where `O ≤ |iO| represents the number of queries asked by iO. Choose

t
$←− [m] uniformly at random then for i = {1, ..., t}:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi), call and retrieve the answer
ρq ← EmulateCallR(QO ∪QB, q) then add ρq to QB.

Similar to Step 1, since Ev is a canonical algorithm and Enc is a injective function, with
overwhelming probability, there will be no hidden queries as a result of asking Dec queries.

3. The output of the RO model obfuscation algorithm îO
R

(C) will be B̂ = (B,QB).

39

Subroutine Êv
R

(B̂, z). To evaluate B̂ = (B,QB) on a new random input z we simply emulate
EvΘ(B, z). For every query q asked by EvΘ(B, z), run and set ρq = EmulateCallR(QB, q) then
add ρq to QB.

The running time of îO. We note that the running time of the new obfuscator îO remains
polynomial time since we are emulating the original obfuscation once followed by a polynomial
number m of learning iterations. Furthermore, while we are indeed working with an oracle where
the PPT V can have oracle gates to subroutines of Θ, we emphasize that since V, which we are
executing during EmulateCall, is a universal circuit evaluator, its effective running time remains
to be a strict polynomial in the size of V and so the issue of exponential or infinite recursive calls
is non-existent.

Proving approximate correctness. Consider two separate experiments (real and ideal) that
construct the random oracle model obfuscator exactly as described above but differ when evaluating

B̂. Specifically, in the real experiment, Êv
R

(B̂, z) emulates EvΘ(B, z) on a random input z and

answers any queries by running QB, whereas in the ideal experiment, we execute Êv
R

(B̂, z) and
answer the queries of EvΘ(B, z) using the actual oracle Θ instead. In essence, in the real experiment,

we can think of the execution as EvΘ̂(B, z) where Θ̂ is the oracle simulated by using QB and oracle
R. We will compare the real experiment with the ideal experiment and show that the statistical
distance between these two executions is at most ε. In order to achieve this, we will identify the

events that differentiate between the executions EvΘ(B, z) and EvΘ̂(B, z).

Let q be a new query that is being asked by EvΘ̂(B, z) and handled by calling EmulateCallR(QB, q).
The following are the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the same in both
experiments.

2. If q is a query of type Dec(w, c) or Rev(c) whose answer is determined by QB in the real
experiment then it is also determined by QO ∪ QB ⊇ QB in the ideal experiment and the
answers are distributed the same.

3. If q is of type Dec(w, c) or Rev(c) that is not determined by QO ∪ QB in the ideal experi-
ment then this means that we are attempting to decrypt a ciphertext for which we have not
encrypted before and we will therefore answer it with ⊥ with overwhelming probability. In
that case, q will not be determined by QB in the real experiment and will be answered ⊥.

4. Bad event 1. Suppose q is of type Dec(w, c) that is not determined by QB in the real
experiment and yet is determined by QO ∪ QB in the ideal experiment to be some answer
x 6= ⊥. This implies that the query-answer pair (x 7→ c)Enc is in QO \ QB. That is, we are
for the first time decrypting a ciphertext that was encrypted in Step 1 because we failed to
learn the underlying x for ciphertext c during the learning phase of Step 2. In that case, in
the real experiment, the answer would be ⊥ since we do not know the corresponding message
x whereas in the ideal experiment it would use the correct answer from QO ∪QB and output
x. However, we will show that this event is unlikely due to the learning procedure.

40

5. Bad event 2. Suppose q is of type Rev(c) that is not determined byQB in the real experiment
and yet is determined by QO∪QB in the ideal experiment. This implies that the query-answer
pair ((a,m) 7→ c)Enc is in QO \QB. That is, we are for the first time attempting to reveal the
attribute of a ciphertext that was encrypted in Step 1 because we failed to learn the answer
of this reveal query during the learning phase of Step 2. In that case, in the real experiment,
the answer would be ⊥ since we do not know the corresponding attribute a whereas in the
ideal experiment it would use the correct answer from QO ∪QB and output a. However, we
will show that this event is unlikely due to the learning procedure.

For input x, let E(x) be the event that Case 4 or 5 happen. Assuming that event E(x) does
not happen, both experiments will proceed identically the same and the output distributions of

EvΘ(B, x) and EvΘ̂(B, x) will be statistically close. More formally, the probability of correctness

for îO is:

Pr
x

[EvΘ̂(B, x) 6= C(x)] = Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)]

+ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ E(x)]

≤ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)].

By the approximate functionality of iO, we have that:

Pr
x

[iOΘ(C)(x) 6= C(x)] = Pr
x

[EvΘ(B, x) 6= C(x)] ≤ δ(n).

Therefore,

Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] = Pr
x

[EvΘ(B, x) 6= C(x) ∧ ¬E(x)] ≤ δ.

We are thus left to show that Pr[E(x)] ≤ ε. Since both experiments proceed the same up until E
happens, the probability of E happening is the same in both worlds and we will thus choose to
bound this bad event in the ideal world.

Claim 5.18. Prx[E(x)] ≤ ε.

Proof. For all i ∈ [t], let Q′Bi
= QBi ∩ QO be the set of query-answer pairs generated by the

i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and are also generated during the
obfuscation emulation phase (Step 1). In particular, Q′Bi

would contain the query-answer pairs
((a,m) 7→ c)Enc for encryptions that were generated by the obfuscation and later discovered during
the learning phase. Note that, since the maximum number of learning iterations m > `O and
Q′Bi

⊆ Q′Bi+1
, the number of learning iterations that would increase the size of the set of learned

obfuscation queries is at most 2`O since there are at most `O obfuscation ciphertexts that can
be fully discovered during the learning phase and at most `O obfuscation ciphertexts that can be
partially discovered (just finding out the attribute a) via Rev queries during the learning.

We say t
$←− [m] is bad if it is the case that Q′Bt

6= Q′Bt+1
(i.e. t is an index of a learning iteration

that increases the size of the learned obfuscation queries). This would imply that after t learning
iterations in the ideal world, the final evaluation Q′

B̂
:= Q′Bt+1

would contain a new unlearned

query-answer pair that was in QO. Thus, given that m = 2`O/ε, the probability (over the selection
of t) that t is bad is at most 2`O/m < ε.

41

Proving security. To show that the resulting obfuscator is secure, it suffices to show that the
compilation process represented as the new obfuscator’s construction is simulatable. We show a
simulator S (with access to Θ) that works as follows: given an obfuscated circuit B in the Θ ideal

model, it runs the learning procedure as shown in Step 2 of the new obfuscator îO to learn the
heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is statistically close to

the output of the real execution of îO and, therefore, security follows.

6 Separating IO from Instance Hiding Witness Encryption

In this section, we formally prove our second main separation theorem which states that there
is no fully black-box construction of indistinguishability obfuscation from any extended predicate
encryption scheme.

Theorem 6.1. Assume that NP 6⊆ coAM and that one-way functions exist. Then there exists no
monolithic construction of indistinguishability obfuscation (IO) from predicate encryption (PE).

In fact, we prove a stronger result by showing a separation of IO from a more generalized prim-
itive, which we call extended extractable instance-hiding witness encryption, that implies extended
predicate encryption and is a stronger variant of witness encryption.

Definition 6.2 (Extended Extractable Instance-Hiding Witness Encryption (ex-EIHWE)). Let V
be a universal circuit-evaluator as defined in Definition 4.6. For any given security parameter κ,
an extended extractable instance-hiding witness encryption scheme consists of two PPT algorithms
P = (Enc,DecV) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security parameter κ
(and randomness as needed) it outputs c ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

An extended extractable instance-hiding witness encryption scheme satisfies the following com-
pleteness and security properties:

• Correctness. For any security parameter κ, any m ∈ {0, 1}∗, and any (w, (a,m)) such that
VP (w, (a,m)) = 1, it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1.

• Instance-hiding extractability. For any PPT adversary A and polynomial p1(.), there
exists a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such that
the following holds. For security parameter κ, for all a0, a1 of the same length |a0| = |a1| and
any m0 6= m1 of the same length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(ab,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

then:

Pr[EA(a0, a1) = w ∧ ∃ b ∈ {0, 1} s.t. VP (w, ab) = 1] ≥ 1

p2(κ)
.

42

Generalizing the verification algorithm. Note that while the standard witness encryption
scheme defines the verification algorithm as operating on an witness-instance pair (w, a), since we
are elevating the security to be instance-hiding, we can generalize the verifier to allow it to accept
and act on not only the instance a but also the message m as input. That is, the verifier V in our
definition of instance-hiding witness encryption would accept (w, x) instead of just (w, a) where
x = (a,m). As a result, whenever it is unambiguous, we would often refer to x as the instance.

Given the above definition of ex-IHWE, we prove the following theorem, which states that there
is no fully black-box construction IO from extended IHWE.

Theorem 6.3. Assume that NP 6⊆ coAM and that one-way functions exist. Then there exists no
monolithic construction of indistinguishability obfuscation from instance-hiding witness encryption.

In Section 8.1, we prove that extended EIHWE implies extended predicate encryption. As a
result, Theorem 6.1 would follow from Theorem 6.3, Lemma 8.1 and Lemma 4.10 (the transitivity
lemma). Hence, for the remainder of this section we will focus on proving Theorem 6.3.

6.1 Overview of Proof Techniques

To prove Theorem 6.3, we will apply Lemma 3.26 for the idealized IHWE model Θ (formally defined
in Section 6.2) to prove that there is no black-box construction of IO from any primitive P that
can be oracle-fixed constructed from Θ. In particular, we will do so for P that is the extended
IHWE primitive. Our task is thus twofold: (1) to prove that P can be oracle-fixed constructed
from Θ and (2) to show a simulatable compilation procedure that compiles out Θ from any IO
construction. The first task is proven in Section 6.3 and the second task is proven in Section 6.4.
By Lemma 3.26, this would imply the separation result of IO from P and prove Theorem 6.3.

Our oracle, which is more formally defined in Section 6.2, resembles an idealized version of
a (instance-hiding) witness encryption scheme, which makes the construction of extended IHWE
straightforward. As a result, the main challenge lies in showing a simulatable compilation procedure
for IO that satisfies Definition 3.23 in this idealized model, and therefore, it is instructive to look
at how the compilation process works and what challenges are faced with dealing with oracle Θ.

6.1.1 High-level Compiler Structure and Challenges

Recall that the solution adopted for the (extended) IRWE oracle was to canonicalize the obfuscated
circuits such that queries made by the verification algorithm through decryption queries are made
manifest so that they can be publicized without affecting security. However, we shall see that this
is not enough to argue that (approximate) correctness is maintained.

Challenge faced with (instance-hiding) witness encryption. Here we are again faced with
a problem when we try to emulate decryption queries. Very much like the setting of extended
IRWE, since Θ represents an idealized extended primitive, the verification algorithm V associated
with the language defined by Θ might make oracle calls during the learning process. However,
precisely due to the instance-hiding property, one cannot canonicalize the obfuscated circuits as
before since we cannot efficiently extract the attribute or the message to run VΘ(x,w) and discover
the queries asked. This creates the possibility that the execution B′(x) might call such a hidden
query and emulating it incorrectly.

43

Resolving the challenge. While a full canonicalization is not possible here, we still perform it
partially. Specifically, whenever the obfuscated circuit calls a decryption query Dec(w, c) and the
underlying message x is successfully decrypted, the obfuscated circuit can now run VΘ(x,w) = 1
to reveal the queries asked. However, it is possible that the decryption fails, in which case we
may have some hidden queries QV asked by an underlying VΘ(x,w) = 0 that cannot be revealed
or learned. Nonetheless, we argue that the gathered information is enough for an approximately
correct emulation of the plain-model obfuscated code.

6.2 The Ideal Model

In this section, we formally define the distribution of our ideal randomized oracle.

Definition 6.4 (Random Instance-Hiding Witness Encryption Oracle). Let V be a PPT universal
circuit-evaluator as defined in Definition ?? that takes as input (w, x) where x ∈ {0, 1}n and
outputs b ∈ {0, 1}. We define the following random instance-hiding witness encryption (rIHWE)
oracle Θ = (Enc,DecV) as follows. We specify the sub-oracle Θn whose inputs are parameterized
by n, and the actual oracle will be Θ = {Θn}n∈N.

• Enc: {0, 1}n 7→ {0, 1}2n is a random injective function. We will use the Enc oracle to encrypt
a message x ∈ {0, 1}n to obtain a ciphertext c ∈ {0, 1}2n.

• DecV : {0, 1}s 7→ {0, 1}n ∪ {⊥}: Given w ∈ {0, 1}k, c ∈ {0, 1}2n as inputs and s = k + 2n,
Dec(w, c) allows us to decrypt the ciphertext c and get x as long as the predicate test is
satisfied on (w, x). More formally, do as follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

2. Find x such that Enc(x) = c.

3. If VΘ(w, x) = 0 output ⊥. Otherwise, output x.

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Dec} with some
answer β as (q 7→ β)T . The oracle Θ provides the subroutines for all inputs lengths but, for
simplicity, and when n is clear from the context, Θ = (Enc,DecV) refers to Θn for a fixed n.

6.3 Instance-Hiding Witness Encryption Exists Relative to Θ

In this section, we show how to construct a semantically-secure extended EIHWE with correspond-
ing verification algorithm V relative to Θ = (Enc,DecV).

Construction 6.5 (Extended Extractable Instance-Hiding Witness Encryption). Let V be a uni-
versal circuit-evaluator as defined in Definition ??. For any security parameter κ and oracle Θκ

sampled according to Definition 6.4, we will implement an extended EIHWE scheme P as follows:

• WEnc(a,m, 1κ) : Given a ∈ {0, 1}∗, message m ∈ {0, 1} and security parameter 1κ, let
n = 2 max(κ, |a|). Sample r ← {0, 1}n/2−1 uniformly at random then output c = Enc(x)
where x = (a,m)||r.

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥ then parse as
x′ = (a′,m′)||r′ and output m′. Otherwise, output ⊥.

44

Lemma 6.6. Construction 6.5 is a correct and subexponentially-secure oracle-fixed implementation
(Definition 3.16) of extended extractable instance-hiding WE in the ideal Θ oracle model.

To prove the security of this construction, we will show that if there exists an adversary A against
scheme P (in the Θ oracle model) that can distinguish between encryptions of two different messages
with non-negligible advantage then there exists a (fixed) deterministic straight-line extractor E with
access to Θ = (Enc,DecV) that can find the witness for the instance of the challenge ciphertext.

