
On Zero-Knowledge PCPs:

Limitations, Simplifications, and Applications∗

Yuval Ishai† Mohammad Mahmoody‡ Amit Sahai§ David Xiao¶

Abstract

We revisit the question of Zero-Knowledge PCPs, studied by Kilian, Petrank, and Tardos
(STOC ’97). A ZK-PCP is defined similarly to a standard probabilistically checkable proof
(PCP), except that the view of any (possibly malicious) verifier can be efficiently simulated
up to a small statistical distance. Kilian et al. obtained a ZK-PCP for NEXP in which the
proof oracle is in EXPNP. They also obtained a ZK-PCP for NP in which the proof oracle is
computable in polynomial-time, but this ZK-PCP is only zero-knowledge against bounded-query
verifiers who make at most an a priori fixed polynomial number of queries. The existence of
ZK-PCPs for NP with efficient oracles and arbitrary polynomial-time malicious verifiers was
left open. This question is motivated by the recent line of work on cryptography using tamper-
proof hardware tokens: an efficient ZK-PCP (for any language) is equivalent to a statistical
zero-knowledge proof using only a single stateless token sent to the verifier.

We obtain the following results regarding efficient ZK-PCPs:

Negative Result on Efficient ZK-PCPs. We settle the above question negatively and show
that any language or promise problem with efficient ZK-PCPs must be in SZK (the class of
promise problems with a statistical zero-knowledge single prover proof system). Therefore,
no NP-complete problem can have an efficient ZK-PCP unless NP ⊆ SZK (which also
implies NP ⊆ coAM and the polynomial-time hierarchy collapses).

Simplifying Bounded-Query ZK-PCPs. The bounded-query zero-knowledge PCP of Kil-
ian et al. starts from a weakly-sound bounded-query ZK-PCP of Dwork et al. (CRYPTO
’92) and amplifies its soundness by introducing and constructing a new primitive called a
locking scheme which is an unconditional oracle-based analogue of a commitment scheme.
We simplify the ZK-PCP of Kilian et al. by presenting an elementary new construction of
locking schemes. Our locking scheme is purely combinatorial.

Black-Box Sublinear ZK Arguments via ZK-PCPs. Kilian used PCPs to construct sub-
linear communication zero-knowledge arguments for NP by making non-black-box use of
collision-resistant hash functions (STOC ’92). We show that ZK-PCPs can be used to get
black-box variants of this result with improved round complexity, as well as an uncon-
ditional zero-knowledge variant of Micali’s non-interactive CS Proofs (FOCS ’94) in the
Random Oracle Model.

∗This work is based on previous works of Ishai, Mahmoody, and Sahai [IMS12], and Mahmoody and Xiao [MX13].
†Computer Science Department, Technion. yuvali@cs.technion.ac.il. Research done in part while visiting

UCLA. Supported by the European Research Council as part of the ERC project CaC (grant 259426), ISF grant
1361/10, and BSF grant 2008411.
‡Computer Science Department, Cornell. mohammad@cs.cornell.edu. Research done in part while visiting UCLA

and LIAFA. Supported in part by NSF Awards CNS-1217821 and CCF-0746990, AFOSR Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2- 0211.
§Computer Science Department, UCLA. sahai@cs.ucla.edu.
¶LIAFA, CNRS, Université Paris 7. dxiao@liafa.univ-paris-diderot.fr.

Keywords: Zero-Knowledge, Probabilistically Checkable Proofs, Sublinear Communication.

Contents

1 Introduction 1

2 Our Results and Techniques 2
2.1 Efficient ZK-PCPs are Limited to SZK . 2

2.1.1 Motivation and Related Work . 3
2.1.2 Technique . 4

2.2 Simplifying Bounded-Query ZK-PCPs . 5
2.2.1 Motivation and Related Work . 6
2.2.2 Technique . 6

2.3 Black-Box Sublinear ZK Arguments . 7
2.3.1 Motivation and Related Work . 7
2.3.2 Technique . 8

3 Preliminaries 9
3.1 Promise Problems . 10
3.2 Proof Systems and Zero Knowledge . 10
3.3 Shannon Entropy and Related Computational Problems 12
3.4 Statistical Distance vs Conditional Entropy . 13
3.5 Commitments from Collision Resistance . 13

4 Languages with Efficient ZK-PCPs are in SZK 14
4.1 Proof of Claim 4.3: the Case x ∈ LY . 16
4.2 Proof of Claim 4.3: the Case x ∈ LN . 18

5 A Combinatorial Locking Scheme 20

6 Black-Box Sublinear Zero-Knowledge Arguments 23
6.1 Black-Box Sublinear Honest-Verifier ZK Arguments for NP 25
6.2 Black-Box Sublinear Malicious Verifier ZK Arguments for NP 28

A Omitted Proofs 36

B Using Locking Schemes in Bounded-Query ZK-PCPs 38

1 Introduction

The seminal work of Goldwasser, Micali, and Rackoff [GMR89] changed the classical notion of a
mathematical proof by incorporating randomness and interaction. This change was initially moti-
vated by the intriguing possibility of zero knowledge proofs – proofs that carry no extra knowledge
other than being convincing. The result of Goldreich, Micali, and Wigderson [GMW91] showed
that any NP statement can be proved in a zero-knowledge (ZK) manner, making ZK proofs a
central tool for cryptographic protocol design; this was later extended by Ben-Or et al. [BGG+88]
to any language in PSPACE. All these fundamental results, however, relied on the assumption
that one-way functions exist. Ostrovsky and Wigderson [OW93] showed that computational as-
sumptions (similar to one-way functions) are indeed necessary for zero-knowledge for non-trivial
languages.

Motivated by the goal of achieving unconditionally secure zero-knowledge proofs for NP, Ben-
Or, Goldwasser, Kilian and Wigderson [BGKW88] introduced the model of multi-prover interactive
proofs (MIP) and presented a perfect ZK protocol for any statement that is provable in the MIP
model. Shortly after, Babai, Fortnow, and Lund [BFL90] showed that in fact any language in
NEXP can be proved in the MIP model. Fortnow, Rompel, and Sipser [FRS94] studied the MIP
model further and observed that as a proof system it is equivalent to another model in which an
oracle encodes a probabilistically checkable proof (PCP) which is queried by an efficient randomized
verifier.1 The difference between a prover and a PCP oracle is that a prover can keep an internal
state, and hence its answer to a given question can depend on other questions. Therefore, soundness
against a PCP oracle is potentially easier to achieve than soundness against a malicious prover.
This line of work culminated in the celebrated PCP theorem [AS98, ALM+98].

Zero-Knowledge PCPs. In this work we study zero-knowledge proofs in the PCP model. A
zero-knowledge PCP (ZK-PCP) is defined similarly to a standard PCP, except that the view of
any (possibly malicious) verifier can be efficiently simulated up to a small statistical distance. It
is instructive to note that zero-knowledge PCPs are incomparable to traditional ZK proofs: since
the PCP model makes the prover less powerful, achieving soundness may become easier whereas
achieving zero-knowledge may become harder.

The original ZK protocol of [GMW91] for NP implicitly relies on honest-verifier zero-knowledge
PCP for the NP-complete problem of 3-coloring of graphs. In this PCP the prover takes any 3-
coloring of the input graph, randomly permutes the 3 colors, and writes down the colors as the PCP
string. The verifier chooses a random edge, reads the colors of the vertices of that edge, and accepts
iff the colors are different. This ZK-PCP has two disadvantages: (1) it is only zero-knowledge
against honest verifiers (a malicious verifier can learn whether the colors of two non-adjacent nodes
are identical), and (2) the soundness error is very large: 1− 1/m where m is the number of edges.
Dwork et al. [DFK+92],2 relying on the PCP theorem [ALM+98, AS98], improved the ZK-PCP
implicit in [GMW91] in both directions. Their construction implies a ZK-PCP for NP of polynomial
length and with a constant alphabet size such that: (1) the PCP is zero-knowledge against verifiers
who ask any pair of queries (but not more), and (2) the soundness error is constant. However,
the soundness error of this ZK-PCP could not be easily reduced further while maintaining ZK

1The PCP oracle is often identified with the proof string defined by its truth-table, in which case the output
domain of the oracle is referred to as the PCP alphabet.

2This formulation of the result of [DFK+92] is due to [KPT97].

1

against malicious verifiers. Furthermore, it could not be made zero-knowledge against arbitrary
polynomial-time verifiers, simply because it has polynomial length and a malicious verifier could
read the entire proof string.

Kilian, Petrank, and Tardos [KPT97] were the first to explicitly study the power of ZK-PCPs
with malicious verifiers. Their work shows how to get around the above limitations, resulting in
two kinds of ZK-PCPs with security against malicious verifiers. For the case of languages in NP,
[KPT97] obtain a PCP of polynomial length over a binary alphabet which is zero-knowledge with
negligible soundness error against malicious verifiers who are limited to ask only up to any fixed
polynomial p(|x|) number of queries, whereas the honest verifier only asks polylog(|x|) queries to
verify the PCP. (The length of the PCP string can be polynomially larger than p(|x|).) We call such
PCPs bounded-query ZK. Simpler constructions of bounded-query PCPs for NP can be obtained
from protocols for secure multiparty computation [IKOS09], though these constructions require
either a large alphabet or a large number of queries.

For the case of languages in NEXP, a scaled up version of the bounded-query construction
from [KPT97] yields a ZK-PCP in which honest verifiers are efficient (i.e. run in poly(|x|) time),
but soundness holds against arbitrary polynomial time verifiers. However, the PCP oracle in this
case cannot be computed in polynomial time even for languages in NP. (By “computable in
polynomial time” we mean that the oracle outputs a polynomial-time computable function of its
secret randomness, the input x, the NP-witness, and the verifier’s query.) This is inherent to the
approach of [KPT97], as it requires the entropy of the PCP oracle to be bigger than the number
of queries made by a malicious verifier.

The above state of affairs leaves open the following natural question.

Main Question: Are there efficiently computable PCPs for NP which are statistically
zero-knowledge against any polynomial-time verifier?

2 Our Results and Techniques

2.1 Efficient ZK-PCPs are Limited to SZK

Our main theorem provides a negative answer to the main question above. In one of the original
publications on which this work is based, Ishai, Mahmoody, and Sahai [IMS12] proved that any
language or promise problem L with an efficient ZK-PCP where the honest verifier’s queries are
non-adaptive must satisfy L ∈ coAM. Therefore, NP does not have such efficient ZK-PCPs unless
the polynomial-time hierarchy collapses [BHZ87]. Thus, the main question above remained open
whether there exist efficient ZK-PCPs for NP if we allow the verifier to be adaptive. In this paper
we resolve this question in the negative; namely we prove:

Theorem 2.1 (Main Result). Any promise problem L with an efficient ZK-PCP is in SZK.

This strengthens the negative result of [IMS12] in two ways: (1) we lift the restriction that
the verifier be non-adaptive, and (2) we can conclude that L ∈ SZK which is stronger than
L ∈ AM ∩ coAM, since it is known that SZK ⊆ AM ∩ coAM [For89a, AH91]. Finally, we
emphasize that Theorem 2.1 does not assume that the simulation is black-box.

2

2.1.1 Motivation and Related Work

Basing Cryptography on Tamper-Proof Hardware. A recent line of work in cryptogra-
phy [Kat07, MS08, CGS08, GKR08, GIS+10, Kol10, GIMS10, BCG+11, DMMQN13] studies the
possibility of obtaining secure protocols in an extended model of interaction in which the parties
are allowed to generate and exchange tamper-proof hardware tokens. More concretely, each party
can locally construct a circuit, put it inside a tamper-proof token, and send it to another party.
The receiver of a token is only allowed to use it as a black-box by giving inputs to the token and
receiving the output. (If the token is stateful, asking the same query twice might lead to different
answers.) The fact that the receiver of a token has no a-priori guarantee that the token is indeed
well formed makes designing protocols in this model non-trivial. The work of Goyal et al. [GIS+10]
showed that any two-party functionality (e.g. zero-knowledge proofs) can be carried out securely in
this model without relying on computational assumptions. The solution of [GIS+10] uses stateful
tokens, which makes it vulnerable to “resetting attacks” where a malicious party receiving a token
resets it to its initial state, say, by cutting off its power.

Goyal, Ishai, Mahmoody, and Sahai [GIMS10] showed that unconditional (statistical) ZK proofs
for NP exist using a single stateless token sent from the prover to the verifier followed by four
messages exchanged between the verifier and the prover.3 The protocol of [GIMS10] fell into the
Interactive PCP model of Kalai and Raz [KR08] where a verifier interacts with a stateless PCP
and a stateful prover simultaneously. The main question left open by [GIMS10] is the possibility
of achieving similar zero-knowledge protocols without the additional interaction, namely by having
the prover only send a single stateless token to the verifier. It is easy to see that the latter question
is indeed equivalent to our main question above. Our Theorem 2.1 rules out the possibility of such
protocols for all of NP unless the polynomial hierarchy collapses.

Resettable Zero-Knowledge. The notion of resettable zero-knowledge single prover proof sys-
tems, introduced by Canetti et al. [CGGM00], is comparably stronger than the notion of ZK-PCPs.
A resettable-ZK proof is, essentially, a ZK-PCP where soundness is required to hold even against
adaptive cheating provers who may manipulate their answers based on the queries they have al-
ready seen (rather than using answers fixed ahead of the queries being received). Therefore, one
can interpret the result of Canetti et al. as efficient PCPs for NP that are computational zero-
knowledge (based on computational hardness assumptions). Thus, in the case of computational
zero knowledge, the question is resolved in the positive direction (under plausible intractability
assumptions). Similarly, it would be possible to get statistical zero-knowledge probabilistically
checkable arguments for NP (with soundness against computationally bounded stateful provers) if
one can construct resettable statistical zero-knowledge arguments for NP. The work of [GMOS07]
shows the existence of a closely related object, namely concurrent statistical zero-knowledge argu-
ments for all of NP. But recall that in this work, both the zero-knowledge and the soundness are
statistical, and so the abovementioned results do not resolve our main question.

Recently, Garg et al. [GOVW12] showed that efficient resettable statistical ZK proof systems
exist for non-trivial languages (e.g. Quadratic Residuosity) based on computational assumptions.
Therefore under the same assumptions, these languages also possess efficient ZK-PCPs. Garg et al.
also showed that assuming the existence of exponentially hard one-way functions, statistical zero-
knowledge proof systems can be made resettable. Unfortunately, this transformation does not

3The proof system of [GIMS10] is sound also against unbounded provers who might put a stateful functionality
inside the token.

3

preserve the efficiency of the prover. Therefore, even though by the works of Micciancio, Ong, and
Vadhan [MV03, OV08] we know that SZK ∩MA has statistical zero-knowledge proofs with an
efficient prover, the result of [GOVW12] does not necessarily preserve this efficiency. However, if
one can transform any statistical ZK proof into a resettable statistical ZK proof without losing the
efficiency of the prover, such a result together with [GOVW12] and our main result of Theorem 2.1
would imply that the problems with efficient ZK-PCPs are exactly those in SZK ∩MA.

2.1.2 Technique

In this section we describe the ideas and techniques behind the proof of Theorem 2.1 and give a
comparison to the approach of [IMS12]. In the following let us assume for notational simplicity
that L is a language; the idea is identical for general promise problems.

If L has a ZK-PCP, one naive approach to decide L using its simulator is to run the simulator
to obtain a view ν = (r, (q1, a1), . . . , (qm, am)), where r is the private randomness of the verifier,
and qi (resp. ai) is the i’th PCP query (resp. answer), and then accept iff ν is an accepting view.
This approach would obtain accepting views if x ∈ L due to the zero-knowledge property, but there
is no guarantee about the case x 6∈ L.

Our proof will show that if in addition to making sure that the view is accepting, we do some
extra tests on the distribution of the simulated view, then this will allow us to decide L. Suppose
for a moment that the ZK-PCP is deterministic, i.e. on an input x the prover deterministically
generates a proof π. (Of course it is known that ZK with deterministic provers cannot exist for
non-trivial languages [GO94]. We make this simplification here only to make our proof sketch
easier to describe, and we will argue below how one can do away with this simplification.) We will
show that when the ZK-PCP is deterministic, it suffices to run the simulator and check that the
generated view is accepting and to check some entropy-related properties of the view which in our
case happen to be a computational task in SZK. Let (r, (q1,a1), . . . , (qm,am)) be the distribution
of views generated when running the simulator for the honest verifier. By the ZK property, this
is statistically close to the view of an honest verifier interacting with the honest prover on YES
instances (i.e. x ∈ L). Let j be uniform in [m] and consider the distribution (qj,aj).

We argue that to decide the language it suffices to check first that the simulated transcript is
accepting, and second that H(aj | qj) is small. On YES instances, the simulated transcript is almost
surely accepting because of the ZK property, and furthermore H(aj | qj) = 0 because the simulated
proof is deterministic. On the other hand, on NO instances (i.e. x 6∈ L), we will show that if
H(aj | qj) is sufficiently small, then the simulated transcript is statistically close to an interaction
between an honest verifier and a proof sampled as follows: for each q, the corresponding answer
of the proof is sampled according to the distribution aj | qj = q. Therefore, by the soundness
condition of the ZK-PCP, it follows that the transcript must be rejecting with high probability. It
is clear that checking that the simulated transcript is accepting is in BPP, while checking that
H(aj | qj) is small is a conditional entropy approximation problem, which is in SZK [Vad06].

To generalize the above argument to the case of randomized ZK-PCPs, we use the following ar-
gument (which is a stronger version of an argument that first appeared in [IMS12]). Any efficiently
computable PCP (as a random variable describing its truth table) has polynomial entropy. There-
fore if we repeat the honest verifier ` times where ` is a polynomial sufficiently larger than the size
of the circuit computing the PCP, we can essentially “exhaust” the entropy of the proof observed
by the next independent verification over the same PCP. This allows us to prove that H(aj | qj)
is small conditioned on the PCP answers observed in the first ` verifications. Interestingly, this

4

argument when applied to a random query index j (which is the index distribution we use—see
Lemma 4.4) is rather delicate and heavily relies on the fact that PCPs are fixed; the statement is
not true for interactive proofs, where the answers may depend on, say, the order of the queries.

We finally note that even after making sure that the simulator is choosing its PCP answers
close to some fixed oracle, it still might be the case that for NO instances it does not run an honest
execution of the verifier against this PCP and somehow manages to generate accepting views for NO
instances as well. To complete the proof, one final technicality that we check is that the random
coins r generated by the simulator are indeed close to uniform conditioned on the ` previously
sampled views. (They are guaranteed to be so on YES instances by ZK, but may not be on NO
instances.) This latter task is also reducible to the conditional entropy approximation problem.

In contrast to our approach of deciding the language using the simulator can be done in SZK
by a direct reduction to a problem in SZK, [IMS12] showed how to “extract” a PCP from the
simulator and then run the honest verifier against this extracted PCP. Since the extraction process
requires sampling from inefficiently samplable distributions, this task is accomplished with the aid
of an all-powerful yet untrusted prover (this is how they obtain the conclusion that the language is
in AM ∩ coAM). This makes our approach conceptually different from the approach of [IMS12].

2.2 Simplifying Bounded-Query ZK-PCPs

Our second contribution is a simplification of the ZK-PCP construction of Kilian et al. [KPT97].
The construction of [KPT97] starts from the weakly-sound bounded-query ZK-PCP of [DFK+92]
and compiles it into a PCP which is zero-knowledge against malicious verifiers of bounded query
complexity. The weakly-sound PCP of [DFK+92] is zero-knowledge against any k (possibly adap-
tive) queries, but suffers from the soundness error 1 − 1/ poly(k). The main tool introduced and
employed in the compiler of [KPT97] is called a “locking scheme”, which is an analogue of a com-
mitment scheme in the PCP model. In a locking scheme a sender holds a secret w and randomly
encodes it into an oracle σw that can be accessed by the receiver R. The efficient receiver should
not be able to learn any information about w through its oracle access to σw. On the other hand,
the sender can later send a key to the receiver to decommit the value w. The protocol should
guarantee that the sender is not able to change his mind about the value w after constructing the
oracle σw.4

Kilian et al. [KPT97] showed an elegant way of using locking schemes to convert a ZK-PCP with
1− 1/poly(k) soundness error into a standard (inefficient) ZK-PCP of constant or even negligible
error. Unfortunately, the locking scheme of [KPT97] which forms the main technical ingredient of
their ZK-PCP constructions is quite complicated to describe and analyze (pages 6 to 12 there) and
uses ad-hoc algebraic techniques.