Suppose A is an adversary in the indistinguishability game with success probability 1/2 + ε.
Then the extractor E would works as follows: given (a0, a1) as input and acting as the challenger
for adversary A, it runs AΘ(1κ, c∗) where c∗ ← WEnc(ab,mb, 1

κ) is the challenge ciphertext. To
answer any query Enc(x) asked by A, it forwards the query to the oracle Θ and returns some
answer c. To answer any query Dec(w, c) for c 6= c∗ asked by A, the extractor will instead attempt
to simulate this query for A instead of asking Θ directly. In particular, it first verifies whether there
exists a query-answer pair (x 7→ c)Enc that was generated by A previously. If such a query-answer
pair exists then the extractor will run VΘ(w, x) = β and if β = 1 it returns to A the answer x.
If such a query-answer pair does not exist or β = 0 then it returns ⊥ to A. Note that, while
running VΘ(w, x), the extractor will also need to answer the queries asked by V similar to how
it did for A. While handling the queries made by A, if a decryption query DecV(w, c∗) for the
challenge ciphertext is issued by A, the extractor will pass this query to Θ, and if the result of the
decryption is x 6= ⊥ then the extractor will halt execution and output w as the witness for instance
x. Otherwise, if after completing the execution of A, no such query was asked then the extractor
outputs ⊥. We prove the following lemma.

Lemma 6.7. For any PPT adversary A, pair of instances a0, a1 of the same length |a0| = |a1| and
any m0 6= m1 of the same length |m0| = |m1|, if there exists a non-negligible function ε(.) such that:

Pr
[
AΘ(1κ, c∗) = b | b $←− {0, 1}, c∗ ←WEnc(ab,mb, 1

κ)
]
≥ 1

2
+ ε(κ) (3)

then there exists a PPT extractor E such that:

Pr
[
EΘ,A(a0, a1) = w ∧ VΘ(w, ab) = 1 | b $←− {0, 1}

]
≥ ε(κ)− negl(κ). (4)

Let A be an adversary satisfying Equation (3) above and let AdvWin be the event that A succeeds
in the distinguishing game. Furthermore, let ExtWin be the event that the extractor succeeds in
extracting a witness (as in Equation (4) above). Observe that:

Pr
Θ,b,r

[ExtWin] ≤ Pr
Θ,b,r

[ExtWin ∧ AdvWin] + Pr
Θ,b,r

[AdvWin]

Since Pr[AdvWin] ≥ 1/2 + ε for some non-negligible function ε, it suffices to show that Pr[ExtWin∧
AdvWin] is negligibly close to 1/2. Note that, by our construction of extractor E, this event is
equivalent to saying that the adversary succeeds in the distinguishing game but never asks a query
of the form DecV(w, c∗) for which the answer is x 6= ⊥ and so the extractor fails to recover the
witness. For simplicity of notation define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle Θ, the probability
of Win happening is only a negligible factor over the trivial advantage. That is, we will prove the
following claim:

45

Claim 6.8. For any negligible ε, PrΘ [Prb,r[Win] ≥ 1/2 + ε] ≤ negl(κ).

Proof. We first show that we can construct an adversary Â that has the same winning advantage
as A but does not ask decryption queries (only encryption queries). Define Bad to be the event
that A asks (directly or indirectly) a query of the form DecV(w, c′) for some c′ 6= c∗ for which it has
not asked Enc(x) = c′ previously. Given the challenge c∗, the new adversary Â executes AΘ(c∗)
and answers the queries as follows: if the query is an encryption query then it is directly forwarded
to Θ to get the answer. If it is a Dec(w, c′) query for some c′ 6= c∗ then it will check if Enc(x′) = c′

was asked by A before in which case it runs VΘ(w, x′) = β and returns the answer x′ if and only if
β = 1. If no such encryption was asked then event Bad has happened and we abort the execution.
If a query Dec(w, c∗) was asked then we return ⊥ immediately since ExtWin does not happen and
therefore the Dec is expected to fail anyway. Thus, as long as Bad does not happen, the advantage
of Â in winning the distinguishing game is at least the advantage of A.

It is straightforward to show, by a standard application of an averaging argument, that the
expression PrΘ [Prb,r[Bad] ≥ ε/3] ≤ negl(κ). Specifically, we know that the probability of Bad over
the randomness of Θ is at most 1/2n as it is the event that A hits an image of a sparse random
injective function without asking the function on the preimage beforehand. Thus, PrΘ,b,r[Bad] ≤
1/2n, so by an averaging argument PrΘ [Prb,r[Bad] ≥ ε/3] ≤ PrΘ

[
Prb,r[Bad] ≥ 2−n/2

]
≤ 2−n/2.

We now proceed to show that Â only succeeds with negligible advantage while asking only
encryption queries. Define Hit to be the event that Â happens to ask Enc(x∗) = c∗. Then:

Pr
Θ

[
Pr
b,r

[Win] ≥ 1

2
+ ε

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] + Pr
b,r

[Bad] + Pr
b,r

[Hit] ≥ 1

2
+ ε

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] ≥ 1

2
+
ε

3
∨ Pr
b,r

[Bad] ≥ ε

3
∨ Pr
b,r

[Hit] ≥ ε

3

]
≤ Pr

Θ

[
Pr
b,r

[Win ∧ Bad ∧ Hit] ≥ 1

2
+
ε

3

]
+ Pr

Θ

[
Pr
b,r

[Bad] ≥ ε

3

]
+ Pr

Θ

[
Pr
b,r

[Hit] ≥ ε

3

]
.

We can bound the event Hit from happening since it is the event that we invert the image of
a random injective function. This can be done over the randomness of the oracle then, using an
averaging argument, deduce that the probability that Hit happens for a non-negligible fraction of
oracles Θ is negligible.

We will thus focus on proving the first term. In doing so, we will reduce the problem of
indistinguishability to that of predicting the output of a random Boolean function on a random
point in the domain of this function. We then prove that the latter problem is hard using a
compression technique which allows to argue that an adversary that can win the prediction game
with non-negligible advantage can only do so for a negligible fraction of the oracles. We will make
use of the following lemma that shows the existence of a randomized compression technique for
random Boolean functions using adversaries against the prediction game.

Lemma 6.9 (Lemma 10.4 [DTT10]). Let A be an oracle algorithm that makes q queries to some
fixed oracle predicate p : {0, 1}n → {0, 1}, never queries the oracle on its input and satisfies the
following for some ε:

Pr[Ap(x) = p(x)] ≥ 1/2 + ε

46

then there exists a randomized encoder E and a randomized decoder D such that:

Pr
r

[D(E(p, r), r) = p] ≥ ε/q and |E(p, r)| ≤ 2n − ε22n/q.

For any fixed pair (a0, a1) and given adversary Â that wins in the indistinguishability game
without asking any decryption queries, we can construct a new oracle-aided adversary Ã that aims
to win in the experiment ExpP

Ã
(1κ, a0, a1) as defined in Figure 4 without querying the oracle on its

input and without asking any decryption queries. The adversary Ã will have access to oracle Θ
and PΘ, which is defined as follows:

P (a0, a1, r, c0, c1) =


0 if c0 = Enc(a0||0||r) and c1 = Enc(a1||1||r)
1 if c0 = Enc(a1||1||r) and c1 = Enc(a0||0||r)
⊥ otherwise

Experiment ExpPA(1κ, a0, a1):

1. r
$←− {0, 1}n/2−1, b

$←− {0, 1}

2. c∗0 ← Enc(ab||b||r), c∗1 ← Enc(a1−b||1− b||r)

3. b′ ← AP,Θ(r, c∗0, c
∗
1) where A cannot query P on (a0, a1, r, c

∗
0, c
∗
1) or (a0, a1, r, c

∗
1, c
∗
0)

4. Output 1 if b = b′ and 0 otherwise.

Figure 4: The ExpPA Experiment

The adversary Ã, given (r, c∗0, c
∗
1), would execute b′ ← Â(c∗0) and outputs b′ as its answer. We can

modify Ã so that whenever it issues a query to Enc(a||b||r) = cb, it would also call Enc(a||1−b||r) =
c1−b followed by a call to P (a, a, r, c0, c1). This ensures that any encryption query to Θ is translated
into a query to P .

Note that P can be interpreted as an alternative description for Θ. That is, given P : {0, 1}m →
{0, 1} where m = 11n/2 − 1, one can reconstruct Θ on any point in its domain. Define Pa0,a1 :=
P (a0, a1, ., ., .) to be the function P restricted to the attributes a0 and a1. By Lemma 6.9, we
can encode Pa0,a1 using at most m− ε2m/9q bits where q is the number of queries that A makes.
Thus, we have compressed the entire oracle by saving α = ε2m/9q bits. Hence, assuming that
ε = negl(κ) and q = poly(κ) we find that the fraction of oracles for which Ã can win on is at most
1/2α = negl(κ).

Proof of Lemma 6.6. It is clear that the Construction 6.5 is correct. Furthermore, by Lemma 6.7,
it also satisfies the extractability property.

47

6.4 Compiling Out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We formalize the approach
outlined in Section 6.1 while making use of Lemma 3.25, which allows us to compile out Θ in two
phases: we first compile out part of Θ to get an approximately-correct obfuscator ÔR in the random
oracle model (that produces an obfuscation B̂R in the RO-model), and then use the previous result
of [CKP15] to compile out the random oracle R and get an obfuscator O′ in the plain-model. Since
we are applying this lemma only a constant number of times (in fact, just twice), security should
still be preserved. Specifically, we will prove the following claim:

Lemma 6.10. Let R v Θ be a random oracle where “v” denotes a sub-model relationship (see
Definition 3.22). Then the following holds:

• For any IO in the Θ ideal model, there exists a simulatable compiler for it with correctness
error ε < 1/200 that outputs a new obfuscator in the random oracle R model.

• [CKP15] For any IO in the random oracle R model, there exists a simulatable compiler for it
with error correctness ε < 1/200 that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 6.10 follows directly from the previous result of [CKP15], and
thus we focus on proving the first part of the claim. Before we start describing the compilation
process, we present the following definition of canonical executions that is a property of algorithms
in this ideal model and dependent on the oracle being removed, then we describe the notation and
terminology used throughout the proof.

Definition 6.11 (Canonical Executions). We define an oracle algorithm AΘ relative to rIHWE to
be in canonical form if right after asking any DecV(w, c) = x where x 6= ⊥, A would also additionally
ask the query Enc(x) followed by directly executing VΘ(w, x) on its own. Note that any algorithm
A can be easily modified into a canonical form by increasing its query complexity at most by a
polynomial factor (since V is a PPT algorithm).

Definition 6.12 (Query Types). For any canonical oracle algorithm A with access to a rIHWE
oracle Θ, we call the queries that are asked by A to Θ as direct queries and those queries that are
asked by VΘ due to a call to Dec as indirect queries. Furthermore, we say that a query is visible to
A if this query was issued by A and thus it knows the answer that is returned by Θ. Conversely,
we say a query is hidden from A if it is an indirect query that was not explicitly issued by A (for
example, A would have asked a DecV query which prompted VΘ to ask its own queries and the
answers returned to V will not be visible to A).

Note that, while all direct queries are visible to A, an indirect query q may or not may visible
to A; an indirect query q is visible to A if it runs VΘ and q is asked by V then forwarded to A
(where q was not previously asked by A in an explicit manner).

Transcripts. We use bold fonts (e.g., T) to denote the distribution from which we sample an
actual transcript T ← T. For any transcript T of some oracle algorithm, we define U(T) to be
the set of query-answer pairs asked of Θ during the generation of T and define Q(T) to be the
projection of U(T) onto the first element, which represents the set of queries only.

We now proceed to present the construction of the random-oracle model obfuscator that, given
an indistinguishability obfuscator O = (iO,Ev) in the Θ model, would compile out and emulate

48

queries to Dec while forwarding any Enc queries to R. Throughout this process, we assume,
without loss of generality, that the ideal-model obfuscator iO and the ideal-model evaluation of
the obfuscation Ev are both in canonical form according to Definition 6.11. For these canonical
algorithms, let `O, `B = poly(n), respectively, be the number of queries asked by the ideal-model
obfuscator iO and the evaluation Ev to the rIHWE oracle Θ.

Algorithm 2: EmulateCall

Input: Query-answer set U and query q
Oracle: Random oracle R
Output: (ρq,WH) where ρq is a query-answer pair containing the answer of query q and

WH is the set of indirect query-answer pairs (those asked by V)
Begin.
Initialize WH = ∅
if q is a query of type Enc(x) for any x ∈ {0, 1}n then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form DecV(w, c) for any w ∈ {0, 1}∗ and c ∈ {0, 1}2n then

if ∃ (x 7→ c)Enc ∈ U then
Emulate b← VΘ(w, x)
for each query qV asked by V do

(ρV,WV)← EmulateCallR(U ∪WH , qV)
WH = WH ∪ (ρV ∪WV)

end
if b = 1 then

Set ρq = ((w, c) 7→ x)Dec /* Canonical caller can now call VΘ(w, x) to publicize
WH */

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
Return (ρq,WH)

6.4.1 The New Obfuscator ÔR in the Random Oracle Model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given a
δ-approximate obfuscator O = (iO,Ev) in the rIHWE oracle model, we construct an (δ + ε)-

approximate obfuscator Ô = (îO, Êv) in the random oracle model.

Subroutine îO
R

(C).

1. Emulation phase. Given input circuit C ∈ Cn, emulate iOΘ(C) and let B be the output of
this emulation. Let TO be the transcript of this phase and initialize QO := U(TO) = ∅. For

49

every query q asked by iOΘ(C):

• Call (ρq,WH)← EmulateCallR(QO, q) as in Algorithm 2 and return the answer in ρq

• Add ρq and WH to QO

Note that we will not pass any query-answer pairs QO asked by iOΘ to the output of this
new obfuscation. All of the query-answer pairs in QO, be it visible or hidden, will only be
used for emulation purposes in the following step.

2. Learning phase. Let QB be the set of all visible queries that will be learned, QhB be the set
of hidden queries that we will keep track of for emulation purposes. Set m = 3`O/ε where

`O ≤ |iO| represents the number of queries asked by iO. Choose t
$←− [m] uniformly at random

then for i = {1, ..., t} do the following:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi):

– Call (ρq,WH)← EmulateCallR(QO ∪QB ∪QhB, q) and return the answer in ρq

– Add ρq to QB and add WH to QhB.

Since Ev is a canonical algorithm, in addition to the direct queries asked by EvΘ(B, zi) to
Θ, the resulting query set QB would also include the indirect queries that have resulted from
EvΘ(B, zi) running VΘ(w, x) = 1 on a successful decryption query.

3. The output of the random oracle model obfuscation algorithm îO
R

(C) will be B̂ = (B,QB)
where QB is the set of visible (direct and/or indirect) query-answer pairs.

Subroutine Êv
R

(B̂, z). Initialize Q
B̂

= ∅ to be the set of queries asked when evaluating B̂. To

evaluate B̂ = (B,QB) on a new random input z we simply emulate EvΘ(B, z). For every query q
asked by EvΘ(B, z), run and set (ρq,WH) = EmulateCallR(QB ∪ QB̂, q) then return the answer
in ρq and add (ρq,WH) to Q

B̂
.

Note that, since we are emulating query calls with respect to QB ∪QB̂, all the indirect query-
answer pairs WH returned from queries of the form DecV(w, c) are due to knowing the underlying
(x 7→ c)Enc (i.e. (x 7→ c)Enc ∈ QB ∪ QB̂) so WH is visible and therefore used in the emulation of
any subsequent queries issued during this execution.

The running time of îO. We note that the running time of the new obfuscator îO remains
polynomial time since we are emulating the original obfuscation once followed by a polynomial
number m of learning iterations. Furthermore, while we are indeed working with an oracle where the
PPT universal circuit evaluator V can have oracle gates to subroutines of Θ, we emphasize that in
our framework of extended primitives, the effective running time of V, which we are executing during
EmulateCall, remains to be a strict polynomial in the size of V and so the issue of exponential or
infinite recursive calls is non-existent.

50

Proving approximate correctness. Let QS = (QO ∪QB ∪QhB ∪QB̂) be the set of all query-
answer pairs asked during the emulation, learning, and evaluation phases. We define the follow-
ing hybrid experiments to show that the correctness of the new random-oracle model obfusca-
tor that simulates an execution of a Θ-model obfuscation is sufficiently close to the correctness
of an ideal execution of the Θ-model obfuscation. We denote the distribution of Hybrid i as
H i = (QiO, Q

i
B, Q

i,h
B , Qi

B̂
).

• Hybrid 0: This is the real experiment, which is represented in Section 6.4.1.

• Hybrid 1: This is the same as Hybrid 0 except for two differences:

– The queries asked during emulation (Step 1) and learning (Step 2) answered relative to
a true oracle Θ instead of emulating them using EmulateCall.

– We modify the final execution Êv(B̂, z) such that, when we execute EvΘ(B, z), we would
forward all queries to Θ instead of using EmulateCall except when the query is of the
form Dec(w, c) for some (x 7→ c)Enc /∈ QB ∪ QB̂, in which case we do not forward this
query to Θ and use ⊥ as the answer instead. We will refer to such decryption queries as
being unknown.

• Hybrid 2: This is the ideal experiment, where all the queries asked during emulation, learning
and final execution are answered relative to a true oracle Θ. That is, all queries whose answers
are emulated using EmulateCall throughout the obfuscation and final evaluation phases will
instead be answered directly using Θ.

Claim 6.13. ∆(H0, H1) ≤ negl(κ)

Proof. We first observe that the emulation and learning processes of Hybrid 0 is a statistical simu-
lation of the true oracle. Furthermore, if the final execution phase asks a query Dec(w, c) for which
(x 7→ c)Enc ∈ QB∪QB̂ then the answer in both hybrids will be consistent with each other otherwise
the answer is ⊥ in both hybrids. Consequently, any encryption query will be answered in Hybrid 0
using random oracle R and in Hybrid 1 using Θ, and Hybrid 0 statistically simulates decryptions
queries without access to Θ.

The only event that can cause a discrepancy between these two hybrids is during the emulation
and learning phases where a decryption query DecV(w, c) is issued and (x 7→ c)Enc /∈ QS but c is a
valid ciphertext (i.e. there exists x such that Enc(x) = c). In that case, in Hybrid 0, the answer to
such a query will be ⊥ whereas the answer in Hybrid 1 will be x. However, the probability of that
happening in Hybrid 1 (over the randomness of oracle Θ) is at most (2n− p)/(22n− p) ≤ 1/2n−1 =
negl(κ) given that p = tlBlO = poly(κ).

Claim 6.14. ∆(H1, H2) ≤ ε

Proof. Note that, since the emulation and learning processes are the same in both hybrids, we
have that (Q1

O, Q
1
B, Q

1,h
B) = (Q2

O, Q
2
B, Q

2,h
B) and so we omit the superscripts when referencing these

query-answer sets for simplicity of notation. In Hybrid 1, the execution of B̂ emulates EvΘ(B, z) on
a random input z and answers all queries using Θ except for unknown decryption queries, whereas
in Hybrid 2, we execute B̂ and answer all of EvΘ(B, z)’s queries using the actual oracle Θ. In

essence, in Hybrid 1, we can think of the execution as EvΘ̂(B, z) where Θ̂ is the oracle simulated by

51

B̂ using QB and Θ. We will identify the events that differentiate between the executions EvΘ(B, z)

and EvΘ̂(B, z).
Assume that the query-answer pairs so far during the execution of B̂ are the same in both

hybrids. That is, we start with some Q1
B̂

= Q2
B̂

= Q
B̂

for the sake of proving inductively that any
subsequent query-answer pairs are closely distributed between the two hybrids. Let q be a new

(possibly indirect) query that is being asked by EvΘ̂(B, z). We present a case-by-case analysis of
all possible query types to identify the cases that can cause discrepancies between the two hybrids:

1. If q is a query of type Enc(x), then it will be answered the same in both hybrids using the
true oracle Θ.

2. If q is of type Dec(w, c) for which there exists (x 7→ c)Enc ∈ QB ∪ QB̂ then the answer
to q would be determined the same in both hybrids. In particular, both hybrids will run
VΘ(w, c) = b, adding any indirect queries to Q

B̂
and answering q with x if and only if b = 1.

3. If q is of type Dec(w, c) such that (x 7→ c)Enc /∈ QS then this means that we are attempting
to decrypt a ciphertext for which we have not encrypted before (either directly or indirectly).
In Hybrid 2, since Enc is a sparse random injective function, the answer would be ⊥ with
overwhelming probability as c would be invalid, and in Hybrid 1 the answer will also be ⊥
by the definition of Êv(B̂, z) in this hybrid. Note that in both hybrids, there will not be any
indirect queries in Q

B̂
as a result of this query since the ciphertext c is deemed invalid and V

will not even be executed.

4. Suppose q is of type Dec(w, c) that is not determined by QB ∪ QB̂ in Hybrid 1 and yet is
determined by QS in Hybrid 2. We list the different cases here that may cause problems:

(a) If q is of type Dec(w, c) such that (x 7→ c)Enc ∈ QS \ (QB ∪QB̂) and VΘ(w, x) = 0 then
this means that we are attempting to decrypt a ciphertext for which the decryption will
fail. The answer will be ⊥ in Hybrid 1 by the definition of Êv(B̂, z) and is also ⊥ in
Hybrid 2 since we are using the real oracle Θ. However, one crucial point here is that,
while there will possibly exist hidden queries due to the internal execution of VΘ(w, x) in
Hybrid 2, such hidden queries will not be present in Hybrid 1 as we do not run V there.
As we shall see later on, this is a potential source of inconsistency for later queries.

(b) Bad event 1. The query-answer pair (x 7→ c)Enc is in QO\(QB∪QB̂) and VΘ(w, x) = 1.
That is, we are for the first time decrypting a ciphertext that was encrypted in Step 1
because we failed to learn the answer of this decryption query during the learning phase
of Step 2. In that case, in Hybrid 1, the answer would be ⊥ since we do not know the
corresponding message x whereas in Hybrid 2 it would use the answer consistent with
QO ⊆ QS and output x.

(c) Bad event 2. The query-answer pair (x 7→ c)Enc is in QhB\(QB∪QB̂) and VΘ(w, x) = 1.
That is, we are for the first time decrypting a ciphertext from a hidden encryption query
in Step 2. In that case, in Hybrid 1, the answer would be ⊥ since we do not know the
corresponding message x whereas in Hybrid 2 it would use the answer consistent with
QhB ⊆ QS and output x.

(d) Bad event 3. The query-answer pair (x 7→ c)Enc is in Qh
B̂
\(QB∪QB̂) and VΘ(w, x) = 1

where Qh
B̂

is the set of hidden queries generated in Hybrid 2 as a result of queries from

52

Case 4a. In that case, in Hybrid 1, the answer would be ⊥ since we do not know the
corresponding message x whereas in Hybrid 2 it would use the answer consistent with
Qh
B̂
⊆ QS and output x.

While the above bad events will generate indirect queries in Hybrid 2 (the ciphertext is valid
there), these indirect queries will not be present in Hybrid 1, and may cause inconsistencies
between the two hybrids when evaluating subsequent queries. However, as long as we show
that the bad events happen with small probability, those indirect queries will also be generated
in Hybrid 2 only with small probability.

For input x, let E1(x) be the event that Case 4b happens, E2(x) be the event that Case 4c
happens, and E3(x) be the event that Case 4d happens. Assuming that event E(x) = (E1(x) ∨
E2(x)∨E3(x)) does not happen, both experiments will proceed identically the same and the output

distributions of EvΘ(B, x) and EvΘ̂(B, x) will be statistically close. More formally, the probability
of correctness for Ô is:

Pr
x

[EvΘ̂(B, x) 6= C(x)] = Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)]

+ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ E(x)]

≤ Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)].

By the approximate functionality of O, we have that:

Pr
x

[iOΘ(C)(x) 6= C(x)] = Pr
x

[EvΘ(B, x) 6= C(x)] ≤ δ(n).

Therefore,

Pr
x

[EvΘ̂(B, x) 6= C(x) ∧ ¬E(x)] = Pr
x

[EvΘ(B, x) 6= C(x) ∧ ¬E(x)] ≤ δ.

We are thus left to show that Pr[E(x)] = Pr[E1(x)]+Pr[E2(x) | E1(x)]+Pr[E3(x) | E1(x)∧E2(x)] ≤
ε. Since both experiments proceed the same up until E happens, the probability of E happening
is the same in both worlds and we will thus choose to bound these bad events in Hybrid 2.

Claim 6.15. Prx[E1(x)] ≤ ε/3.

Proof. Recall that E1 is the event that during the final execution of the obfuscation B̂ on a random
input, a Dec(w, c) query is asked for some c that was generated during the obfuscation phase but
such a decryption query was never asked during the learning phase (Case 4b). For all i ∈ [t], let
Q′Bi

= (QBi∪QhBi
)∩QO be the set of query-answer pairs generated by the i’th evaluation EvΘ(B, zi)

during the learning phase (Step 2) and are also generated during the obfuscation emulation phase
(Step 1). Note that, since the maximum number of learning iterations m > `O and Q′Bi

⊆ Q′Bi+1
,

the number of learning iterations that increase the size of the set of learned obfuscation queries is

at most `O. We say t
$←− [m] is bad if it is the case that Q′Bt

6= Q′Bt+1
(i.e. t is an index of a learning

iteration that increases the size of the learned obfuscation queries). This would imply that after
t learning iterations in Hybrid 1, the real execution Q′

B̂
:= Q′Bt+1

would contain a new unlearned

query that was in QO. Thus, given that m = 3`O/ε, the probability (over the selection of t) that t
is bad is at most `O/m < ε/3.

53

Claim 6.16. Prx[E2(x) | E1(x)] ≤ negl(κ).

Proof. Recall that E2 is the event that during the final execution of the obfuscation B̂ on a random
input, a query is asked that was issued during the learning phase but was part of the hidden set
and therefore never publicized (Case 4c).

For all i ∈ [t], let QBi = (QBi ∪ QhBi
) be the set of (public and hidden) query-answer pairs

generated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and Q
B̂

be all
the query-answer pairs of the final evaluation of the obfuscation. Note that in Hybrid 2, the real
oracle Θ is used and therefore each execution of EvΘ(B, zi) is independent of the other executions.
In particular, we can think of the final evaluation as iteration t + 1 of the learning phase with
query-answer pairs QBt+1 = Q

B̂
. Now, we can think of an intermediate hybrid with distribution

H2′ where the executions are randomly permuted in a way such that execution t + 1 in Hybrid
2 is now the first execution in Hybrid 2′. Note that, since the executions are independent, the
distributions H2 and H2′ are equivalent and it remains to show that E2 is unlikely to happen
in Hybrid 2′. Specifically, we need to show that the first execution of the learning phase (with
query-answer pairs QBt+1) does not decrypt a ciphertext generated by any previous hidden queries
in the learning phase. However, since this is the first execution, there exists no hidden queries from
previous executions and it suffices to argue that it does not decrypt a ciphertext generated by any
hidden queries QhBt+1

from its own execution.

Since E1 does not happen and since the probability that EvΘ(B, zt+1) decrypts a ciphertext
that was never encrypted during the whole process is negligible, the only ciphertexts that this
execution will attempt to decrypt are ones that were generated during this very same execution.
Therefore, E2 only happens with negligible probability when a ciphertext that was never encrypted
before is being decrypted.

Claim 6.17. Pr[E3(x) | E1(x) ∧ E2(x)] ≤ negl(κ).

Proof. We bound this event in Hybrid 1. Given that the final execution in this hybrid does not
issue unknown decryption queries, there are no hidden queries generated in this hybrid and so E3

only happens with negligible probability when a ciphertext that was never encrypted before is being
decrypted.

Combining the results of the above claims, we get that Prx[E(x)] ≤ Pr[E1(x)] + Pr[E2(x) |
E1(x)] + Pr[E3(x) | E1(x) ∧ E2(x)] ≤ ε/3 + negl(n) ≤ ε.

Proving security. To show that the resulting obfuscator is secure, it suffices to show that the
compilation process represented as the new obfuscator’s construction is simulatable. We show a
simulator S (with access to Θ) that works as follows: given an obfuscated circuit B in the Θ ideal
model, it runs the learning procedure as shown in Step 2 of the new obfuscator Ô to learn the
heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is statistically close to
the output of the real execution of Ô and, therefore, security follows.

54

7 Separating IO from Homomorphic Witness Encryption

In this section, we formally prove our third main separation theorem which states that there is no
fully black-box construction of indistinguishability obfuscation from any extended fully homomor-
phic encryption scheme.

Theorem 7.1. Assume the existence of one-way functions and that NP 6⊆ coAM. Then there
exists no monolithic construction of indistinguishability obfuscation (IO) from fully homomorphic
encryption (FHE).

In fact, we prove a stronger result by showing a separation of IO from a more generalized and
powerful version of witness encryption, which we call extended extractable homomorphic witness
encryption. In essence, this is an instance-revealing witness encryption (Definition 3.4) with added
homomorphic capabilities and extractable security.

Definition 7.2 (Extended Extractable Instance-Revealing Homomorphic Witness Encryption).
Let V be a universal circuit-evaluator that takes instance a and witness w and either accepts
or rejects. Furthermore, let F be a universal circuit evaluator that takes as input a sequence of
messages m1, ...,mk to output some value m′. For any given security parameter κ, an extended
extractable instance-revealing homomorphic witness encryption (ex-EIRHWE) scheme defined for
(V,F) consists of four PPT algorithms P = (Enc,Rev,DecV,EvalF) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and security param-
eter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

• EvalF(c1, ..., ck) : given ciphertexts18 c1 = Enc(a1,m1, 1
κ), ..., ck = Enc(ak,mk, 1

κ), it outputs
{c′i}

p
i=1 where p = |U | and U ⊆ A is the set of distinct attributes from A = {a1, ..., ak}.