In Section 5, we formally present and analyze a simple combinatorial construction of a locking
scheme which can be viewed as a noninteractive implementation of Naor’s commitment scheme
[Nao91] in the PCP model.

4In other words, a locking scheme can be thought of as a commitment scheme with statistical security guarantees
and minimal interaction such that during its commitment phase the sender sends only a single stateless tamper-proof
token (containing the oracle σw) to the receiver.

5

2.2.1 Motivation and Related Work

Most applications of ZK-PCPs considered in this work either require the stronger unbounded variant
(see Section 2.1.1) or alternatively can rely on an honest-verifier variant (see Section 2.3), which
is easier to realize. However, efficient bounded-query ZK-PCPs with security against malicious
verifiers can also be motivated by natural application scenarios. For instance, one can consider
the goal of distributing an NP-witness among many servers in a way that simultaneously supports
a very efficient verification (corresponding to the work of the honest verifier) and secrecy in the
presence of a large number of colluding servers (corresponding to the query bound of a malicious
verifier). One can also consider a “time-lock zero-knowledge proof” in which a stateless hardware
token contains an embedded witness which can be very quickly validated but requires a lot of time
to extract.

Another motivation behind our simpler locking schemes comes from the line of work aiming at
simplifying PCP constructions and making them combinatorial. The main algebraic and technical
components in the final PCP construction of Kilian et al. [KPT97] are (1) the PCP theorem
of [ALM+98, AS98] (which comes in through the construction of [DFK+92]) and (2) the locking
scheme of [KPT97]. The first (more important) component was considerably simplified by Dinur,
and here we give a simplified version of the second component. (For a more extensive survey of
this line of research see [Mei09] and the references therein.)

2.2.2 Technique

In the following we describe the main ideas which underly our construction. We start by reviewing
Naor’s commitment scheme. In this commitment scheme, the parties have access to a pseudorandom
generator f : {0, 1}n 7→ {0, 1}3n and the protocol works as follows:

The receiver chooses a random “shift” r ← {0, 1}3n and sends it to the sender. The sender,
who holds a secret input bit b, chooses a random seed s ← {0, 1}n and sends f(s) + b · r = t
to the receiver (the addition and multiplication are componentwise over the binary field). In the
decommitment phase the sender simply sends (b, s) to the receiver, and the receiver makes sure
that f(s) + b · r = t holds to accept the decommitted value.

The binding property holds because the support set of f(s) is of size at most |f({0, 1}n)| ≤ 2n,
and a random shift r ← {0, 1}3n with overwhelming probability of at least 1−2n ·2n ·2−3n = 1−2−n

will have the property that f({0, 1}n) ∩ (f({0, 1}n) + r) = ∅. Thus for such “good” r, by sending
t to the receiver the sender will be bound to at most one possible value of b (regardless of the
structure of the function f). The hiding property of the scheme reduces in a black-box way to the
pseudorandomness of f(Un). Namely, if an efficient receiver R̂ can distinguish between f(s) + r
and f(s) + r · b, another efficient algorithm D who uses R̂ internally is able to distinguish between
f(Un) and U3n. Thus, if the function f is random, the scheme will be statistically hiding against
receivers who ask at most poly(n) oracle queries to f . The reason is that a random function f
mapping {0, 1}n to random values in {0, 1}3n is statistically indistinguishable from a truly random
function as long as the distinguisher is bound to ask at most 2o(n) queries to f .

The above observation about the hiding property of Naor’s commitment scheme means that if,
in the second round of the commitment phase, the sender chooses f to be a truly random function
and sends f(s) + b · r to the receiver as well as (providing oracle access to) f(·), then we get
a secure (inefficient) commitment scheme in the interactive PCP model without relying on any

6

computational assumption.5 In our construction of locking schemes we show how to eliminate the
first initial message r of the receiver and emulate the role of this shift r by a few more queries asked
by the receiver and more structure in the locking oracle.

2.3 Black-Box Sublinear ZK Arguments

Our third contribution is to obtain the first black-box constructions of sublinear zero-knowledge
arguments for NP. This is achieved by using bounded-query efficient ZK-PCPs for NP.

Kilian [Kil92], relying on the PCP construction of [BFLS91],6 proved that assuming the exis-
tence of exponentially-hard collision-resistant hash functions (CRHF) and 2-message statistically-
hiding commitments, one can construct a (6-message) statistical ZK argument for NP with polylog(n)
communication complexity (where n is the input length). Later on, Damg̊ard et al. [DPP97] showed
that 2-message statistically-hiding commitments can be obtained from any CRHF, which made the
existence of exponentially hard CRHF sufficient for the construction of Kilian. Micali [Mic00]
showed how to make Kilian’s protocol noninteractive in the random oracle model. The above
constructions make a non-black-box use of the underlying CRHF.

We observe that the bounded-query ZK-PCP of [DFK+92] can be employed to get an alternative
to the ZK argument for NP of Kilian [Kil92] which uses the underlying CRHF as a black box. (Our
protocols are in fact fully black-box [RTV04] with a non-uniform proof of security [CLMP13], in the
sense that the security reduction makes a black-box use of the adversary, gets non-uniform advice
about the adversary, and has a black-box simulator.)

Theorem 2.2 (Black-Box Sublinear ZK Arguments—Informal). Let H be any (nonuniformly se-
cure) family of CRHFs. Using H only as a black-box, one can construct a constant-round zero-
knowledge argument system for NP with negligible soundness error and communication complexity
sublinear in the witness size. Furthermore:

• For the case of an honest verifier, the zero-knowledge is statistical, the round complexity is 4
messages, and the protocol is public coin.

• For the case of malicious-verifier zero knowledge, the round complexity is 5 messages.

• If the family of CRHF is exponentially secure, then the communication complexity can be
made polylogarithmic in both settings above.

Since a random oracle gives exponentially secure CRHFs and allows us to apply the Fiat-Shamir
transformation [FS86], as a corollary to Theorem 2.2, in this model, we get unconditionally secure
non-interactive statistical zero knowledge argument system for NP with negligible soundness error
and polylogarithmic communication complexity.

We establish the above results in Section 6.

2.3.1 Motivation and Related Work

Our black-box construction of Theorem 2.2 is motivated by the recent line of work on study-
ing the power of black-box cryptographic constructions vs. that of non-black-box ones (e.g.

5Note that the random oracle f(·) is not efficiently computable. The work of [GIMS10] presents an efficient
construction of unconditionally secure commitments in the IPCP model.

6The more advanced PCP constructions of [ALM+98, AS98] were not known at that time.

7

[GKM+00, DI05, HIK+11, CDSMW08, CDSMW09, PW09, Wee10, Goy11]). The goal in this
line of work is to understand whether the non-black-box application of an underlying primitive P
which is used in a construction of another (perhaps more complicated) primitive Q is necessary or
a black-box construction exists as well. The reason behind studying this question is that the black-
box constructions are generally much more efficient (since the source of the non-black-box-ness
is usually an inefficient Cook-Levin reduction to an NP-complete language). Moreover, black-box
constructions are more modular and are capable of also incorporating any physical implementations
of the employed primitive P in the implementation of Q.

2.3.2 Technique

Kilian’s argument system, when only required to be sound (and not ZK), has only four messages
and uses the hash function as a black-box. The first three messages can be easily made ZK, and
it is only the last message from the prover which potentially carries some knowledge. In this last
message, the prover reveals some portions of the PCP. To retain the zero-knowledge property,
Kilian substitutes the last message (of his 4-message protocol) by a zero-knowledge sub-protocol
through which the prover convinces the verifier that he could have revealed the correct portion of
the PCP in a way that would cause the verifier to accept. The latter zero-knowledge sub-protocol
makes non-black box use of the code of the hash function used in the protocol. Thus, our goal is
to remove the zero-knowledge sub-protocol performed at the end.7

In order to make Kilian’s 6-message ZK argument black-box, we need to know more details
about its first three rounds. The first message is simply the description of the hash function sent
to the prover. Then by using the given hash function and applying a Merkel tree to the PCP the
prover hashes down the PCP into a short string which is sent to the verifier as a commitment to
the whole PCP. With some care, one can make the hash value carry negligible information about
the PCP. The third message (from the verifier) consists of the indices of symbols which the PCP
verifier chooses to read from the PCP. The prover, in the 4th message reveals the answers to the
PCP queries by revealing the relevant paths of the Merkel tree to the verifier. The committed hash
value of the PCP (the second message) together with the collision-resistance property of the hash
function prevent the prover from changing his mind about the PCP that he committed to in the
second message. Thus the soundness of the PCP implies the soundness of the argument system. To
keep the last message of this protocol zero-knowledge, as we said, Kilian’s prover will not simply
reveal the relevant preimages, but instead would prove in a zero-knowledge manner, that he knows
a set of preimages that would make the PCP verifier accept.

Our main intuitive observation is that if instead of using the PCP of [ALM+98, AS98] one feeds
(a direct product version of) the the bounded-query ZK-PCP of [DFK+92] to the construction of
Kilian, then the prover can safely reveal the relevant preimages in the last step of the basic 4-
message argument of Kilian and this will not hurt the zero-knowledge property. The key point
is that although the employed PCP is zero-knowledge only against bounded-query PCP verifiers,
since we are in the prover/verifier setting, the prover can control how many queries of the PCP
are read by the verifier, and therefore the bounded-query ZK property of the used PCP will suffice
for the argument system to be zero-knowledge. Using the transformation of [FS86, Mic00] one
can eliminate the interaction using the random oracle and obtain an unconditional construction of

7Barak and Goldreich [BG02] also employ Kilian’s approach to get a 4-message universal argument without zero-
knowledge. Similarly to Kilian’s protocol, to make their protocol zero-knowledge (or just witness indistinguishable)
[BG02] use the hash function in a non-black-box way.

8

sublinear-communication noninteractive ZK arguments for NP in the random oracle model. To
obtain the result for malicious verifiers (and negligible soundness error), we employ a variant of
the technique of Goldreich-Kahan [GK96] where both prover and verifier use statistically hiding
commitments.

Using NIZK? A potential alternative way to get a ZK argument (without using ZK-PCPs) is to
use noninteractive zero-knowledge (NIZK) proofs for NP [BFM88]. To do so, the prover and the
verifier should perform a coin-tossing protocol along with the first 3 messages of the basic variant
of Kilian’s argument system, and this will allow the prover to be able to send a noninteractive
zero-knowledge message to the verifier in his last message which proves to the verifier that the
prover knows the right preimages of the hash function. This approach benefits from having only
4 messages exchanged, but it still uses the code of the hash function in a non-black-box way, and
moreover, one needs to assume the existence of NIZK proofs for NP (in addition to the assumption
that CRHFs exist).

3 Preliminaries

Basic Terminology and Notation. We use bold letters to denote random variables (e.g. X or
x). By x ← x we mean that x is sampled according to the distribution of the random variable x.
We write Ex[·] to denote Ex←x[·], where any x appearing inside the expression in the expectation
is fixed. For any finite set S, x ← S denotes that x is sampled uniformly from S. Un denotes
the uniform distribution over {0, 1}n, and [n] denotes the set {1, 2, . . . , n}. For jointly distributed
random variables (x,y), and for a specific value y ← y, by (x | y) we mean the random variable x
conditioned on y = y. When we say an event occurs with negligible probability, denoted by negl(n),
we mean it occurs with probability n−ω(1).

We call two random variables x,y over the support set S (or their corresponding distributions)
ε-close if their statistical distance ∆(x,y) = 1

2 ·
∑

s∈S |Pr[x = s]− Pr[y = s]| is at most ε. By an
ensemble (of random variables) {yx}x∈I we denote a set of random variables indexed by a set I.
We call the two ensembles {yx}x∈I and {zx}x∈I with the same index set statistically close if there
exists a negligible function λ(n) = negl(n) such that ∆(yx, zx) = λ(|x|) for x ∈ I. We call the
two ensembles {yx}x∈I and {zx}x∈I with the same index set computationally close if for every
(family of) polynomial sized circuits {Cn} there exists a negligible function λ(n) = negl(n) such
that |Pr[C|x|(yx) = 1]− Pr[C|x|(zx) = 1]| ≤ λ(|x|) for x ∈ I. We use the following lemma:

Lemma 3.1 (Union Bound for Statistical Distance). Suppose ∆(x,y) ≤ δ and ∆(x′,y′) ≤ δ′, then
it holds that ∆((x,x′), (y,y′)) ≤ δ + δ′ where (x,x′) is the joint independent distribution of x,x′,
and (y,y′) is the joint independent distribution of y,y′.

We use the terms efficient and PPT to refer to any (perhaps oracle-aided and interactive)
algorithm that runs in probabilistic polynomial-time over its “main” input (which is typically clear
from the context and is distinguished from the randomness).

For a set S and a function f , by f(S) we denote the set {f(x) | x ∈ S}. For S ⊆ {0, 1}n and
any x ∈ {0, 1}n, we define x+ S = {x+ s | s ∈ S} where the addition is componentwise in GF(2).

For any sequence of oracles π1, . . . , πk, by π = (π1 | · · · | πk) we mean their “concatenated”
oracle which given the query (i, x) answers according to πi(x).

9

3.1 Promise Problems

A language L is a partition of {0, 1}∗ into LY = L and LN = {0, 1}∗ \ L.
A promise language (or problem) L = (LY, LN) generalizes the notion of a language by only

requiring that LY ∩LN = ∅ (but there could be some x ∈ {0, 1}∗ \ (LY ∪LN) as well). For promise
problems, we will sometimes use x ∈ L to denote x ∈ LY.

Definition 3.2 (Operations on Promise Languages). We define the following three operations over
promise languages.

• The complement L = (L
Y
, L

N
) of a promise language L = (LY, LN) is another promise

language such that L
Y

= LN and L
N

= LY.

• For two promise languages L1 and L2 we define their conjunction L = L1 ∧ L2 as:

– x = (x1, x2) ∈ LY iff x1 ∈ LY
1 and x2 ∈ LY

2 ,

– x = (x1, x2) ∈ LN iff x1 ∈ LN
1 or x2 ∈ LN

2 .

• For two promise languages L1 and L2 we define their disjunction L = L1 ∨ L2 as:

– x = (x1, x2) ∈ LY iff x1 ∈ LY
1 or x2 ∈ LY

2 ,

– x = (x1, x2) ∈ LN iff x1 ∈ LN
1 and x2 ∈ LN

2 .

It is easy to see that L1 ∨ L2 = L1 ∧ L1.

Definition 3.3 (Karp Reduction). A Karp reduction R from a promise problem L1 to another
promise problem L2 is a deterministic efficient algorithm such that R(x) ∈ LY

2 for every x ∈ LY
1

and R(x) ∈ LN
2 for every x ∈ LN

1 .

Definition 3.4. For a relation R, by R(x) we denote the set of witnesses for x defined as R(x) =
{w | (x,w) ∈ R}. We call R a polynomial relation, if there is a polynomial p(·) such that |w| ≤ p(|x|)
for all w ∈ R(x). We call R a relation for a promise language L if the following two holds: If x ∈ LY,
then R(x) 6= ∅ and if x ∈ LN, then R(x) = ∅.

3.2 Proof Systems and Zero Knowledge

For an oracle π and an (oracle-aided) algorithm V, by Vπ we refer to an execution of V given access
to π and by View〈Vπ〉(x) we refer to the view of V in its execution given oracle access to π and
input x which consists of x, its private randomness r and the sequence of its oracle query-answer
pairs [(q1, a1), (q2, a2), . . .] (having only the oracle answers and r is sufficient to know View〈Vπ〉).
For interacting algorithms (P,V), by View〈V,P〉(x) we denote the view of V in an interaction with
P and common input x which consists of x, the private randomness of V, and the sequence of
messages exchanged.

Definition 3.5. Let R be a relation for a promise language L. An interactive proof system (P,V)
for L consists of two interactive algorithms P,V where V is PPT and:

• Completeness: For every x ∈ LY, w ∈ R(x), V(x) accepts interaction with P(x,w) with
probability at least 2/3.

10

• Soundness: For every x ∈ LN, V(x) rejects interaction with any prover P̂ with probability
at least 2/3.

We call P efficient if P is a PPT. The proof system (P,V) is called an argument if the soundness
property is only required to hold against PPT provers P̂.

Definition 3.6 (PCPs). Let R be a relation for a promise language L. A (randomized) proba-
bilistically checkable proof (PCP for short) Π = ({πx∈L,w∈R(x)},V) for L consists of an ensemble of
random variables {πx∈L,w∈R(x)} indexed by x ∈ L,w ∈ R(x) whose values are oracles (also called
proofs) and also a verifier V which is an oracle-aided PPT with randomness r. We require the
following properties to hold.

• α-Completeness: For every x ∈ LY, w ∈ R(x), and every π in the support of πx∈L,w∈R(x)

it holds that Prr[V
π
r (x) = 1] ≥ α.

• β-Soundness: If x ∈ LN, then for every oracle π̂ it holds that Prr[V
π̂
r (x) = 0] ≥ β. We call

1− β the soundness error.

Whenever the completeness and soundness parameters α, β are not specified, we use the default
value 2/3 for both of them. We call Π efficient, if there is a PPT P taking four inputs r, x, w, q such
that for all x ∈ LY, w ∈ R(x), the random variable P(r, x, w, ·) (over the randomness of r) whose
samples are oracles, is distributed identically to πx∈L,w∈R(x). We call Π nonadaptive if the honest
verifier prepares all of its queries at first (before getting any answers) and ask all in one round.

Definition 3.7. LetR be a polynomial relation for (promise) language L, and let Π = ({πx∈L,w∈R(x)},V)
be a PCP for the problem L. Π is called zero-knowledge (ZK) if for every malicious PPT verifier
V̂, there exists a simulator Sim which runs in expected poly(n)-time and the following ensembles
are statistically close:

{Sim(x)}x∈L , {View〈V̂πx,w∈R(x)(x)〉}x∈L.

Note that V̂ only has oracle access to π ← πx,w∈R(x), and the statistical indistinguishability should
hold for large enough |x| regardless of which witness w ∈ R(x) is being used. We call the simulator
straight-line if it only interacts with the malicious verifier (as a black-box and without rewinding).
For restricted class of malicious verifiers we define the following variants of zero-knowledge:

• We call Π honest-verifier zero-knowledge (HVZK) if the the simulation is required only for
the honest verifier.

• We call Π u-bounded-query zero-knowledge (u-BQ-ZK) if the honest verifier asks at most u
PCP queries and the statistical simulation is only required for all malicious verifiers who ask
up to u PCP queries.

• We call a PCP Π of length u ·k (maybe with some padding) u-restricted-query zero-knowledge
(u-RQ-ZK) if, assuming the PCP is divided into u equal blocks B1, . . . , Bu, the honest verifier
asks at most 1 query from each Bi, and the statistical simulation is also only required for
malicious verifiers who ask at most 1 PCP query from from each Bi for i ∈ [u].

Definition 3.8 (Zero Knowledge Proof Systems). Let (P,V) be a proof system for promise language
L. (P,V) is called computational (resp. statistical) zero-knowledge if for every PPT verifier V̂,

11

there exists a simulator Sim which runs in expected poly(n)-time and the following ensembles are
computationally (resp. statistically) close:

{Sim(x)}x∈L , {View〈V̂,Pw〉(x)}x∈L.

Note that the statistical indistinguishability should hold for large enough |x| regardless of which
witness w ∈ R(x) is being used.

Definition 3.9 (Complexity Class SZK). The class SZK consists of promise problems with a
statistical zero-knowledge proof system.

Lemma 3.10. For a constant k, let L1, . . . , Lk be a set of promise languages all in SZK, and let
F be a constant-size k-input formula with operations: complement, conjunction, and disjunction as
in Definition 3.2. Then F (L1, . . . , Lk) ∈ SZK.

In Appendix A we give a sketch of the proof for completeness. (See [Vad99] for a more general
and improved statement than that of Lemma 3.10.)

3.3 Shannon Entropy and Related Computational Problems

All logarithms are in base 2. By H(X) we denote the Shannon entropy of X defined as H(X) =
EX log(1/Pr[X = X]). By H(X | Y), we denote the conditional entropy as EY [H(X | Y)], and we
note the conditional mutual information as I(X; Y | Z) = H(X | Z)− (X | YZ).

Fact 3.11 (Basic Facts about Entropy). The following hold for any random variables X,Y,Z:

1. H(X | Y) ≤ H(X).

2. I(X; Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ) ≥ 0

3. Data processing inequality: for any randomized function F (whose randomness is independent
of X,Y,Z), it holds that I(F(X); Y | Z) ≤ I(X; Y | Z).