An extended extractable instance-revealing homomorphic witness encryption scheme satisfies the
following completeness and security properties:

• Decryption Correctness. For any security parameter κ, we have that the following two
conditions are satisfied:

– For any (w, a) such that VP (w, a) = 1, and any m:

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1.

– For any (wi, ai) such that VP (wi, ai) = 1, and any m1, ...,mk:

Pr
Enc,Dec,Eval

[Dec(wi,Eval(c1, ..., ck)) = FP (m1, ...,mk)|i] = 1

where ci = Enc(ak,mk, 1
κ) for all i ∈ [k] and FP (m1, ...,mk)|i denotes the ith secret

share of FP (m1, ...,mk).
18Without loss of generality, we exclude from the input to the evaluation any explicit in-the-clear representation of

a function f ∈ F to compute on the underlying messages as we can interpret the function f as a “message” mf = f ,
encrypt it to get cf and include it as input to the evaluation.

55

• Instance-revealing correctness. For security parameter κ and any (a,m) it holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) = c it holds that
Rev(c) = ⊥.

• Extractability. For any PPT adversary A and polynomial p1(.), there exists a PPT (black-
box) straight-line extractor E and a polynomial function p2(.) such that the following holds.
For any security parameter κ, for all a and any m0 6= m1 of the same length |m0| = |m1|, if:

Pr
[
A(1κ, c) = b | b $←− {0, 1}, c← Enc(a,mb, 1

κ)
]
≥ 1

2
+

1

p1(κ)

then,

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)
.

Given the above definition of ex-EIRHWE, we prove the following theorem, which states that
there is no fully black-box construction IO from extended EIRHWE.

Theorem 7.3. Assume the existence of one-way functions and that NP 6⊆ coAM. Then there ex-
ists no monolithic construction of indistinguishability obfuscation from extractable instance-revealing
homomorphic witness encryption for any PPT verification algorithm V and function F.

Since extended EIRHWE implies extended fully homomorphic encryption (in fact, in Sec-
tions 8.2 and 8.3, we show that it also implies other more powerful primitives such as extended
attribute-based FHE and spooky encryption), Theorem 7.1 follows from Theorem 7.3, the above
observations, and Lemma 4.10 (the transitivity lemma). As a result, for the remainder of this
section we will focus on proving Theorem 7.3.

7.1 Overview of Proof Techniques

To prove Theorem 7.3, we will apply Lemma 3.26 for the rIRHWE model Ψ (formally defined in
Section 7.2) to prove that there is no black-box construction of IO from any primitive P that can
be oracle-fixed constructed from the Ψ. In particular, we will do so for P that is the extended
IRHWE primitive. Our task is thus twofold: (1) to prove that P can be oracle-fixed constructed
from Ψ and (2) to show a simulatable compilation procedure that compiles out Ψ from any IO
construction. The first task is proven in Section 7.3 and the second task is proven in Section 7.4.
By Lemma 3.26, this would imply the separation result of IO from P and prove Theorem 7.3.

Our oracle, which is more formally defined in Section 7.2, resembles an idealized version of
a homomorphic witness encryption scheme, which makes the construction of extended IRHWE
straightforward. As a result, the main challenge lies in showing a simulatable compilation procedure
for IO that satisfies Definition 3.23 in this idealized model, and therefore, it is instructive to look
at how the compilation process works and what challenges are faced with dealing with oracle Ψ.

56

7.1.1 High Level Compiler Structure and Challenges

Here we briefly discuss the general structure of the proposed compiler before going over the issues
that arise when dealing with how to compile out Ψ. In this ideal model, we will aim to compile out
both the decryption and evaluation procedures to reduce the Ψ oracle into a basic random oracle.
Note, however, that while we will be using an instance-revealing oracle (and therefore we can run
V on the revealed attribute to discover its indirect queries similar to the IRWE case), we still have
to handle those hidden queries issued by the evaluation function F.

Challenge faced with homomorphic witness encryption. Similarly to the case of compiling
out rIHWE, since Ψ is an extended oracle, the algorithm F is allowed to issues queries to any
subroutine in Ψ. As a result, during the learning process of the compilation procedure, a query to
EvalF might be asked for which queries issued by F would remain hidden (see Definition 6.12) and
therefore may affect correctness when a new execution of B̂(x) hits one of those queries.

Resolving the challenge. We resolve this problem by canonicalizing the emulation and learning
processes as well as the obfuscation B so that we force the obfuscation B, upon issuing a query q of
the form EvalF(c1, ..., ck), to explicitly reveal any queries asked by F by having it call FΨ(m1, ...,mk)
if it knows all of the encryptions Enc(ai,mi) = ci. However, we still need to consider the case that,
when executing B̂Θ(x), at least one of the encryptions are unknown, in which case, we simply
emulate the answer of q to be set of uniformly random ciphertexts (which we will categorize as fake
ciphertexts). We argue that unless a Dec query is asked to decrypt one of the fake ciphertexts then
the real execution’s distribution is close to an ideal execution’s distribution. We prove that due to
the learning procedure, such a decryption query has a low probability of happening.

7.2 The Ideal Model

In this section, we define the distribution of our ideal randomized oracle.

Definition 7.4 (Random Instance-Revealing Witness Homomorphic Encryption Oracle). Let V
be a universal circuit-evaluator that takes instance a and witness w and either accepts or rejects.
Furthermore, let F be a universal circuit evaluator that takes as input a sequence of messages
m1, ...,mk to output some value m′. Let H : {0, 1}∗ → {0, 1}n/2 be a public random hash function.
We define the following random instance-revealing witness homomorphic encryption (rIRWHE)
oracle ΨV,F,n = (Enc,Rev,DecV,EvalF) as follows:

• Enc: {0, 1}n 7→ {0, 1}2n is a random injective function. We will use the Enc oracle to encrypt
a m ∈ {0, 1}n/2 with respect to attribute a ∈ {0, 1}n/2 to obtain a ciphertext c ∈ {0, 1}2n.

For any c ∈ {0, 1}2n, we call c valid if there exists x such that Enc(x) = c and fake otherwise.

• Rev: {0, 1}2n 7→ {0, 1}n/2 ∪⊥ is a function that, given an input c ∈ {0, 1}2n, would output a
for which Enc((a,m)) = c. If there is no such preimage, then it outputs ⊥ instead.

• DecV : {0, 1}s 7→ {0, 1}n ∪ {⊥}: Given w ∈ {0, 1}k, c ∈ {0, 1}2n as inputs where k = poly(n)
and s = k+ 2n, Dec(w, c) allows us to decrypt the ciphertext c and get x = (a,m) as long as
the predicate test is satisfied on (w, a). More formally, do as follow:

1. If @ x such that Enc(x) = c, output ⊥. Otherwise, continue to the next step.

57

2. Find x such that Enc(x) = c.

3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

• EvalF : {0, 1}2nk 7→ {0, 1}2np : Given a sequence of inputs c1, ..., ck, this subroutine performs
the following:

1. If for some i ∈ [k] @ xi = (ai,mi) for Enc(xi) = ci, then output ⊥. Otherwise, continue
to the next step.

2. For each i ∈ k, find xi = (ai,mi) such that Enc(xi) = ci (this is an inefficient process).
Let {a′1, ..., a′p} be the set of distinct attributes embedded in x1, ..., xk where p ≤ k.

3. Run b = FΨ(m1, ...,mk)

4. Output {c′i}
p
i=1 where, for all i ∈ [p], c′i = Enc(x′i), x

′
i = (a′i, bi||hi), where the value h is

defined as hi = H(i, a1, ..., ak,m1, ...,mk) and bi is the i’th share of b.

We define a query-answer pair resulting from query q to subroutine T ∈ {Enc,Rev,DecV,EvalF}
with some answer β as (q 7→ β)T . For simplicity, when n is clear from the context, we use
Ψ = (Enc,Rev,DecV,EvalF) to refer to ΨV,F,n for a fixed n.

Remark 7.5. Note that for the sake of achieving the most general case of extended primitives from
this oracle, we will allow both F and V to have any oracle gates to Ψ = (Enc,DecV,Rev,EvalF).

7.3 Homomorphic Witness Encryption Exists Relative to Ψ

In this section, we show how to construct a semantically-secure extended extractable IRHWE with
corresponding universal-circuit evaluators V and F relative to Ψ = (Enc,Rev,DecV,EvalF). More
specifically, we will show how to construct a primitive (in the Ψ oracle model) that is simpler to
prove the existence of and yet still implies EIRHWE.

Definition 7.6 (Extended Extractable One-way Homomorphic Witness Encryption (ex-EOHWE)).
Let V be a universal circuit-evaluator that takes instance a and witness w and either accepts or
rejects. Furthermore, let F be a universal circuit evaluator that takes as input a sequence of
messages m1, ...,mk to output some value m′. For any given security parameter κ, an extended
extractable one-way homomorphic witness encryption scheme consists of the following PPT algo-
rithms P = (Enc,Rev,DecV,EvalF) defined as follows:

• Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and security parameter κ
(and randomness as needed) it outputs c ∈ {0, 1}∗.

• Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.

• DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message m′ ∈ {0, 1}∗.

• EvalF(c1, ..., ck): given ciphertexts c1, ..., ck, outputs another sequence of ciphertexts (c′1, ..., c
′
p)

where p ≤ k.

An extended extractable one-way homomorphic witness encryption scheme satisfies the same com-
pleteness properties of Definition 7.2 with the extractability property replaced with the following:

58

• Extractable One-Wayness. For any PPT adversary A and polynomial p1(.), there exists
a PPT (black-box) straight-line extractor E and a polynomial function p2(.) such that the
following holds. For any security parameter κ, k = poly(κ), and for all a, if:

Pr
[
A(1κ, c) = m | m $←− {0, 1}k, c← Enc(a,m, 1κ)

]
≥ 1

p1(κ)

then,

Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ 1

p2(κ)
.

Construction 7.7 (Extended Extractable One-Way Homomorphic Witness Encryption). Let V
be a universal circuit-evaluator that takes instance a and witness w and either accepts or rejects.
Furthermore, let F be a universal circuit evaluator that takes as input a sequence of messages
m1, ...,mk to output some value m′. For any security parameter κ and oracle Ψκ sampled according
to Definition 7.4, we will implement an extended EOHWE scheme P for messages m ∈ {0, 1}k where
k = poly(κ) as follows:

• WEnc(a,m, 1κ) : Given a ∈ {0, 1}∗, message m ∈ {0, 1}k and security parameter 1κ, output
Enc(x) where x = (a,m).

• WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ 6= ⊥, parse as
x′ = (a′,m′) and output m′. Otherwise, output ⊥.

• WEval(c1, ..., ck) : Given ciphertexts c1, ..., ck, it outputs EvalF(c1, ..., ck).

Remark 7.8 (From one-wayness to indistinguishability.). We note that the primitive ex-EOHWE,
which has one-way security, can be used to build an indistinguishability-based ex-IRHWE. For
any a, since Enc(a, .) is a random injective function (and hence one-way) we have that, by the
Goldreich-Levin thoerem [GL89], there exists a hardcore predicate b = 〈r, r′〉 for the one-way
function Enc′(a, r, r′) := (Enc(a, r), r′). Now, to encrypt a one-bit message b under some attribute
a, we would output the ciphertext c = (Enc(a, r), r′) where r, r′ ← {0, 1}k are randomly sampled
conditioned on b = 〈r, r′〉. Furthermore, to perform an evaluation Eval′F′(c1, ..., cp) over a set of
ciphertexts of the form ci = (c′i, r

′
i) where c′i = Enc(a, ri), we will first choose r′F uniformly at random

then run EvalF(c′i, ..., c
′
p) where F is defined such that it outputs random rF for which 〈rF, r′F〉 =

F′(〈r1, r
′
1〉, ..., 〈rp, r′p〉). We then output cF = (Enc(a, rF), r′F) as the new evaluated ciphertext.

Lemma 7.9. Construction 7.7 is a correct and subexponentially-secure oracle-fixed implementation
(Definition 3.16) of an extended extractable one-way homomorphic witness encryption in the ideal
Ψ oracle model.

To prove the security of this construction, we will show that if there exists an adversary A
against scheme P (in the Ψ oracle model) that can invert an encryption of a random message with
non-negligible advantage then there exists a (fixed) deterministic straight-line extractor E with
access to Ψ = (Enc,Rev,DecV,EvalF) that can find the witness for the underlying instance of the
challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε. Then the extractor
E would works as follows: given a as input and acting as the challenger for adversary A, it chooses

m
$←− {0, 1} uniformly at random then runs AΨ(1κ, c∗) where c∗ ←WEnc(a,m, 1κ) is the challenge.

Let QA be the set of query-answer pairs for the encryption queries that A will ask. Queries issued
by A are handled by E as follows:

59

• To answer any query Enc(x) asked by A, it forwards the query to the oracle Ψ and returns
some answer c. Add (x 7→ c)Enc to QA.

• To answer any query Rev(c) asked by A, it forwards the query to the oracle Ψ and returns
some answer a.

• To answer any query DecV(w, c) asked by A, the extractor first issues a query Rev(c) to
get some answer a. If a 6= ⊥, it would execute VΨ(w, a), forwarding queries asked by V to
Ψ similar to how it does for A and adds any resulting query-answer pairs to QA. Finally,
it forwards the query DecV(w, c) to Ψ to get some answer x. If a = ⊥, it returns ⊥ to A
otherwise it returns x and adds (x 7→ c)Enc to QA if x 6= ⊥.

• To answer any query EvalF(c1, ..., ck) asked by A, the extractor first issues queries Rev(c1), ...,
Rev(ck) to get a sequence of answers (a1, ..., ak). Let (a′1, ..., a

′
p) be the set of unique attributes

from (a1, ..., ak). If a′i 6= ⊥ for all i ∈ [p], it would check if there exists ((ai,mi) 7→ ci)Enc for
all i ∈ [k] in QA. If so, it proceeds to run m′ ← FΨ(m1, ...,mk), forwarding queries asked by
F to Ψ, then finally returns {c′i}

p
i=1 where c′i = Enc(a′i, bi|hi), bi is the i’th random additive

share of m′ and hi ← H(i, a1, ..., ak,m1, ...,mk). Finally, it adds all of (x′i 7→ c′i)Enc to QA
where x′i = (a′i, bi|hi).
However, if (xi 7→ ci)Enc /∈ QA for some i ∈ [k], and in particular if ci = c∗ for some i, then
the extractor would instead emulate the ciphertext evaluations c′i by encrypting a random
message for each different attribute a′i (since it does not know the underlying plaintext and
cannot run F) and we call c′i fake ciphertexts. Note that by the collision resistance of H, A
would not be able to distinguish between such fake ciphertexts and real evaluated ones.

While handling the queries made by A, if a decryption query DecV(w, c) is issued by A (perhaps
even indirectly as a result of running V or F) for some c such that Rev(c) = Rev(c∗) (this includes
either decrypting c∗ directly or another c′ having the same attribute as c∗ that was perhaps gen-
erated as a result of an evaluation query with c∗ as one of the inputs), the extractor will pass this
query to Ψ, and if the result of the decryption is x 6= ⊥ then the extractor will halt execution and
output w as the witness for instance x∗ = (a,m). Otherwise, if after completing the execution of
A, no such query was asked then the extractor outputs ⊥. We prove the following lemma.

Lemma 7.10. For any PPT adversary A and instance a, if there exists a non-negligible function
ε(.) such that:

Pr
[
AΘ(1κ, c) = m | m $←− {0, 1}k, c←WEnc(a,m, 1κ)

]
≥ ε(κ) (5)

then there exists a PPT extractor E such that:

Pr
[
EΘ,A(a) = w ∧ VΘ(w, a) = 1

]
≥ ε(κ)− negl(κ). (6)

Proof. Let A be an adversary satisfying Equation (5) above and let AdvWin be the event that A
succeeds in the inversion game. Furthermore, let ExtWin be the event that the extractor succeeds
in extracting a witness (as in Equation (6) above). Note that, by our construction of extractor
E, when E executes A, it perfectly simulates the oracle Ψ for A assuming that several bad events
do not happen. Let B1 be the bad event that A asks Dec(w, c1) or Eval(c1, ..., ck) where (xi 7→
ci)Enc /∈ QA for some i ∈ [k]. Let B2 be the bad event that A asks Dec(w, c1) or Eval(c1, ..., ck)

60

where (xi 7→ ci)Enc /∈ QA for some i is a hidden query that was asked due to a previous query
EvalF(y1, ..., yk) and yj = c∗ or is otherwise fake for some j (so F could not be executed by the
extractor). As long as B = (B1 ∨ B2) does not happens then the extractor will perfectly simulate
A’s view.

Note that for the special case of FHE, as long as B does not happen then all fake ciphertexts have
the same attribute as c∗ since the only case that Eval(c1, ..., ck) would generate a fake ciphertext
is when Rev(ci) = Rev(c∗) for all i. If A issues DecV(w, c′i) for some fake ciphertext c′i then the
extractor would return the answer returned by Ψ even though that answer might be a random
incorrect answer. However, this is safe to do since once A successfully decrypts a fake ciphertext
(which must have an attribute equal to the attribute of c∗), the extractor wins immediately.

For the more general case where a fake ciphertext c′i generated by (c′1, ..., c
′
k)← Eval(c1, ..., ck)

queries may have different attributes (depending on the attribute value of the input ciphertexts),
we argue that decrypting c′i where Rev(c′i) 6= Rev(c∗) will not affect the distribution of the view
of A. Recall that, by the design of the extractor, c′i would be an encryption of a random message
when in the ideal world it would have been an encryption of the i’th random additive share of
F(m1, ...,mk). However, by the security of the random secret sharing, we can argue that, without
knowing all the other secret shares, the distributions Dec(w, c′i) and Un/2 are statistically close.

As a result of the above, the event B reduces to finding an image of a sparse random injective
function, which is negligibly hard to accomplish. Now we show that whenever A wins then E must
win as well. Observe that:

Pr
Θ,m

[ExtWin] ≤ Pr
Θ,m

[ExtWin ∧ AdvWin ∧B] + Pr
Θ,m

[AdvWin] + Pr
Θ,m

[B].

Since Pr[AdvWin] ≥ ε for some non-negligible function ε and Pr[B] ≤ negl(κ), it suffices to show
that Pr[ExtWin ∧ AdvWin ∧ B] is negligible. Note that this event is equivalent to saying that the
adversary succeeds in the inversion game but never asks a query of the form DecV(w, c′) such that
Rev(c′) = Rev(c∗) and for which the answer is x 6= ⊥ so the extractor fails to recover the witness.
For simplicity of notation define Win := ExtWin ∧ AdvWin ∧B.

We will show that, with overwhelming probability over the choice of oracle Ψ, the probability
of Win happening is negligible. That is, we will prove the following claim:

Claim 7.11. For any negligible δ, PrΘ

[
Prm[Win] ≥

√
δ
]
≤
√
δ.

Proof. We list all possible queries that A could ask and argue that these queries do not help A in
any way without also forcing the extractor to win as well. Specifically, we show that for any such A
that satisfies the event Win, there exists another adversary Â that depends on A and also satisfies
the same event but does not ask any decryption or evaluation queries (only encryption queries).
This would then reduce to the standard case of inverting a random injective function, which is
known to be hard over the randomness of the oracle. We define the adversary Â as follows. Upon
executing A, it handles the queries issued by A as follows:

• If A asks a query of the form Enc(x) then Â forwards the query to Ψ to get the answer.

• If A asks a query of the form Rev(c) then, since B does not happen, it must be the case that
((a,m) 7→ c)Enc ∈ QA and therefore Â returns a.

61

• If A asks a query of the form Dec(w, c∗) or Dec(w, c′) where c′ has the same attribute as
c∗ then w must be a string for which VΨ(w, a∗) = 0 or otherwise the extractor wins, which
contradicts that ExtWin happens. If that is the case, since w is not a witness, Â would return
⊥ to A after running VΨ(w, a∗) and answering its queries appropriately.

• If A asks a query of the form Dec(w, c′) for some c′ 6= c∗ then, since B does not happen, it
must be the case that A has asked a (direct or indirect) visible encryption query Enc(x′) = c′.
Therefore, Â would have observed this encryption query and can therefore run VΨ(w, a′) and
return the appropriate answer (x or ⊥) depending on the answer of V.

• If A asks a query of the form EvalF(c1, ..., ck) and ((ai,mi) 7→ ci)Enc ∈ QA for all i then Â
can compute β = FΨ(m1, ...,mk), handling its queries, returning the correct encryptions of
each share of β, and adding the resulting new encryptions to QA.

• If A asks a query of the form EvalF(c1, ..., ck) and ci = c∗ or is otherwise a fake ciphertext then
Â returns encryptions of random messages under the same attributes as the input ciphertexts
(without running F). Note that, while an ideal execution would generate hidden encryption
queries from running F, since B does not happen, these hidden encryption queries will not be
decrypted with high probability.

Given that Â perfectly emulates A’s view, the only possibility that A could win the inversion
game is by asking Enc(x∗) = c∗ and hitting the challenge ciphertext. By a standard averaging
argument, we find that since PrΘ,m[Win] ≤ δ(κ) for some negligible δ then PrΘ[Prm[Win] ≤

√
δ] ≥

1−
√
δ, which yields the result.

To conclude the proof of Lemma 7.10, we can see that the probability that the extractor wins is
given by Pr[ExtWin] ≥ 1− Pr[ExtWin ∧ AdvWin ∧B]− Pr[AdvWin]− Pr[B] ≥ ε(κ)− negl(κ) where
ε is the advantage to A.

Proof of Lemma 7.9. It is clear that the Construction 7.7 is correct. Furthermore, by Lemma 7.10,
it also satisfies the extractability property.

7.4 Compiling out Ψ from IO

In this section, we show a simulatable compiler for compiling out Ψ. We formalize the approach
outlined in Section 7.1 while making use of Lemma 3.25, which allows us to compile out Ψ in two
phases: we first compile out part of Ψ to get an approximately-correct obfuscator ÔR in the random
oracle model, and then use the result of [CKP15] to compile out R and get an obfuscator Õ in
the plain-model. Since we are applying this lemma only a constant number of times (in fact, just
twice), security should still be preserved. Specifically, we will prove the following claim:

Lemma 7.12. Let R @ Ψ be a random oracle where “v” denotes a sub-model relationship (see
Definition 3.22). Then the following holds:

• For any IO in the Ψ ideal model, there exists a simulatable compiler with correctness error
ε < 1/200 for it that outputs a new obfuscator in the random oracle R model.

62

• For any IO in the random oracle model, there exists a simulatable compiler with correctness
error ε < 1/200 for it that outputs a new obfuscator in the plain model.

Proof. The second part of Lemma 7.12 follows directly from [CKP15], and thus we focus on proving
the first part of the claim. Before we start describing the compilation process, we present the
following definition of canonical executions that is a property of algorithms in this ideal model and
dependent on the oracle being removed.

Definition 7.13 (Canonical Executions). We define an oracle algorithm AΨ relative to rIRHWE
to be in canonical form if it satisfies all of the following requirements:

• Before asking any DecV(w, c) query for a valid c query, A would first get a ← Rev(c) then
run VΨ(w, a) on its own, making sure to answer any queries of V using Ψ.

• After asking a query DecV(w, c) for which the returned answer is some message m 6= ⊥, issue
a query a← Rev(c) followed by Enc(x) where x = (a,m).

• Before A asks a query EvalF(c1, ..., ck) for which it knows the corresponding encryptions
c1 = Enc(a1,m1), ..., ck = Enc(ak,mk), it would first call b← FΨ(m1, ...,mk), making sure to
answer any queries of F using Ψ. Let (a′1, ..., a

′
p) be the distinct attributes from (a1, ..., ak)

where p ≤ k and bi be the i’th share of b where i ∈ [p]. A would then issue calls to Enc(x′i)
where for all i ∈ [p], x′i = (ai, bi|H(i, a1, ..., ak,m1, ...,mk)).

• After A asks a query EvalF(c1, ..., ck) for which the returned answer is a sequence of ciphertexts
c′1, ..., c

′
p where p ≤ k, issue queries Rev(c′i) for all i ∈ [p].

Note that any oracle algorithm A can be easily modified into a canonical form by increasing its
query complexity by at most a polynomial factor (since V and F are PPT algorithms).

We now proceed to present the construction of the random oracle model obfuscatorO = (iO,Ev)
that, given an obfuscator in the Ψ model, would compile out and emulate queries to Rev, Dec
and Eval while forwarding any Enc queries to R. Throughout this process, we assume that the
obfuscator iO and evaluation procedure Ev are all canonicalized according to Definition 7.13. For
these canonical algorithms, let lO, lB = poly(κ), respectively, be the number of queries asked by
the ideal-model obfuscator iO and the evaluation Ev to the rIRHWE oracle Ψ.

7.4.1 The New Obfuscator ÔR in the Random Oracle Model

Let R = {Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given a
δ-approximate obfuscator O = (iO,Ev) in the rIRWHE oracle model, we construct an (δ + ε)-

approximate obfuscator Ô = (îO, Êv) in the random oracle model.

Subroutine îO
R

(C).

1. Emulation phase: Given input C ∈ Cn, emulate iOΨ(C) and let B be the output of this
emulation. Let TO be the transcript of this phase and initialize QO := Q(TO) = ∅. For every
query q asked by iOΨ(C):

• Call (ρq,WH)← EmulateCallΨ(QO, q) as in Algorithm 3 and return the answer in ρq.

63

Algorithm 3: EmulateCall

Input: Query-answer set Q, query q
Oracle: Random Oracle R, Hash function H
Output: (ρq,WH) where ρq is a query-answer pair containing the answer of query q and

WH is the set of indirect query-answer pairs (those added by F)
Begin.
Initialize WH = ∅
if q is a query of type Enc(x) then

Set ρq = (x 7→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x 7→ c)Enc ∈ Q where x = (a,m) then
Set ρq = (c, a)

else
Set ρq = (c,⊥)

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x 7→ c)Enc ∈ Q for some x = (a,m) then
Emulate b← VΨ(w, a) while handling its queries using EmulateCall

if b = 1 then
Set ρq = ((w, c) 7→ x)Dec

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

else
Set ρq = ((w, c) 7→ ⊥)Dec

end

end
if q is a query of the form EvalF(c1, ..., ck) then

For all i ∈ [k], get (ρai ,Wa)← EmulateCall(Q,Rev(ci)) then add ρai to Q
Let {a′1, ..., a′p} be the distinct attributes of {a1, ..., ak}
If ai = ⊥ for some i then return ((q 7→ ⊥)Eval,WH)
if ∀ i ∃ ((ai,mi) 7→ ci)Enc ∈ Q and ci are valid then

Emulate b← FΨ(m1, ...,mk)
for each query qF asked by F do

(ρF,WF)← EmulateCallR(Q ∪WH , qF)
WH = WH ∪ (ρF ∪WF)

end
For all a′i ∈ {a′1, ..., a′p}, set c′i ← Enc(a′i, bi|H(i, a1, ..., ak,m1, ...,mk)) and add to WH

else

For all a′i ∈ {a′1, ..., a′p}, set c′i ← Enc(a′i, ri) where ri
$←− {0, 1}n/2 and add to WH

end
Set ρq = ((c1, ..., ck) 7→ (c′1, ..., c

′
p))Eval

end
Return (ρq,WH)

64

• Add ρq and WH to QO.

Note that we will not pass any query-answer pairs QO asked by iOΨ to the output of this new
obfuscation. All of the query-answer pairs in QO will only be used for emulation purposes in
the following step.

2. Learning phase: Let QB be the set of all visible queries that will be learned (which will be
passed on to the obfuscated circuit) and let QhB be the set of hidden queries that we will keep
track of for emulation purposes (which will not be made public to the obfuscated circuit). Set

m = 4`O/ε where `O ≤ |iO| represents the number of queries asked by iO. Choose t
$←− [m]

uniformly at random then for i = 1, ..., t do the following:

• Choose zi
$←− {0, 1}|C| uniformly at random

• Run EvΨ(B, zi). For every query q asked by EvΨ(B, zi):

– Call (ρq,WH)← EmulateCallR(QO ∪QB ∪QhB, q) and return the answer in ρq
– Add ρq to QB and add WH to QhB.

Since Ev is a canonical algorithm, in addition to the direct queries asked by EvΨ(B, zi)
to Ψ, the resulting query set QB would also include the indirect queries that have resulted
from EvΨ(B, zi) running VΨ(w, a). Furthermore, if a query EvalF(c1, ..., ck) is issued where
Enc((ai,mi)) = ci then the indirect queries asked by FΨ(m1, ...,mk) will be made visible to
the final execution so long as the query-answer pairs ((ai,mi) 7→ ci)Enc for all i were directly
asked beforehand (i.e. were in QB).

3. The output of the random oracle model obfuscation algorithm îO
R

(C) will be B̂ = (B,QB)
where QB is the set of visible (direct/indirect) query-answer pairs.