Definition 3.12 (Conditional Entropy Approximation). The promise problem CEAε is de-
fined as follows. Suppose C is a poly(n)-size circuit sampling a joint distribution (X,Y), i.e. this
is the distribution of the output of C when run on a uniformly chosen input. Then given (C, r) we
have:

• (X,Y, r) ∈ CEAY
ε iff H(X | Y) ≥ r.

• (X,Y, r) ∈ CEAN
ε iff H(X | Y) ≤ r − ε.

Lemma 3.13. For any ε > 1/ poly(n), CEAε ∈ SZK.

See Appendix A for the proof of this lemma.
In our main reduction, we will reduce problems to the following problem in SZK:

Definition 3.14 (Conditional Entropy Bound). CEBα,β is the following promise problem
where inputs are poly(n)-size circuits C sampling a joint distribution (X,Y):

1. (X,Y) ∈ CEBY
α,β iff H(X | Y) ≥ α.

2. (X,Y) ∈ CEBN
α,β iff H(X | Y) ≤ β.

The following is immediate from Lemma 3.13:

Lemma 3.15. For all functions α(n), β(n) uniformly computable in time poly(n) and satisfying
α(n)− β(n) > 1/poly(n), CEBα,β ∈ SZK.

12

3.4 Statistical Distance vs Conditional Entropy

To prove our main result, we need to bound statistical distance using conditional (Shannon) entropy
and vice versa. The following two lemmas state how to bound conditional entropy using statistical
distance and vice versa; their proof can be found in Appendix A.

Lemma 3.16. (Conditional Entropy to Statistical Distance). Suppose Supp(X) ⊆ {0, 1}n. Then
it holds that EY←Y ∆((X | Y),Un) ≤

√
n−H(X | Y).

Lemma 3.17. (Statistical Distance to Conditional Entropy). For ε ∈ [0, 1] let H(ε) = ε log(1/ε) +
(1 − ε) log(1/1−ε). Suppose ∆((X,Y), (X′,Y′)) ≤ ε and Supp(X) ∪ Supp(X′) ⊆ {0, 1}n. Then it
holds that |H(X | Y)−H(X′ | Y′)| ≤ 4(H(ε) + ε · n).

3.5 Commitments from Collision Resistance

Definition 3.18 (Commitments). A commitment scheme Com = (S,R) between a sender S and a
receiver S for the message space W and security parameter n proceeds as follows.

• In the commitment phase, the sender S gets some w ∈ W as private input, and the parties
interact using common input 1n.

• In the decommitment phase, the sender S sends the decommitment D = (w, r) to the receiver,
where r is the randomness used by S in commitment phase. The receiver accepts iff (w, r) is
consistent with the transcript of the commitment phase.

1. We call Com statistically hiding, if for every malicious receiver R̂, and every two w,w′ ∈ W,
the views of R̂ when S uses w or w′ are statistically close (i.e. negl(n)-close).

2. We call Com computationally binding, if for every (nonuniform) malicious sender Ŝ of poly(n)
size, the probability of Com winning in the following game is at most negl(n).

(a) Ŝ and R participate in the commitment phase.

(b) Ŝ sends (w, r) and (w′, r′) and wins if w 6= w′ and the decommitments (w, r) and (w′, r′)
are both accepted by the receiver.

The following construction, gives a commitment scheme using any shrinking hash function.

Definition 3.19. A family of compressing functions H = {hα : {0, 1}2n 7→ {0, 1}n}α∈{0,1}poly(n) is
called S(n)-hard collision-resistant, if for every nonuniform adversary Adv of size S(n):

Pr
α←{0,1}poly(n)

[Adv(α) = (x, y) and hα(x) = hα(y)] ≤ 1

S(n)
.

We call H simply collision-resistant, if it is nω(1)-hard, and we call it exponentially-hard collision-
resistant, if it is 2n

Ω(1)
-hard.

Remark 3.20. It is more common to define cryptographic primitives by saying that for any
polynomial time (sized) adversary Adv and any polynomial p(·) the advantage of Adv in breaking
the primitive is at most 1/p(n) for large enough security parameter n. We note that when it comes
to nonuniform security, defined by polynomial sized circuits, this convention is equivalent to the
convention used in Definition 3.19 above.

13

Construction 3.21. Let H = {hα : {0, 1}2m 7→ {0, 1}m}α∈{0,1}poly(m) be a family of shrinking hash
functions. The commitment scheme ComH based on H for `-bit message b = b1 . . . b` is as follows.

• Commitment: The receiver samples α← {0, 1}poly(m) at random and sends it to the sender.
The sender chooses sj , rj ← {0, 1}2m at random for all j ∈ [`], and the j’th bit of the
message bj , let C(bj) = (hα(rj), sj , 〈r, s〉+ b) where the inner product operation 〈·, ·〉 and the
addition are both performed in the binary field GF(2). Send C(b) = (C(b1), . . . , C(b`)) as the
commitment to b.

• Decommitment: The sender reveals bit b and r1, . . . , r` to the receiver. The receiver verifies
that the sender’s message is consistent with its commitment message and reject otherwise.

Theorem 3.22 (Statistically Hiding Commitment from CRHFs [DPP97, DPP98, HM96]). Let
H = {hα : {0, 1}2m 7→ {0, 1}m}α∈{0,1}poly(m) be a family of shrinking hash functions, and let ComH
be the commitment scheme of Construction 3.21 with security parameter n and suppose ` = poly(n).

• If m = ω(log n), then for every α ← {0, 1}poly(m) and every two `-bit messages w0, w1, the
distributions C(w0) and C(w1) are 2−Ω(m) = n−ω(1)-close . Thus ComH is statistically hiding.

• For every α ← {0, 1}poly(m), if an adversary can successfully open a commitment into two
different ` bit messages w0 6= w1 it can find a collision for hα(·). Therefore, if H is s(m)-hard
collision-resistant and s(m) = nω(1), then ComH is computationally binding.

4 Languages with Efficient ZK-PCPs are in SZK

In this section we prove Theorem 2.1.

Bounded Entropy PCPs. Suppose for a promise language L and a relation R for L, Π =
({πx∈L,w∈R(x)},V) is an efficient ZK-PCP for L. Suppose, for every x, we only keep the lexico-
graphically first witness in R(x), and remove all other witnesses from R(x). Now we can simply
talk abot {πx∈L} instead of {πx∈L,w∈R(x)}. A property of the randomized oracle {πx∈L} is that, as
a random variable, πx∈L has entropy at most poly(n), because H(πx∈L) is bounded by the number
of random bits used by the efficient algorithm P computing {πx∈L,w∈R(x)}. The following only
relies on this “bounded entropy” property and implies theorem Theorem 2.1 as a corollary.

Theorem 4.1. Suppose the promise problem L = (LY, LN) has a ZK-PCP Π = ({πx∈L},V) of
entropy at most H(πx) ≤ poly(|x|). Then L ∈ SZK.

In the rest of this section we prove Theorem 4.1. Let η = H(πx) ≤ poly(n).
The first step of our proof is to define a verifier who can “exhaust” all of the entropy of the

ZK-PCP so that the proof behaves essentially as if it were deterministic. We use the following
verifier: let V[`] = (V1, . . . ,V`) be a verifier who executes ` independent instances of V against the
given oracle and let Vi be its ith verification. (We will fix a choice of ` = poly(n) � η later.) Let
Sim be the simulator that simulates the view of V[`] statistically well (i.e. Sim(x) is negl(|x|)-close
to the view of V[`](x) when accessing π ← πx for x ∈ L). The view of Vi can be represented as
νi = (ri, qi1, a

i
1, . . . , q

i
m, a

i
m) where ri ∈ {0, 1}k is the randomness used by Vi, qij is its jth oracle

query and aij is the answer to qij . We use the notation ai = (ai1, . . . , a
i
m), qi = (qi1, . . . , q

i
m). The

view of V[`] consists of (ν1, . . . , ν`).

14

In order to prove L ∈ SZK, we show how to reduce L to a constant size formula over SZK
languages. As we mentioned in the introduction, we need to check three conditions: the simulator
generates an accepting view, the entropy of a random answer in the view has low entropy given the
query, and the distribution of the random coins in the view is uniform.

To describe our reduction formally we first need to define a circuit Csim
x and a promise problem

Dα,β as follows.

• The circuit Csim
x takes as input rsim (for input length |x|). The circuit Cx outputs Sim(x; rsim) =

(ν1, . . . , ν`) where for each i ∈ [`], νi = (ri, qi1, a
i
1, . . . , q

i
m, a

i
m).

• For α > β, Dα,β is a promise problem whose inputs are Boolean circuits C of input length n
and size |C| = poly(n); then:

1. C ∈ DY
α,β iff Pr[C(Un) = 1] ≥ α, and

2. C ∈ DN
α,β iff Pr[C(Un) = 1] ≤ β.

The parameters α and β could be functions of n, and it is easy to see that for efficiently
computable α, β (given n) it holds that Dα,β ∈ BPP if α− β > 1/ poly(n).

Reduction 4.2 (Main Reduction). Given a parameter `, we map x 7→ (C1, C2, C3) as follows.

1. C1 checks the uniformity of the random coins in the view. C1 is a circuit sampling the joint
distribution (X1,Y1) defined as follows. On input (rsim, i), C1 executes the circuit Csim

x on
rsim to get (ν1, . . . , ν`) = Csim

x (rsim) and sets:

X1 = ri and Y1 = (ν1, . . . , νi−1).

2. C2 checks that the conditional entropy of a randomly chosen answer is low conditioned on the
corresponding query. C2 is a circuit sampling the joint distribution (X2,Y2) defined as follows.
On input (rsim, i, j), C2 executes the circuit Csim

x on rsim to get (ν1, . . . , ν`) = Csim
x (rsim) and

sets:
X2 = aij and Y2 = (ν1, . . . , νi−1, qij).

We emphasize the fact that while aij , q
i
j appear in the output of C2, the actual index j itself

does not appear in the output.

3. C3 checks that the view is accepting. C3 operates as follows: on input (rsim, i), C3 executes
the circuit Csim

x on rsim to obtain (ν1, . . . , ν`) = Csim
x (rsim), and output 1 iff νi is an accepting

view of V.