Subroutine Êv
R

(B̂, z). Initialize Q
B̂

= ∅ to be the set of queries asked when evaluating B̂. To

evaluate B̂ = (B,QB) on a new random input z, we emulate EvΨ(B, z). For every query q asked
by EvΨ(B, z):

• Run and set (ρq,WH) = EmulateCallR(QB ∪QB̂, q) then return the answer in ρq.

• Add ρq and WH to Q
B̂

.

Remark 7.14 (Fake ciphertexts). Throughout the circuit evaluation Êv(B̂, z) subroutine, note
that if a query of the form EvalF(c1, ..., ck) is asked where at least one of the input ciphertexts ci is
not known to the evaluator, the answer to the query will be simulated as a sequence of encryptions
of random messages (since at least one the underlying messages is unknown and therefore F cannot
be computed). From here on, we refer to such simulated ciphertexts as fake ciphertexts.

The running time of îO. We note that the running time of the new obfuscator îO remains
polynomial time since we are emulating the original obfuscation once followed by a polynomial
number m of learning iterations. Furthermore, while we are indeed working with an oracle where
the universal circuit evaluators V and F can have oracle gates to subroutines of Ψ, we emphasize
that in our framework of extended primitives, the effective running times of V and F, which we are
executing during EmulateCall, remain a strict polynomial in the size of the original circuits and
so the issue of exponential or infinite recursive calls is non-existent.

65

Proving approximate correctness. Let QS = (QO ∪QB ∪QhB ∪QB̂) be the set of all query-
answer pairs asked during the emulation, learning, and final execution phases. We define the
following hybrid experiments to show that the correctness of the new random-oracle model obfus-
cator that simulates an execution of a Ψ-model obfuscation is sufficiently close to the correctness
of an ideal execution of the Ψ-model obfuscation. We denote the distribution of Hybrid i as
H i = (QiO, Q

i
B, Q

i,h
B , Qi

B̂
).

• Hybrid 0: This is the real experiment, which is represented in Section 7.4.1.

• Hybrid 1: This is the same as Hybrid 0 except for two differences:

– The queries asked during emulation (Step 1) and learning (Step 2) answered relative to
a true oracle Ψ instead of emulating them using EmulateCall.

– We modify the final execution Êv(B̂, z) such that, when we execute EvΨ(B, z), we
would forward all queries to Ψ instead of using EmulateCall except when the query
q is of the form Eval(c1, ..., ck) where (xi 7→ ci)Enc /∈ QB ∪ QB̂ for some ci, in which
case we do not forward this query to Ψ and use the simulated answer returned by
EmulateCall(QB ∪QB̂, q) as the answer instead (which does not run F and returns fake
ciphertexts instead).

• Hybrid 2: This is the ideal experiment, where all the queries asked during emulation, learning
and final execution are answered relative to a true oracle Ψ. That is, all queries whose answers
are emulated using EmulateCall throughout the obfuscation and final evaluation phases will
instead be answered directly using Ψ.

Claim 7.15. ∆(H0, H1) ≤ ε

2
+ negl(κ).

Proof. We first observe that the emulation and learning processes of Hybrid 0 is a statistical sim-
ulation of the true oracle. The only event that can cause a discrepancy between these two hybrids
during the emulation and learning phases is when a query of the form Rev(c), DecV(w, c), or
Eval(c1, ..., ck) is issued but the emulator has never issued an encryption query that maps to an
input of those queries (hitting a valid ciphertext without knowing the underlying plaintext). In
that case, in Hybrid 0, the answer to such a query will be ⊥ as defined by EmulateCall whereas
the answer in Hybrid 1 will be consistent with the true oracle and return the correct answer. How-
ever, the probability of that happening in Hybrid 1 (over the randomness of oracle Ψ) is at most
(2n − p)/(22n − p) ≤ 1/2n−1 = negl(κ) given that p = tlBlO = poly(κ).

Next, we need to show that the distribution of query-answer pairs in the final execution phase
is close. In Hybrid 0, the execution of B̂ emulates EvΨ(B, z) on a random input z and emulates the
answers of all queries using EmulateCall, whereas in Hybrid 1 we answer all queries of EvΨ(B, z)
using the true Ψ except for Eval(c1, ..., ck) queries for which (xi 7→ ci)Enc /∈ QB ∪QB̂ for some ci.

In essence, in Hybrid 0, we can think of the execution as EvΨ̂(B, z) where Ψ̂ is the oracle simulated

using just QB ∪QB̂, and in Hybrid 1, we can think of the execution as EvΨ̃(B, z) where Ψ̃ is the
oracle simulated using just QB ∪ QB̂ and Ψ except for evaluation queries of the aforementioned
type (which generate fake ciphertexts). We will identify the events that differentiate between the

executions EvΨ̂(B, z) and EvΨ̃(B, z).
Assume that the query-answer pairs so far during the execution of B̂ are the same in both

hybrids. That is, we start with some Q0
B̂

= Q1
B̂

= Q
B̂

for the sake of proving inductively that any

66

subsequent query-answer pairs are closely distributed between the two hybrids. Let q be a new
(possibly indirect) query that is being asked by Ev(B, z). We present a case-by-case analysis of all
possible query types to identify the cases that can cause discrepancies between the two hybrids:

1. If q is a query of type Enc(x), then it will be answered the same in both hybrids using the
random oracle R in Hybrid 0 and using the true oracle Ψ in Hybrid 1.

2. If q is of type Rev(c) for which there exists ((a,m) 7→ c)Enc ∈ QB ∪ QB̂ or (c 7→ a)Rev ∈
QB ∪QB̂ then the answer to q would be a in both hybrids.

3. If q is of type Dec(w, c) for which there exists (x 7→ c)Enc ∈ QB ∪ QB̂ then the answer to q
would be determined the same (x is returned) in both hybrids.

4. If q is of type Eval(c1, ..., ck) for which there exists ((ai,mi) 7→ ci)Enc ∈ QB ∪ QB̂ then the
answer to q would be determined the same in both hybrids. In particular, both hybrids will
run FΨ(m1, ...,mk), adding any indirect queries to Q

B̂
and answering q with the a set of

correctly generated ciphertexts.

5. If q is of type Rev(c1), Dec(w, c1), or Eval(c1, ..., ck) such that there exists (xi 7→ ci)Enc /∈ QS
for some i ∈ [k] then this means that we are attempting to decrypt a ciphertext for which we
have not encrypted before (either directly or indirectly). In Hybrid 1, since Enc is a sparse
random injective function, the answer would be ⊥ with overwhelming probability as c would
be invalid, and in Hybrid 0 the answer will also be ⊥ by the definition of Êv(B̂, z) in this
hybrid. Note that in both hybrids, there will not be any indirect queries in Q

B̂
as a result of

this query since the ciphertexts that are being queried on are deemed invalid and neither V
or F will be executed.

6. If q is of type Eval(c1, ..., ck) such that there exists (xi 7→ ci)Enc ∈ QS \ (QB ∪QB̂) for some
i ∈ [k] then this means that we are attempting to decrypt a ciphertext that was not learned.
However in both hybrids we will simulate the answer as encryptions of random messages and
in both hybrids there will not be any hidden indirect queries in Q

B̂
as a result of this query.

7. Suppose q is of type Rev(c) that is not determined by QB ∪ QB̂ in Hybrid 0 and yet is
determined by QS in Hybrid 1. We list the different cases here that may cause problems:

(a) Bad event 1. The query-answer pair ((a,m) 7→ c)Enc is in QO \ (QB ∪QB̂). That is, we
are for the first time revealing a valid ciphertext that was encrypted in Step 1 because we
failed to learn the answer of this query during the learning phase of Step 2. In that case,
in Hybrid 0, the answer would be ⊥ since we do not know the corresponding attribute
a whereas in Hybrid 1 it would use Ψ to produce the answer consistent with QO ⊆ QS
and output a.

(b) Bad event 2. The query-answer pair ((a,m) 7→ c)Enc is in QhB \ (QB ∪QB̂). That is, we
are for the first time revealing a ciphertext from a hidden encryption query in Step 2. In
that case, in Hybrid 0, the answer would be ⊥ since we do not know the corresponding
attribute a whereas in Hybrid 1 it would use the answer consistent with QhB ⊆ QS and
output a.

8. Suppose q is of type Dec(w, c) that is not determined by QB ∪ QB̂ in Hybrid 0 and yet is
determined by QS in Hybrid 1. We list the different cases here that may cause problems:

67

(a) If q is of type Dec(w, c) such that ((a,m) 7→ c)Enc ∈ QS \ (QB ∪QB̂) and VΨ(w, a) = 0
then this means that we are attempting to decrypt a ciphertext for which the decryption
will fail. The answer will be ⊥ in Hybrid 0 by the definition of EmulateCall and is
also ⊥ in Hybrid 1 since we are using the real oracle Ψ. Note that in both hybrids,
while there will be indirect queries (as a result of running VΨ(w, a)), such queries will
be visible in both worlds.

(b) Bad event 3. The query-answer pair ((a,m) 7→ c)Enc is in QO \ (QB ∪ QB̂) and
VΨ(w, a) = 1. That is, we are for the first time decrypting a valid ciphertext that
was encrypted in Step 1 because we failed to learn the answer of this query during the
learning phase of Step 2. In that case, in Hybrid 0, the answer would be ⊥ since we do
not know the corresponding message x = (a,m) whereas in Hybrid 1 it would use Ψ to
produce the answer consistent with QO ⊆ QS and output x.

(c) Bad event 4. The query-answer pair ((a,m) 7→ c)Enc is in QhB \ (QB ∪ QB̂) and
VΨ(w, a) = 1. That is, we are decrypting a ciphertext from a hidden encryption query
in Step 2. In that case, in Hybrid 0, the answer would be ⊥ since we do not know
the corresponding message x = (a,m) whereas in Hybrid 1 it would use the answer
consistent with QhB ⊆ QS and output x.

(d) Bad event 5. The query-answer pair ρe = ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in QS \QB̂,

c = c′i for some i ∈ [p], ∃(xj 7→ cj)Enc /∈ QB ∪QB̂ and VΨ(w, a′i) = 1 where a′i = Rev(c′i).
That is, we are decrypting one of the (non-fake) ciphertexts created from an evaluation
query for which the underlying plaintexts of at least one of the ciphertext inputs to the
evaluation are unknown to the evaluator. In that case, in Hybrid 0, the answer would
be ⊥ since we do not know the corresponding message underlying c whereas in Hybrid
1 it would use the answer supplied by Ψ and output the correct answer. We argue that
that this bad event can be reduced to the previous bad events.

• If ρe ∈ QO then this implies that (x 7→ c′i)Enc ∈ QO due to our canonicalization pro-
cedure. As a result, this means that we are for the first time successfully decrypting
a ciphertext from Step 1, which reduces to Case 8b.

• If ρe ∈ QB ∪QhB then this implies that (x 7→ c′i)Enc ∈ QhB due to our emulation pro-
cedure. As a result, this means that we are for the first time successfully decrypting
a ciphertext from a hidden encryption query in Step 2, which reduces to Case 8c.

(e) The query-answer pair ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in Q

B̂
, c = c′i for some i ∈ [p],

∃(xj 7→ cj)Enc /∈ QB ∪ QB̂ and VΨ(w, a′i) = 1 where a′i = Rev(c′i). That is, we are
decrypting a fake ciphertext created from an evaluation query for which the underlying
plaintexts of at least one of the ciphertext inputs to the evaluation are unknown to the
evaluator. However, since the query was generated during the evaluation phase, the fake
ciphertext c was also generated during the evaluation and therefore (x 7→ c)Enc is known
where x = (a||r) for some random r. Thus, in both Hybrids, the answer would be x.

For input x, let E1(x) be the event that Case 8b or Case 7a happens, and E2(x) be the event
that Case 8c or Case 7b happens. Assuming that event E(x) = (E1(x) ∨ E2(x)) does not happen,

both experiments will proceed identically the same and the output distributions of EvΨ̂(B, z) and

EvΨ̃(B, z) will be statistically close.

Claim 7.16. Prx[E1(x)] ≤ ε/4.

68

Proof. We bound this event in Hybrid 1. Recall that E1 is the event that during the final execution
of the obfuscation B̂ on a random input, a successful decryption or reveal query is asked for the first
time for a ciphertext that was generated during the obfuscation phase but was not learned during the
learning phase. For all i ∈ [t], let Q′Bi

= (QBi∪QhBi
)∩QO be the set of query-answer pairs generated

by the i’th evaluation EvΨ(B, zi) during the learning phase (Step 2) and are also generated during
the obfuscation emulation phase (Step 1). Note that, since t > `O and Q′Bi

⊆ Q′Bi+1
, the number of

learning iterations that increase the size of the set of learned obfuscation encryption queries is at

most `O. We say t
$←− [m] is bad if it is the case that Q′Bt

6= Q′Bt+1
(i.e. t is an index of a learning

iteration that increases the size of the learned obfuscation encryption queries). This would imply
that after t learning iterations in Hybrid 1, the real execution Q′

B̂
:= Q′Bt+1

would contain a new

unlearned query that was in QO. Thus, given that m = 4`O/ε, the probability (over the selection
of t) that t is bad is at most `O/m < ε/4.

Claim 7.17. Prx[E2(x) | E1(x)] ≤ ε/4 + negl(κ).

Proof. Recall that E2 is the event that during the final execution of the obfuscation B̂ on a random
input, a decryption or reveal query is asked for a ciphertext that was generated during the learning
phase but was part of the hidden set and therefore never publicized. We will in fact first bound
this event (assuming E1 does not happen) in Hybrid 2.

For all i ∈ [t], let QBi = (QBi ∪ QhBi
) be the set of (public and hidden) query-answer pairs

generated by the i’th evaluation EvΨ(B, zi) during the learning phase (Step 2) and Q
B̂

be the
query-answer pairs of the final evaluation of the obfuscation. Note that in Hybrid 2, the real
oracle Ψ is used and therefore each execution of EvΨ(B, zi) is independent of the other executions.
In particular, we can think of the final evaluation as iteration t + 1 of the learning phase with
query-answer pairs QBt+1 = Q

B̂
. Now, we can think of an intermediate hybrid with distribution

H2′ where the executions are randomly permuted in a way such that execution t + 1 in Hybrid
2 is now the first execution in Hybrid 2′. Note that, since the executions are independent, the
distributions H2 and H2′ are equivalent and it remains to show that E2 is unlikely to happen
in Hybrid 2′. Specifically, we need to show that the first execution of the learning phase (with
query-answer pairs QBt+1) does not decrypt a ciphertext generated by any previous hidden queries
in the learning phase. However, since this is the first execution, there exists no hidden queries from
previous executions and it suffices to argue that it does not decrypt a ciphertext generated by any
hidden queries QhBt+1

from its own execution.

Since E1 does not happen and since the probability that EvΨ(B, zt+1) decrypts a ciphertext
that was never encrypted during the whole process is negligible, the only ciphertexts that this
execution will attempt to decrypt are ones that were generated during this very same execution.
Therefore in Hybrid 2, E2 only happens with negligible probability when a ciphertext that was
never encrypted before is being decrypted. Now using Claim 7.18 we can conclude that this event
in Hybrid 1 happens with probability at most ε/4 + negl(κ).

Thus, using Claims 7.16 and 7.17, we find that ∆(H0, H1) ≤ ε/2 + negl(κ).

Claim 7.18. ∆(H1, H2) ≤ ε

4
+ negl(κ).

69

Proof. The only difference between the two hybrids is that in Hybrid 1, we do not forward to Ψ any
queries of the form Eval(c1, ..., ck) for which we do not know all of ci, and instead we will use some
simulated (fake) ciphertexts. Whereas in Hybrid 2, we do indeed execute them using the real oracle.
Thus, while there may be hidden queries as a result of running F in Hybrid 2, the counterparts
in Hybrid 1 do not have such hidden queries and are instead replaced with fake ciphertexts. As a
result, we have to consider the cases where Rev,Dec or Eval might use any hidden ciphertexts in
Hybrid 2 and/or fake ciphertexts in Hybrid 1.

Assume that the query-answer pairs so far during the execution of B̂ are the same in both
hybrids. That is, we start with some Q1

B̂
= Q2

B̂
= Q

B̂
for the sake of proving inductively that any

subsequent query-answer pairs are closely distributed between the two hybrids. Let q be a new
(possibly indirect) query that is being asked by Ev(B, z).

1. Determined queries: If q is a query of type Enc(x) then it will answered the same in both
hybrid using R. If q is of type Rev(c) for any c then the answer will be the same in both
hybrids. If q is of type Dec(w, c) for any non-fake ciphertext c where (x 7→ c)Enc ∈ QS \QhB̂,

then the answer will be the same in both hybrids. If q is of type Eval(c1, ..., ck) whose answer
can be determined by QB ∪QB̂ then the answer will be the same in both hybrids.

2. Bad event 1. If q is of type Eval(c1, ..., ck) such that there exists (xi 7→ ci)Enc ∈ QS \ (QB ∪
Q
B̂

) for some i ∈ [k] then this means that we are evaluating on some ciphertext that was
not learned. In this case in Hybrid 1 the answer would be a set of fake ciphertexts generated
by encrypting random messages under their respective attributes. However, in Hybrid 2 the
answer would be a set of ciphertexts generated by encrypting shares of the true evaluation.
Note that by the collision resistance property of H and the injectivity of Enc, the two sets of
ciphertexts (the fake and non-fake) will be statistically close.

3. Suppose that q is of type Dec(w, c). We list the different cases that can cause problems:

(a) Bad event 2. There exists a query-answer pair (x 7→ c)Enc ∈ QhB̂ \ (QB ∪ QB̂) that
was generated as one of the hidden queries issued by some evaluation query during
execution Êv(B̂, z). In that case, in Hybrid 1, the answer would be ⊥ with overwhelming
probability since the encryption was never created there, whereas in Hybrid 2, the answer
would be x. However we note that the probability of that happening in Hybrid 1 is
negligible since it is equal to the event that a ciphertext was hit that has not been
generated before.

(b) Bad event 3. The query-answer pair ((c1, ..., ck) 7→ (c′1, ..., c
′
p))Eval is in Q

B̂
, c = c′i for

some i ∈ [p], ∃((aj ,mj) 7→ cj)Enc /∈ QB ∪ QB̂ and VΨ(w, a′i) = 1 where a′i = Rev(c′i).
That is, we are decrypting one of the (fake) ciphertexts from the output of an evaluation
query for which the underlying plaintexts of at least one of the ciphertext inputs to
the evaluation query is unknown. Note that each fake ciphertext c′i corresponds to an
encryption query (x′i 7→ c′i)Enc ∈ Q

B̂
for some x′i = (a′i, ri) and independently chosen

random string ri. In that case, in Hybrid 1, the answer would be x′i whereas in Hybrid 2 it
would use the answer supplied by Ψ and output the answer of the evaluation xi = (a′i,m

′
i)

where m′i is an evaluated answer based on the messages encrypted by (c1, ..., ck).

For the case of FHE (or multi-key FHE), decrypting any fake ciphertext implies decrypt-
ing for the first time all of the input ciphertexts, which must have originated from QO

70

or QhB since we need to know witnesses for all the input ciphertexts (c1, ..., ck) in order
to decrypt c. Thus, this event is similar to Case 8d of Claim 7.15 and so we refer to the
proof there for this case.

For the more general case of spooky encryption, we may decrypt a fake ciphertext without
needing to know witnesses for all the input ciphertexts and so we cannot argue that we
are decrypting for the first time some input ciphertext. Nevertheless, all we obtain by
decrypting a single (or even p − 1) ciphertexts are individual shares of the evaluation
result, which are identically distributed to random values ri as long as we do not have
witnesses for all the input ciphertexts (if we do, we are back to the multi-key FHE case).

Using the same reasoning as Claims 7.16 and 7.17, we find that ∆(H1, H2) ≤ ε/4 + negl(κ).

Using Claims 7.15 and 7.18 we can finally conclude the proof of approximate correctness since
we can now show that ∆(H0, H1) + ∆(H1, H2) ≤ 3ε/4 + negl(κ) ≤ ε.

Proving security. To show that the resulting obfuscator is secure, it suffices to show that the
compilation process represented as the new obfuscator’s construction is simulatable. We show a
simulator S (with access to Ψ) that works as follows: given an obfuscated circuit B in the Ψ ideal

model, it runs the learning procedure as shown in Step 2 of the new obfuscator îO to learn the
heavy queries QB then outputs B̂ = (B,QB). Note that this distribution is statistically close to

the output of the real execution of îO and, therefore, security follows.

8 Primitives Implied by Our Variants of Witness Encryption

In this section, we will show that extended witness encryption (or one of its variants) implies
extended versions of several encryption primitives of the all-or-nothing flavor. Recall that we previ-
ously argued that witness encryption and its considered variants do not imply indistinguishability
obfuscation in a monolithic way. This allows us to conclude a monolithic separation between the
studied all-or-nothing encryption primitives and indistinguishability obfuscation.

8.1 Predicate Encryption

In this section, we will show a monolithic construction of extended PE from EIHWE and one-way
function. Since, one-way functions imply digital signatures in a black-box manner, we will assume
that there exists a signature scheme (Gen,Sign,Verify) where these procedures only make black-box
calls to the OWF. Let (WEnc,WDecV) be an EIHWE scheme where V is the universal circuit
evaluator (see Definition ??) that is allowed to have OWF gates, and WEnc and WDecV gates.
The relation V is defined such that V((k, skk), CMPK,a,m) = CMPK,a,m(k, skk) where circuit CMPK,a,m

is defined as follows:

CMPK,a,m(k, skk) := (P(k, a) = 1 ∧ Verify(MPK, k, skk) = 1) .

Then, our extended PE scheme for the universal class of predicates PK,A (computed by Tur-
ing Machine P as in Definition 3.6) and message space M corresponds to the PPT algorithms

71

(Setup,KGen,Enc,DecP) defined below. Note that we are constructing an extended PE scheme
and therefore P is allowed to have OWF, Setup,KGen,Enc, and DecP gates.

• Setup(1κ): outputs (MPK,MSK) where (MPK,MSK)← Gen(1κ).

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the decryption
key skk = Sign(MSK, k). If k = ε, it outputs ε.

• Enc(MPK, (m, a)): outputs c = WEnc(CMPK,a,m, (a,m)) where CMPK,a,m is defined above.

• DecP(skk, c): given a secret key skk for k ∈ K and a ciphertext c, obtain (CMPK,a,m, a,m) =
WDecV((k, skk), c), and output m.

Specifying V given P. Since we are constructing extended predicate encryption, our P is allowed
to have gates of OWFs, Setup,KGen,Enc, and DecP planted in it. Next, observe from the scheme
that V contains one P gate and one Verify gate. Also note that P does not make any calls to V.

Next we argue that both the P gate and the one Verify gate can be simplified to OWF, WEnc,
and WDecV gates that V is allowed to have. We modify V as follows.

1. We embed P in V. Note that V now has all the gates P had and a Verify gate. Specifically,
V has OWF, Verify, Setup,KGen,Enc, and DecP gates.

2. Next, we syntactically replace Setup gates with Gen gates, KGen gates with Sign gates, Enc
gates with WEnc gates and DecP gates with WDecV gates. Note that this replacement
will require some additional code changes in V which all depend on the above described
construction.

3. Next, since we use a known construction of the signature scheme (Gen,Sign,Verify) and it is
black-box in the use of OWFs, we can replace these gates by just OWF gates along with some
additional code that depends on the used signature scheme. Observe that we have reduced
all gates in V to just OWF, WDec, and WDecV gates.

Lemma 8.1. Extended fully-secure PE (Definition 3.6) is implied by extended EIHWE and OWFs.

Proof. Correctness of the above scheme follows from the observation that a witness encryption
ciphertext along with a signature on k, namely skk, always yields the encrypted message whenever
P(k, a) = 1. Next we prove security.

Let A be a computationally bounded adversary that asks a polynomial number of secret-key
queries and breaks the security of the PE scheme. In other words, for some polynomial p(.),

Pr[INDPE
A (1κ) = 1] ≥ 1

2
+

1

p(κ)

where INDPE
A is the following experiment (recalled from Figure 2):

Experiment INDPE
A (1κ):

1. (MSK,MPK)← Setup(1κ))
2. (x0, x1)← AKGen(MSK,.)(MPK) where xb = (ab,mb) for b ∈ {0, 1}, |a0| = |a1| and |m0| = |m1|

72

and for each prior query k we require that P(k, a0) = P(k, a1) = 0

3. b
$←− {0, 1}

4. c← Enc(MPK, xb)
5. b′ ← AKGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) = P(k, a1) = 0
6. Output 1 if b = b′ and 0 otherwise.

At a high level, we would like to use the attacker A above to contradict the security of the
signature scheme. Towards this, our approach will be to use the extractor E of ex-EIHWE that
translates A’s ability to distinguish ciphertexts to extracting a witness, which in our case is a
forgery. However, a technical issue is that E might rewind A and A might fail on those correlated
executions. We solve this issue by a standard probability argument as explained next.

Let T be the transcript of the inputs toA in steps 1 and 2 above — namely, T = (MPK, {skk}, x0, x1)
where {skk} is the collection of secret-keys that A obtains in step 2 above. Then, for the machine
A(T) we define the following experiment:

Experiment INDPE-partial
A(T) (1κ,MPK,MSK):

1. b
$←− {0, 1}

2. c← Enc(MPK, xb)

3. b′ ← A(T)KGen(MSK,.)(MPK, c) where for each query k we require that P(k, a0) = P(k, a1) = 0
4. Output 1 if b = b′ and 0 otherwise.

By an averaging argument we have that if Pr[INDPE
A (1κ) = 1] ≥ 1

2
+

1

p(κ)
then for a non-

negligible fraction of choices of (T ,MPK,MSK) we have that Pr[INDPE-partial
A(T) (1κ,MPK,MSK) =

1] ≥ 1

2
+

1

2p(κ)
.

Towards contradiction, we will now show that given A we can break the existential unforgeability
of the signature scheme under chosen message attack. On receiving the public-key MPK from the
challenger we prepare the machine A(T) (by including signatures on keys of A’s choice in T).
Next by Definition 6.2 we have that there exists an a black-box extractor EA(T)(a0, a1) which with
non-negligible probability outputs a signature on k∗ for some choice of k∗ such that P(k∗, a0) = 1
or P(k∗, a1) = 1. This breaks the security of the signature scheme.

Note that during the execution of EA(T)(a0, a1), A could ask for more signature queries for any
k such that P(k, a0) = P(k, a1) = 0. However, these queries can be answered with the help of the
challenger.

8.2 Spooky Encryption

In this section, we will show a monolithic construction of extended spooky encryption from IRHWE
and PRG. Let (WEnc,WDecV,WEvalF) be an IRHWE scheme where F is a universal circuit eval-
uator and G be a length doubling pseudorandom generator. The relation V is defined such that

73

V(w,CMPK) = CMPK(w) where circuit CMPK is defined as follows:

CMPK(w) := (MPK = G(w)) .

Then our extended spooky encryption scheme (Setup,Enc,EvalFs ,Dec) (where Fs denotes the uni-
versal circuit evaluation function for the spooky encryption scheme) is defined as follows:

• Setup(1κ): outputs (MPK = G(s),MSK = s) where s is a randomly sampled seed of the
pseudorandom generator.

• Enc(MPK,m): outputs ciphertext c = WEnc(CMPK,m) where CMPK is defined above.

• EvalFs(f, (MPK1, c1), . . . , (MPKt, ct)): output WEvalF(f, c1, . . . ct).

• Dec(MSK, c): given a secret key MSK and a ciphertext c, output WDecV(MSK, c).

Specifying V. Observe that V in the extended spooky encryption scheme above only has one
PRG gate that the extended IRHWE scheme supports.

Specifying Fs. Since we are constructing extended spooky encryption, Fs is allowed to have
gates of Setup,Enc,Dec, and EvalFs planted in it. We start by observing that for any Fs we can
syntactically replace each Setup gate with a PRG gate, each Enc gate with a WEnc gate, each
EvalFs gate with a WEvalF gate, and each Dec gate with a WDecV gate. This change requires some
additional code depending on the above described construction. This leaves us with only PRG,
WEnc, WDecV, and WEvalF gates that F of extended IRWHE supports. Thus the Fs supports
gates as required by extended spooky encryption scheme.

Lemma 8.2. Extended spooky encryption (Definition 3.10) is implied by ex-IRHWE and PRG.

Proof. Correctness of the above scheme follows directly from the correctness of the IRHWE scheme.
For security, we need to show that for any PPT adversary A, there exists a negligible function negl(.)
such that the following holds:

|Pr[A(MPK,Enc(MPK, 0)) = 1]− Pr[A(MPK,Enc(MPK, 1)) = 1]| ≤ negl(κ)

where (MSK,MPK) ← Setup(1κ) and the probability is over the randomness of A and Enc. This
follows by a simple argument as follows.

• H0: This hybrid corresponds to the distribution (MPK,Enc(MPK, 0)) where (MSK,MPK)←
Setup(1κ).

• H1: In this hybrid, we change how MPK is generated. Instead of generating MPK as the
output of G, we sample MPK as a uniformly random string.

Indistinguishability between H0 and H1 follows from the pseudorandomness of the PRG G.

• H2: In this hybrid, instead of encrypting 0 we encrypt 1. Namely, the ciphertext is generated
as Enc(MPK, 1) instead of Enc(MPK, 0).