Claim 4.3. Reduction 4.2 is a Karp reduction from L (specified in Theorem 4.1) to the promise
language Z = CEBk−1/200,k−1/100 ∧ CEB2η/`,1.1η/` ∧D0.66,β for β = 1/3 + 1/10 + 2mη/`.

Proving Theorem 4.1 using Claim 4.3. By taking ` = 40mη, it holds that 2m · η/` < 1/20
in Lemma 4.8 and so β < 1/2, which implies that Dα,β ∈ BPP, Z ∈ SZK, and so L ∈ SZK.

15

In the following we prove Claim 4.3 by studying each case of x ∈ LY and x ∈ LN separately.
We begin with a lemma that will be useful for the case x ∈ LY. The following lemma bounds the
conditional entropy of a single answer to a single randomly chosen verifier query by the conditional
entropy of the set of all answers to the set of all verifier queries. This is non-trivial because the
verifier queries may be asked adaptively.

Lemma 4.4. Let A be any randomized algorithm that (adaptively) queries a PCP π. Let r ∈ {0, 1}k
denote the random coins of A. Let q = (q1, . . . , qm) be the queries that Aπ(r) makes and let
aj = π(qj) be the corresponding answers. Let π be an arbitrary distribution over proofs, and let q
and a be the distribution over (the vectors of) queries and answers obtained by querying π using
algorithm A on uniform random coins r. Let also j be an arbitrary distribution over [m]. Then
H(aj | qj) ≤ H(a | r) where in the notation qj the value of j is not explicitly revealed.

Proof. By the definition of conditional entropy and adding 0 = H(ajqj | π)−H(ajqj | π), we get

H(aj | qj) = H(ajqj)−H(ajqj | π)− (H(qj)−H(ajqj | π)).

Since a proof π is stateless for any fixed π, given any query q asked at some point during the
execution of Aπ, the answer a = π(q) is also fixed. Therefore it holds that H(ajqj | π) = H(qj | π),
and by the definition of mutual information, we may deduce that

H(aj | qj) = I(ajqj;π)− I(qj;π) ≤ I(ajqj;π).

Since I(ajqj;π) = H(π) − H(π | ajqj) and since π and r are independent, Item 1 of Fact 3.11
implies that

H(aj | qj) ≤ I(ajqj;π) = H(π)−H(π | ajqj) ≤ H(π | r)−H(π | ajqjr) = I(ajqj;π | r).

Let F be the function that takes as input (a,q) and outputs (aj,qj) by sampling j. By the data
processing inequality (Item 3 of Fact 3.11) it holds that

H(aj | qj) ≤ I(ajqj;π | r) = I(F(aq);π | r) ≤ I(aq;π | r) ≤ H(aq | r) = H(a | r) + H(q | ar).

Finally, since H(q | ar) = 0, this implies the proposition.

Remark 4.5. We emphasize that if π was stateful (i.e. a “prover”, rather than a “proof”), then
Lemma 4.4 would be false. Even a deterministic prover can correlate his answers to the verifier’s
queries, and so it may be that H(a | q) = 0 but H(aj | qj) > 0. Namely, even given π (say for a
stateful prover that π gives the random coins of the prover) and a query q, the answer to q may
have entropy because π’s answer to q may be different depending on whether q was asked as the
first query or second query or third query, etc. In particular, the equality H(ajqj | π) = H(qj | π)
used in the proof of Lemma 4.4 would not hold anymore. This is one place where we crucially use
the fixed nature of a PCP.

4.1 Proof of Claim 4.3: the Case x ∈ LY

Here we would like to show that (C1 ∈ CEBY
k−1/200,k−1/100

) ∧ (C2 ∈ CEB
Y
2η/`,1.1η/`) ∧ (C3 ∈ DY

0.66,β).

We study each of the generated instances Ci for i ∈ [3]. In all these cases, we first assume that the
simulator’s output is identically distributed to the view of V[`] interacting with a prover and then
will show how to remove this assumption.

16

The Instance C1. If the simulator’s outputs were identically distributed to the view of V[`]

interacting with a prover, then the simulated randomness X1 = ri will be uniformly distributed
over {0, 1}k with entropy k independently of Y1 = (ν1, . . . ,νi−1). Since the simulator generates a
view that is statistically close to the honest interaction (and since k = poly(|x|) and H(negl(n)) =
negl(n)) we may apply Lemma 3.17 to deduce that H(X1 | Y1) ≥ k−negl(n) ≥ k−1/200. Therefore,
C1 ∈ CEBY

k−1/200,k−1/100
.

The Instance C2. Here we study the view of V[`] while interacting with a proof generated
according to the distribution πx whose entropy is bounded by η. Suppose first that the simulator’s
outputs were identically distributed to the view of V[`] interacting with πx. In this case, by an
argument similar to [IMS12], one can show that

Claim 4.6. Ei←[`] H(ai | ν1, . . . ,νi−1, ri) ≤ η/`.

Proof.

η + k` ≥ H(πx) + H(r1, . . . , r`)

(πx and r1, . . . , r` are independent) = H(πx, r
1, . . . , r`)

(πx and r1, . . . , r` determine ν1, . . . ,ν`) ≥ H(ν1, . . . ,ν`)

=
∑
i∈[`]

H(νi | ν1, . . . ,νi−1)

(ri and ai determine qi) =
∑
i∈[`]

H(ri | ν1, . . . ,νi−1) + H(ai | ν1, . . . ,νi−1, ri)

= k`+
∑
i∈[`]

H(ai | ν1, . . . ,νi−1, ri).

Therefore, by averaging over i we obtain that Ei←[`] H(ai | ν1, . . . ,νi−1, ri) ≤ η/`.

The following claim is also based on the assumption that the simulation is perfect, and thus the
distribution of (ν1, . . . ,νm) generated by the simulator is identical to the view of V[`] run against
π ← πx∈L,w.

Claim 4.7. For each fixed value of i and (ν1, . . . , νi−1), it holds that

H(aij | qij , ν1, . . . , νi−1) ≤ H(ai | ri, ν1, . . . , νi−1) (1)

Namely, the entropy of the answers of the ith verification gives an upper-bound on the entropy of
the answer to a randomly chosen query of the verifier without revealing its index.

Proof. Let (πx,ν
1, . . . ,νi−1) be the joint distribution of an honest proof πx and i − 1 executions

of the honest verifier V1, . . . ,Vi−1 using proof πx. Apply Lemma 4.4 using the distribution over
proofs given by (πx | ν1, . . . , νi−1), and with the honest verifier algorithm Vi as the query algorithm
accessing the proof.

Using Claims 4.6 and 4.7, we conclude that H(X2 | Y2) ≤ η/`, assuming that the simulator
was perfect. If we only assume that the simulator’s output is statistically close to the view of V[`]

interacting with πx, then we can apply Lemma 3.17 and deduce that H(X2 | Y2) ≤ η/`+negl(n) <

1.1η/` which implies that C2 ∈ CEB
Y
2η/`,1.1η/`.

17

The Instance C3. By the completeness of Π, when V[`] = (V1, . . . , V `) interacts with a proof, for
all i ∈ [`], Vi accepts with probability ≥ 2/3. Since the simulation is statistically close to the real
interaction, it holds that νi is accepting with probability 2/3−negl(n) ≥ 0.66, and so C3 ∈ DY

0.66,β.

4.2 Proof of Claim 4.3: the Case x ∈ LN

Here we would like to show that (C1 ∈ CEBN
k−1/200,k−1/100

) ∨ (C2 ∈ CEB
N
2η/`,1.1η/`) ∨ (C3 ∈ DN

0.66,β).
This follows from the following lemma.

Lemma 4.8. Suppose x ∈ LN, C1 6∈ CEBN
k−1/200,k−1/100

, and C2 6∈ CEB
N
2η/`,1.1η/`. Then it holds

that C3 ∈ DN
0.66,β for β = 1/3 + 1/10 + 2m · η/`.

Intuition. Since C2 6∈ CEB
N
2η/`,1.1η/`, therefore, the oracle answers returned to the verifier in the

ith execution (for a random i ← [`]) all have very low entropy and thus close to a fixed proof.
Moreover, due to C1 6∈ CEBN

k−1/200,k−1/100
, the randomness of the verifier in this execution has

almost full entropy, and therefore, the ith execution is close to an honest execution of the verifier
against some oracle. Finally, since x ∈ LN by the soundness of the PCP, the verifier would accept
with probability at most ≈ 1/3. The formal argument goes through a hybrid argument as follows.

Experiments. The outputs of all experiments described below consist of a view of V[i] (i.e. the
first i executions of the verifier). The distribution of (ν1, . . . , νi−1) in all of these executions is the
same and is sampled by Sim(x), and they only differ in the way they sample νi.

• Experiment Real. Choose i← [`], and take the output (ν1, . . . , νi) by running Sim(x).

• Experiment Ideal. Choose i ← [`], and take the output (ν1, . . . , νi−1) by running Sim(x).
To sample νi = (ri,qi,ai) we first sample ri ← {0, 1}k uniformly at random, and then using
ri we run the verifier against the oracle π̂ defined as follows.

The Oracle π̂: Suppose we have fixed (νi, . . . , νi−1). Recall the distribution ((qij,a
i
j) |

νi, . . . , νi−1) defined above when defining the instance C2 (i.e., (aij,q
i
j) is a randomly chosen

pair of query-answer pairs from the view νi without revealing the index j). For every query
q, the oracle π̂ gets one sample according to a← (aij | νi, . . . , νi−1,qij = q) and sets π̂(q) = a

forever. If Pr[qij = q | νi, . . . , νi−1] = 0, we define π̂(q) = ⊥.

• Experiment Hybj for j ∈ [m + 1]. These experiments are in between Real and Ideal
and for larger j they become closer to Real. Here we choose i ← [`], and take the output
(ν1, . . . , νi) by running Sim(x). Then we will re-sample parts of νi as follows. We will keep
(ri, (qi1, a

i
1), . . . , (qij−1, a

i
j−1)) as sampled by Sim(x). For the remaining queries and answers

we sample an oracle π̂ as described in Ideal, and we let (qij , a
i
j), . . . , (q

i
m, a

i
m) be the result of

continuing the execution of Vi using ri and the oracle π̂. Note that Hybm+1 ≡ Real.

Claim 4.9. If x ∈ LN, then PrIdeal[ν
i accepts] ≤ 1/3.

Claim 4.10. If C1 6∈ CEBN
k−1/200,k−1/100

, then ∆(Ideal,Hyb1) ≤ 1/10.