Since MPK is a chosen uniformly at random therefore except with negligible probability we
have that ∀w,MPK 6= G(w). Hence, by the security of witness encryption we have that the
distribution Enc(MPK, 1) is computationally indistinguishable from Enc(MPK, 0).

74

• H3: In this hybrid, we switch back to generating MPK honestly (i.e., as the output of the
pseudorandom generator).

Indistinguishability between H2 and H3 follows from the pseudorandomness of the PRG G.

Observe that hybrid H3 corresponds to the distribution (MPK,Enc(MPK, 1)) where (MSK,MPK)←
Setup(1κ). This concludes the proof.

8.3 Attribute-Based FHE

In this section, we will show a construction of extended Attribute Based FHE (ABFHE) from
extended extractable instance-revealing homomorphic witness encryption (EIRHWE) and one-way
functions (OWFs). Since one-way functions imply digital signatures in a black-box manner, we will
assume that there exists a signature scheme (Gen, Sign,Verify) where these procedures only make
black-box calls to the OWF. Let (WEnc,WRev,WDecV ,WEvalF) be the ex-EIRHWE primitive and
V and F are universal circuit evaluators that are allowed to have OWF gates, and WEnc,WDecV ,
and WEvalF oracle gates. The relation V is defined such that V((k, skk), CMPK,a) = CMPK,a(k, skk)
where circuit CMPK,a is defined as follows:

CMPK,a(k, skk) := (P(k, a) = 1 ∧ Verify(MPK, k, skk) = 1) .

Then, our extended ABFHE scheme for the universal predicate class PK,A (computed by machine P)
and message space M corresponds to the PPT algorithms (Setup,KGen,Enc,DecP,EvalFs) defined
below. Note that we are constructing an extended ABFHE, therefore P and Fs are allowed to have
OWF, Setup,KGen,Enc,DecP and EvalFs gates.

• Setup(1κ): outputs (MPK,MSK) where (MPK,MSK)← Gen(1κ).

• KGen(MSK, k): given k ∈ K and the master secret key MSK ∈ {0, 1}n, outputs the decryption
key skk = Sign(MSK, k). If k = ε, it outputs ε.

• Enc(MPK, (m, a)): outputs ciphertext c = WEnc(CMPK,a,m) where CMPK,a is defined above.

• EvalFs
(f,MPK, c1, . . . , ct): If WRev(c1) = WRev(c2) = · · · = WRev(ct)

19 then output
WEvalF(f, c1, . . . , ct) and otherwise output ⊥.

• DecP(skk, c): given a secret key skk for k ∈ K and a ciphertext c, output WDecV((k, skk), c).

Specifying V given P. Since we are constructing extended ABFHE, our P is allowed to have
gates of OWF,Setup,KGen,Enc,EvalFs and DecP planted in it. Observe from the scheme that V
contains one P gate and one Verify gate. Next we argue that both these gates can be simplified to
OWF, WEnc,WDecV , and WEvalF gates that ex-EIRHWE supports. We modify V as follows.

1. We embed P in V. Note that V now has all the gates P had and a Verify gate. Specifically,
V has OWF,Verify, Setup,KGen,Enc,EvalFs and DecP gates.

19Here, WRev is the reveal function of the IRWHE that we ignored in the rest of the exposition. This function is
only needed at this point.

75

2. Next, we syntactically replace Setup gates with Gen gates, KGen gates with Sign gates, Enc
gates with WDecV gates, EvalFs gates with WEvalF gates and DecP gates with WDecV gates.
Note that this replacement will require some additional code changes in V which all depend
on the above described construction.

3. Next, since we use a known construction of the signature scheme (Gen,Sign,Verify) and it is
black-box in the use of OWFs, we can replace these gates by just OWF gates along with some
additional code that depends on the used signature scheme. Observe that we have reduced
all gates in V to just OWF, WEnc, WEvalF and WDecV gates.

Specifying F given Fs. Since we are constructing extended ABFHE, EvalFs is allowed to have
gates of OWFs, Setup,KGen,Enc,DecP, and EvalFs planted in it. We start by observing that for
any Fs we can syntactically replace each Setup and KGen gate with a OWF gates, each Enc,EvalFs

and DecP with WEnc, WEvalF and WDecV , respectively.In making this change we need to add
some additional code to F depending on the above described construction and the code of the
signature scheme. This leaves us with only OWF, WEnc, WDecV, and WEvalF gates that F of
ex-EIRHWE supports. Thus the above described construction supports gates as required by the
extended ABFHE scheme.

Lemma 8.3. Extended fully-secure ABFHE scheme is implied by ex-EIRHWE and OWFs.

Proof. Note that security game of the ABFHE scheme does not involve the EvalFs function, which
only affects functionality. Therefore, the proof of security of this claim is essentially the same as
the proof of Lemma 8.1. The only difference is that we are now using ex-EIRHWE instead of
ex-EIHWE.

Acknowledgements. We thank the anonymous reviewers of Crypto 2017 for their useful com-
ments.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in
Computer Science, pages 528–556, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany. 3

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://eprint.iacr.org/2013/689. 15

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimiz-
ing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14: 21st Conference on Computer and Communica-
tions Security, pages 646–658, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.
3

76

http://eprint.iacr.org/2013/689

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 308–326, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany. 3, 4, 5, 27, 31

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Cryptology ePrint Archive, Report
2015/730, 2015. http://eprint.iacr.org/2015/730. 4, 5, 27

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 162–172, Kaoshi-
ung, Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany. 5

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 191–209. IEEE, 2015. 4, 7, 23, 27

[AS16] Gilad Asharov and Gil Segev. On constructing one-way permutations from indistin-
guishability obfuscation. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Proceedings, Part II, pages 512–541, 2016. 4, 23, 27

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of black-box reductions,
revisited. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 296–315. Springer, 2013. 7, 22

[BBF16] Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker. On statistically secure ob-
fuscation with approximate correctness. Cryptology ePrint Archive, Report 2016/226,
2016. http://eprint.iacr.org/. 7, 11, 23, 25, 26

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, vol-
ume 8349 of Lecture Notes in Computer Science, pages 52–73, San Diego, CA, USA,
February 24–26, 2014. Springer, Heidelberg, Germany. 15

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany. 3

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 221–238, Copenhagen, Denmark, May 11–15,
2014. Springer, Heidelberg, Germany. 3

77

http://eprint.iacr.org/2015/730
http://eprint.iacr.org/

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on
the power of zero-knowledge proofs in cryptographic constructions. In Theory of
Cryptography Conference, pages 559–578. Springer, 2011. 4, 27

[BMSZ15] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: The case of evasive circuits. Cryptology ePrint Archive, Report
2015/167, 2015. http://eprint.iacr.org/2015/167. 3

[Bor09] Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Ren-
diconti del Circolo Matematico di Palermo (1884-1940), 27(1):247–271, 1909. 23

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE
with short ciphertexts. Cryptology ePrint Archive, Report 2016/339, 2016. http:

//eprint.iacr.org/2016/339. 3

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages
1–25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany. 3

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334, Oak-
land, CA, USA, May 20–23, 2007. IEEE Computer Society Press. 22, 28

[BSW10] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and
Challenges. Technical Report 2005/328, Cryptology ePrint Archive, 2010. http:

//eprint.iacr.org/2010/543. 18, 19

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foun-
dations of Computer Science, pages 97–106, Palm Springs, CA, USA, October 22–25,
2011. IEEE Computer Society Press. 3

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 505–524, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg,
Germany. 3

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th Annual Symposium on
Foundations of Computer Science, pages 171–190, Berkeley, CA, USA, October 17–
20, 2015. IEEE Computer Society Press. 3, 4, 5, 27, 31

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 480–499, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany. 4

78

http://eprint.iacr.org/2015/167
http://eprint.iacr.org/2016/339
http://eprint.iacr.org/2016/339
http://eprint.iacr.org/2010/543
http://eprint.iacr.org/2010/543

[Can17] Francesco Paolo Cantelli. Sulla probabilita come limite della frequenza. Atti Accad.
Naz. Lincei, 26(1):39–45, 1917. 23

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 247–266, Santa
Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany. 3

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056
of Lecture Notes in Computer Science, pages 3–12, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany. 3

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random
oracles. Cryptology ePrint Archive, Report 2015/048, 2015. http://eprint.iacr.

org/. 7, 11, 12, 13, 23, 25, 37, 38, 48, 62, 63

[CLLT15] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 multilinear maps. Cryptology ePrint Archive, Report
2015/1037, 2015. http://eprint.iacr.org/2015/1037. 3

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 476–493, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany. 3

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of
Lecture Notes in Computer Science, pages 468–497, Warsaw, Poland, March 23–25,
2015. Springer, Heidelberg, Germany. 5

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 630–656, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany. 3

[DHRW16a] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryp-
tion and its applications. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 93–122, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany. 3

79

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2015/1037

[DHRW16b] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky Encryption
and Its Applications, pages 93–122. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. 21

[DS16] Dana Dachman-Soled. Towards non-black-box separations of public key encryption
and one way function. In Theory of Cryptography Conference, pages 169–191. Springer,
2016. 7

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time Space Tradeoffs for Attacks
against One-Way Functions and PRGs, pages 649–665. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. 46

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal
of Cryptology, 1(2):77–94, 1988. 8

[FS86] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Crypto ’86, pages 186–194, 1986. LNCS No. 263. 8

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig. 5, 31

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–
178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. 3, 4

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
– EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–
17, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany. 3

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages
40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press. 3, 5

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th
Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Com-
puter Science, pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer, Heidel-
berg, Germany. 3

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press. 6, 15, 16

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 25–32, 1989. 35, 59

80

crypto.stanford.edu/craig

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. Cryptology
ePrint Archive, Report 2016/817, 2016. http://eprint.iacr.org/2016/817. 3

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 579–604, Santa Barbara, CA, USA, Au-
gust 14–18, 2016. Springer, Heidelberg, Germany. 4

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 06: 13th Confer-
ence on Computer and Communications Security, pages 89–98, Alexandria, Virginia,
USA, October 30 – November 3, 2006. ACM Press. Available as Cryptology ePrint
Archive Report 2006/309. 22, 28

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Break-
ing the sub-exponential barrier in obfustopia. Cryptology ePrint Archive, Report
2016/102, 2016. http://eprint.iacr.org/2016/102. 4

[GR07] Shafi Goldwasser and Guy N. Rothblum. On Best-Possible Obfuscation, pages 194–
213. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. 25

[GS01] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford
university press, 2001. 23

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part
I, volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. 3

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 545–554, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press. 3

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany. 3

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, STOC.
ACM, 2011. 7

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive,
Report 2015/301, 2015. http://eprint.iacr.org/2015/301. 3

81

http://eprint.iacr.org/2016/817
http://eprint.iacr.org/2016/102
http://eprint.iacr.org/2015/301

[Hol15] Thomas Holenstein. Complexity theory, 2015. http://www.complexity.ethz.ch/

education/Lectures/ComplexityFS15/skript_printable.pdf. 24

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In 21st Annual ACM Symposium on Theory of Computing, pages
44–61, Seattle, WA, USA, May 15–17, 1989. ACM Press. 3, 4, 7, 8, 22

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
pages 1219–1234, New York, NY, USA, 2012. ACM. 20, 21

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science,
pages 28–57, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 3, 5

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. Cryptology ePrint Archive,
Report 2016/795, 2016. http://eprint.iacr.org/2016/795. 3

[MMN15] Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. More on im-
possibility of virtual black-box obfuscation in idealized models. Cryptology ePrint
Archive, Report 2015/632, 2015. http://eprint.iacr.org/. 7, 11, 12, 13, 23

[MMN+16a] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
abhi shelat. A note on black-box separations for indistinguishability obfuscation.
Cryptology ePrint Archive, Report 2016/316, 2016. http://eprint.iacr.org/2016/
316. 7, 11, 23, 24, 25

[MMN+16b] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and
Abhi Shelat. Lower Bounds on Assumptions Behind Indistinguishability Obfuscation,
pages 49–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. 7, 11, 23, 24, 25

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878, 2014. http://eprint.iacr.

org/2014/878. 3

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology
ePrint Archive, Report 2016/147, 2016. http://eprint.iacr.org/2016/147. 3

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 735–763, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 3,
20, 21

[Nao03] Moni Naor. On cryptographic assumptions and challenges. Lecture Notes in Computer
Science, 2729:96–109, 2003. 7

82

http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf
http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf
http://eprint.iacr.org/2016/795
http://eprint.iacr.org/
http://eprint.iacr.org/2016/316
http://eprint.iacr.org/2016/316
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2016/147

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Proceedings
of the forty-third annual ACM symposium on Theory of computing, pages 109–118.
ACM, 2011. 7

[Pas15] Rafael Pass and abhi shelat. Impossibility of vbb obfuscation with ideal constant-
degree graded encodings. Cryptology ePrint Archive, Report 2015/383, 2015. http:

//eprint.iacr.org/. 7, 11, 12, 23

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. Cryptology
ePrint Archive, Report 2016/196, 2016. http://eprint.iacr.org/2016/196. 3

[PTV11] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishan Venkitasubramaniam.
Towards non-black-box separations in cryptography. TCC, 2011. 7

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press. 3

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages
1–20. Springer, 2004. 3, 4, 7, 8, 16, 22, 27

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 457–473, Aarhus, Denmark, May 22–26, 2005. Springer,
Heidelberg, Germany. 28

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press. 3, 4

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057
of Lecture Notes in Computer Science, pages 439–467, Sofia, Bulgaria, April 26–30,
2015. Springer, Heidelberg, Germany. 3

83

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2016/196

	Introduction
	Our Results
	Further Related Work

	Technical Overview
	New Extended Framework for Proving Separations
	Using Variants of Witness Encryption as the Middle Primitive
	Separating IO from Instance-Hiding WE
	Separating IO from Homomorphic WE
	Primitives Implied by Our Variants of WE

	Preliminaries
	Primitives
	Black-Box Constructions and Separations
	Measure Theoretic Tools
	Black-Box Separations
	Tools for Getting Black-Box Lower Bounds for IO

	Monolithic Constructions: An Abstract Extension of the Black-Box Model
	Monolithic Extensions of Special Primitives
	Defining Monolithic Constructions Using Monolithic Extensions

	Separating IO from Instance Revealing Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	Witness Encryption exists relative to
	Compiling Out from IO

	Separating IO from Instance Hiding Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	Instance-Hiding Witness Encryption Exists Relative to
	Compiling Out from IO

	Separating IO from Homomorphic Witness Encryption
	Overview of Proof Techniques
	The Ideal Model
	Homomorphic Witness Encryption Exists Relative to
	Compiling out from IO

	Primitives Implied by Our Variants of Witness Encryption
	Predicate Encryption
	Spooky Encryption
	Attribute-Based FHE