Claim 4.11. If C2 6∈ CEB
N
2η/`,1.1η/`, then Ej∈[m] ∆(Hybj ,Hybj+1) ≤ 2η/`.

18

Proving Lemma 4.8. Claims 4.9, 4.10, and 4.11 together imply that

Pr
Real

[νi accepts] ≤ Pr
Ideal

[νi accepts] + ∆(Ideal,Hyb1) +
∑
j∈[m]

∆(Hybj ,Hybj+1) ≤ 1/3 + 1/10 + 2mη/`

which proves that C3 ∈ DN
2/3,β. In the following we prove these claims.

Proof of Claim 4.9. Since the oracle π̂ is sampled and fixed before choosing ri and executing Vi, and
because x ∈ LN, by the soundness property of the PCP it holds that PrIdeal[ν

i accepts] ≤ 1/3.

Proof of Claim 4.10. If C1 6∈ CEBN
k−1/200,k−1/100

, then we have Ei←[`][H(ri | ν1, . . . ,νi−1)] ≥ k −
1/100, and so by Lemma 3.16 it holds that

E
i←[`],ν1,...,νi−1

[∆((ri | ν1, . . . , νi−1),Uk)] ≤
√

1/100 = 1/10.

But note that the only difference between Ideal and Hyb1 is the way we sample ri conditioned
on the previously sampled parts (i.e. ν1, . . . , νi−1). Thus it holds that ∆(Ideal,Hyb1) ≤ 1/10.

Proof of Claim 4.11. The only difference between Hybj and Hybj+1 is the way they answer qij . In
Hybj+1 the original answer of the simulator is used, while in Hybj this answer is provided by the
oracle π̂. Thus, they are different only when the answer re-sampled by π̂ differs from the original
answer. Therefore, we have that:

∆(Hybj ,Hybj+1) ≤ E
ν1,...,νi−1,i

[
Pr

ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
Taking an expectation over all j ← [`] we conclude Claim 4.11 as follows.

E
j
[∆(Hybj ,Hybj+1)] = E

j,i,ν1,...,νi−1

[
Pr

ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
= E

i,ν1,...,νi−1

[
Pr

j,ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
By combining the sampling of aij,q

i
j directly, we have that

E
j
[∆(Hybj ,Hybj+1)] = E

i,ν1,...,νi−1

[
Pr

ai
j,q

i
j,π̂

[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1

[
1− Pr

ai
j,q

i
j,π̂

[aij = π̂(qij) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1,qij ,a

i
j

[
1− Pr

π̂
[aij = π̂(qij) | i, ν1, . . . , νi−1]

]

(since 1− α ≤ log(1/α) for α ∈ [0, 1]) ≤ E
i,ν1,...,νi−1,qij ,a

i
j

[
log

1

Prπ̂[aij = π̂(qij) | i, ν1, . . . , νi−1]

]
(by the definition of oracle π̂) = E

i

[
H(ai

j | ν1, . . . ,νi−1,qi
j)
]

(since C2 6∈ CEB
N
2η/`,1.1η/`) ≤ 2η/`.

19

5 A Combinatorial Locking Scheme

In this section we formally describe our simple “combinatorial” locking scheme which can substitute
the algebraic locking scheme of [KPT97] and simplify their results. See Section B for a sketch on
how a locking scheme was used by [KPT97] to construct efficient bounded-query ZK-PCPs for NP
and (inefficient) ZK-PCPs for NEXP.

Definition 5.1 (Locking Scheme [KPT97]). In a locking scheme (LS) Σ = (S,R) for the message
space Wn, the sender S = {σw} is an (ensemble) of distributions over (locking) oracles and R is a
poly(n)-time receiver and the following properties hold.

• Completeness: The sender S is given a private input w ∈ Wn and both parties are given
1n as the common input. Then the interaction continues in two phase:

1. Commitment: A locking oracle is sampled σ ← σw and fixed for the next step.

2. Decommitment: The sender reveals w and a “key” Keyw to the receiver R who gets
oracle access to σ. The completeness property asserts that Pr[Rσ(w,Keyw) = 1] = 1.

• Binding: Σ is called (1 − δ)-binding if for every fixed oracle σ, there is a w ∈ Wn such
that for any other w′ ∈ Wn, w

′ 6= w and any Keyw′ , the probability that the receiver accepts
(w′,Keyw′) is at most δ.

• Equivocality: We call Σ (u, ε)-equivocal if there exist some (black-box straight-line) simu-
lator running in time poly(n, u) such that for every w ∈ Wn and every malicious receiver R̂
who asks up to u oracle queries, the view of the receiver in R̂σw is (statistically) ε-close to its
view in the game below. (Here Sim does not rewind R̂ and simply interacts with it.)

1. In the commitment phase, Sim answers up to u oracle queries of R̂ (without knowing
w). Before R̂ asks more than u queries, R̂ can choose to go to the decommitment phase.

2. The simulator Sim and receiver R̂ are now given w ∈ Wn and Sim continues to answer
oracle queries of R̂ for up to a total of u queries (including both steps).

We call a LS Σ u-secure, if it is (1− 1/u)-binding and (u, 1/u)-equivocal.

One can define a natural feature of hiding for locking schemes as well, but since (1) the construc-
tion of [KPT97] requires equivocality and (2) hiding property is directly implied by equivocality,
we do not include a separate definition.

Our binding property is a relaxed version of that of [KPT97] which suffices for the purpose of
constructing ZK-PCPs. In a locking scheme according to [KPT97], by sampling the locking oracle
and receiver’s randomness, the sender, in addition to being bound to a unique w ∈W is also bound
to a single key Keyw. The only place where the binding property of the locking scheme is used in
the construction of ZK-PCPs is to prove the soundness of the PCP. However, by inspecting the
actual construction (see Construction B.2) it can be easily seen that our relaxed (and in fact more
standard) definition of binding is sufficient.

Construction 5.2. Our locking scheme Σ = ({σb} = S,R) works as follows. The queries and
answers of the locking oracle will be of length Θ(n) where n is the security parameter.

• Commitment. Let b be the bit that the sender S wants to commit to. The oracle σb = (f |
h | g) is sampled by concatenating the following three randomized functions.

20

1. A uniformly random expanding function f : {0, 1}n 7→ {0, 1}3n.

2. A uniformly random shrinking function h : {0, 1}3n 7→ {0, 1}n.

3. A randomized function g : {0, 1}3n 7→ {0, 1}3n which uses the functions f and h as well
as a randomized parameter s← {0, 1}n and is defined as g(r) = b · r+ f(s+ h(r)). The
addition and multiplication are performed componentwise in GF(2).

Note that any σ ← σb can be represented as a function σ : {0, 1}3n+2 7→ {0, 1}3n.

• Decommitment. To decommit, the sender sends the bit b and the key Keyb = s to the
receiver. The receiver then chooses a random r ← {0, 1}3n, and by asking one query to each
of f, h, g (total of 3 queries to σ) makes sure that g(r) = b · r + f(s+ h(r)).

In order to use our locking scheme to simplify the ZK-PCPs of [KPT97] (see Construction B.2)
we need to be able to put messages of polynomial length (rather than just single bits) inside
the locking oracle. This can be done in a straightforward way by by generating locking oracles
σw0 , . . . ,σwk

for a k bit message w = w1 . . . wk and concatenating them into a single oracle σw =
(σw0 | · · · | σwk

). If the original scheme is u-secure, by a union-bound, the new scheme will be
(uk)-secure while the receiver R asks only 3k oracle queries. Since k = poly(n) = 2o(n) the new

scheme remains 2Ω(n) secure if the original is scheme is 2Ω(n)-secure.
We also note that even though the oracle of Construction 5.2 has exponential length its security

parameter n, when used in the context of [KPT97] n will be chosen at most polylog(|x|) where x
is the PCP input (see Remark B.3).

Theorem 5.3. The locking scheme Σ = ({σb}, R) of Construction 5.2 is 2n/3-secure.

Comparison with [KPT97]. The locking scheme of [KPT97] achieves only 14/15 soundness
(which is worse than ours), but their verifier asks only two bit-queries from the locking oracle.
However, to reduce their soundness error to 2−Ω(n) they need to execute the verifier Ω(n) times,
and so the verifier ends up asking Ω(n) many oracle queries (in our locking scheme the receiver
reads Θ(n) bits of the locking oracle through only 3 oracle queries). Also we note that the verifier
of [KPT97] is nonadaptive while ours asks its three queries in two rounds. However, we emphasize
that the bounded-query ZK-PCP of [KPT97] is in fact adaptive (see Section B), and using our
locking scheme will increase its adaptivity only by a factor of two.

In the following we prove Theorem 5.3. (Completeness holds trivially.)

Binding: Suppose the sender intends to decommit into both b = 0 using Key0 = s0 and b = 1
using Key1 = s1. Since |f({0, 1}n)| ≤ 2n, the number of possible r ∈ {0, 1}3n for which there exist
{y1, y2} ⊂ f({0, 1}n) such that y1 + r = y2 is at most 2n · 2n = 22n. Thus, with probability at least
1−2−3n22n = 1−2−n over the choice of r by the receiver, it holds that f(s1+h(r)) 6= r+f(s2+h(r))
regardless of the values s1, s2. For such r (which will be sampled with probability at least 1−2−n),
g(r) will be different from (at least) one of f(s1 + h(r)) and r + f(s2 + h(r)), which makes the
verifier reject for either of b = 0 or b = 1 regardless of the value Keyb provided by the sender.

Equivocality: We will first prove a hiding property by showing that if the receiver asks at most
2n/3 queries, its view is 2−n/3-close to the case that it receives all random answers (not only upon
asking f and h queries, but also for g queries). The argument behind this claim will tell us how to
do the simulation. Consider the following mental hybrid experiments.

21

• Experiment Hybb for b ∈ {0, 1}. In this game, in addition to f, g, and h oracles, there is
another random oracle f ′ which is accessed only internally by the g queries (instead of f).
Namely, upon a g-query we return b · r + f ′(s+ h(r)). The oracle f ′ is not accessible by R̂.

Since f ′ is random, the view of R̂ while participating in Hyb0 or Hyb1 has the same distribution.
The following claim carries the main intuition behind the hiding and equivocality properties.

Claim 5.4. For every (computationally unbounded) receiver R̂ who asks at most u oracle queries,
its view in R̂σb is u2 · 2−n close to its view in the experiment Hybb.

Proof. We prove the claim for b = 0, and the proof for b = 1 is identical. Let F , G, H and F ′

be in order the set of queries asked to f, g, h and f ′ in Hyb0. For every g-query x, we put x ∈ H
and s + h(x) ∈ F ′ as well (as if the relevant h and f ′ queries are asked). Since f ′ is not directly
accessible, it holds that F ′ = h(G) + s. Also, note that |X| ≤ u for all X ∈ {F,G,H, F ′}.

We define the event COL (collision) as F ′ ∩ F 6= ∅. A key point is that as long as COL does
not happen the experiment Hyb0 proceeds the same as R̂σ0 . The reason is that in this case, we
can pretend that f ′ queries were some f queries in both experiments without falling into any
inconsistency between f and f ′. Thus we only need to show that PrHyb0

[COL] ≤ u2 · 2−n. The nice

thing about Hybb is that (because f ′ is not available to R̂) we can sample s and the set F ′ at the
end of the experiment, which we call it the s-oblivious Hyb experiment).

• s-Oblivious Experiment Hyb. Here f and h queries are answered randomly. Given any
g-query x, we first ask h(x); if there was any x′ queried to g before such that h(x) = h(x′) we
return g(x′), otherwise, we return g(x)← {0, 1}3n. At the end of the experiment sample s←
{0, 1}n, go over all x ∈ G and put h(x)+s in F ′. Note that COL implies that h(G)+s∩F 6= ∅.
However, since we have |G| ≤ u which implies |h(G)| ≤ u, by a union bound the probability
that under a random shift s some member of h(G) is mapped to F is at most u · u · 2−n.

The Simulator. The main idea behind the simulator of Construction 5.2 was already exposed
through a proof for the hiding property. The formal description follows. Our simulator Sim in its
first step (before getting some b ∈ {0, 1}) acts the same way as the s-oblivious simulator above. Let
F,H and G be the set of queries as defined above, but we again keep the set F ′ undefined. When
the game is about to move to Step 2, Sim acts as follows: Sample s← {0, 1}n and let F ′ = s+h(G),
and abort if F ′ ∩ F 6= ∅. But if F ′ ∩ F = ∅ holds, proceed to the second step and act as follows.
Pretend that the sets G and H are the only sample queries of g and h. For every g-query x that
we have sampled g(x) = y before, take z = s + h(x) (which has been a f ′ query). At this stage
Sim is given the message bit b, and it adds z to F and sets f(z) = g(x) + b · r (this is a legitimate
query and answer pair for f since F ′∩F = ∅). After this point, Sim can simply continue answering
the queries according to the oracle σb. So, if the simulation manages to go to the second step,
during the second step it will easily answer the queries from the right distribution. To analyze the
behavior of Sim in the first step we can again define the event COL as F ∩ F ′ 6= ∅ (which makes
it abort). For both b ∈ {0, 1}n, as long as COL does not happen, the game of Sim proceeds the
same as Hybb. As we saw above, assuming COL does not happen the game R̂σb also proceeds the
same as Hybb. Thus, conditioned on COL not happening Sim’s game and R̂σb are also the same.
Therefore the probability PrHyb0

[COL] ≤ u2 · 2−n also bounds the statistical distance between the

simulation game of Sim and R̂σb . Finally note that for u ≤ 2n/3, it holds that u2 · 2−n ≤ 2−n/3.

22

6 Black-Box Sublinear Zero-Knowledge Arguments

In this section we prove Theorem 2.2 which follows from the following theorem.

Theorem 6.1. Let H = {hα : {0, 1}2m 7→ {0, 1}m}α∈{0,1}poly(m) be any s(m)-hard family of CRHFs

and s(m) = nω(1). Using H only as a black-box, one can construct a constant-round zero-knowledge
argument for NP with security parameter n = |x| (where x is the common input), negl(n) soundness
error and communication complexity poly(m) +m · polylog(n). Furthermore:

1. For the case of an honest verifier, the zero knowledge is statistical, the round complexity is 4
messages, and the protocol is public coin.

2. For the case of malicious-verifier zero knowledge, the round complexity is 5 messages.

Concluding Theorem 2.2 from Theorem 6.1. First suppose s(m) = mρ for ρ(m) = ω(1).
Then let ρ′(m) =

√
ρ(m) and let n = mρ′(m) = mω(1) which implies m = no(1) and s(m) =

mρ = nρ
′

= nω(1). Applying Theorem 6.1, the communication complexity will be poly(m) + m ·
polylog(n) = poly(no(1))+no(1) polylog(n) = no(1) which is sublinear in n. Now suppose we have an

exponentially secure CRHF; namely, s(m) = 2m
Ω(1)

. Let c be a constant c > 0 such that s(m) ≥ 2m
c

for large enough m and let m = log2/c(n) which implies s(m) ≥ 2log2(n) = nlog(n) = nω(1). Applying
Theorem 6.1, the communication complexity will be poly(m) +m · polylog(n) = poly(log2/c(n)) +
log2/c(n) polylog(n) ≤ polylog(n).

To prove Theorem 6.1 we use the following zero-knowledge PCP (see Definition 3.7 for the
definition of RQ-ZK PCPs).

Theorem 6.2 (Restricted-Query ZK PCPs for NP [DFK+92, ALM+98, AS98]). For any language
L ∈ NP, there is a 2-RQ-ZK PCP for L with these features:

• polynomial length,

• efficiently computable,

• O(1) alphabet size,

• completeness 1,

• soundness Ω(1),

• non-adaptive honest verifier,

• straight-line simulator (i.e. the simulator only gets the two queries q1, q2, asked from the first
and second half of the PCP, and simulates the answers).

Dwork et al. [DFK+92] proved Theorem 6.2 in the two-prover setting where the honest or
malicious verifiers ask one query from each of the provers in a non-adaptive way. Any such zero-
knowledge proof system can be directly converted into a 2-RQZK PCP by having the first (resp.
second) half of the PCP encode the answers of the first (resp. second) prover.

We will use a “direct product” version of the PCP of Theorem 6.2 formalized as follows.

23

Definition 6.3 (Direct Product of PCPs). Let R be a relation for a promise language L and let
Π1 = ({π1

x∈L,w∈R(x)},V1) and Π2 = ({π2
x∈L,w∈R(x)},V2) be two (randomized) PCPs for L (and

same relation R). We define the PCP Π = Π1 × Π2 = ({πx∈L,w∈R(x)},V), as the direct product of
Π1,Π2 as follows:

• Every π ← πx∈L,w∈R(x) is sampled by independently sampling π1 ← {π1
x∈L,w∈R(x)} and

π2 ← {π2
x∈L,w∈R(x)} and taking the concatenation π = (π1 | π2).

• The verifier V, given oracle access to π = (π1 | π2), runs two independent instances of V1 and
V2 where Vi accesses πi. V accepts if both of V1 and V2 accept.

We also define Π2 = Π×Π and Πi = Π×Πi−1 recursively.

Remark 6.4 (Direct Product vs. Parallel Repetition). The direct product of PCPs as defined in
Definition 6.3 is different from the parallel repetition of PCPs. The latter preserves the number of
queries by “combining” the parallel queries. It is known that parallel repetition of PCPs might not
decrease the soundness error optimally [For89b, FV02], since the verifier of direct product PCPs
run independent verifications, as stated in the next lemma, in direct produc PCPs the soundness
error decreases optimally .

Lemma 6.5 (Properties of Direct Product of PCPs). Let L ∈ NP, R be a relation for L, and
k = poly(n) where n is the length of the PCP Π = ({πx∈L,w∈R(x)},V). Then:

• Πk has k · poly(n) = poly(n) length.

• If Π is efficient, so is Πk.

• Πk has the same alphabet as that of Π and its number of verifier queries is k times that of Π.

• If Π has completeness 1, so does Πk.

• If Π has soundness error δ, then Πk has soundness error δk.

• If Π is non-adaptive, so is Πk.

• If Π is HV-ZK (resp. with a straight-line simulator), then Πk is also HV-Zk (resp. with a
straight-line simulator).

• If Π is u-RQ-ZK (resp. with a straight-line simulator), then Πk is also (k · u)-HV-Zk (resp.
with a straight-line simulator).

We derive the following corollary follows from Theorem 6.2 and Lemma 6.5 by taking the PCP
of Theorem 6.2 to the power log2(n)/2.

Corollary 6.6 (RQ-ZK PCP for NP with Negligible Sourness Error). Let u = log2(n). For any
language L ∈ NP, there is a u-RQ-ZK PCP for L with these features:

• polynomial length,

• efficiently computable,

• O(1) alphabet size,

24

• completeness 1,

• soundness error (1− Ω(1))u/2 = negl(n),

• non-adaptive honest verifier.

• straight-line simulator (that gets the set of all queries and simulates their answers).

Note that by the definition of u-RQ-ZK PCPs, if one divides the PCP of Corollary 6.6 into u
equal blocks, the honest verifiers of this PCP only asks one query from each block. This is the case
also for the malicious verifiers whose views are statistically simulated by the straight-line simulator.

6.1 Black-Box Sublinear Honest-Verifier ZK Arguments for NP

In this subsection, we prove Part 6.1 of Theorem 6.1.
Now we can describe our basic black-box sublinear HV-ZK argument whose analysis proves

Part of Theorem 6.1. Our construction simply uses the PCP of Corollary 6.6 in the basic 4-
message argument construction of Kilian (which does not involve ZK). We use the statistically-
hiding commitment scheme of [DPP97] to first statistically hide the bits of the PCP. The formal
description of our protocol follows.

Construction 6.7 (Black-Box Sublinear HV-ZK Argument for NP). Setup: The language L is
in NP and the prover Parg is given a witness w for x ∈ L where x is the common input between
(Parg,Varg) and the security parameter is n = |x|. H = {hα : {0, 1}2m 7→ {0, 1}m}α∈{0,1}poly(m) is a

family of shrinking hash functions which is s(m)-hard and s(m) = nω(1). Π = ({πx∈L,w∈R(x)},Vpcp)

is the PCP of Corollary 6.6 of length N . We also let u = log2(n).

1. Sample the Hash Function. The verifier samples α← {0, 1}poly(m) as an index of hα ∈ H,
and sends α to the prover.

2. Committing to PCP. The prover behaves as follows:

(a) Sample the PCP. Using the witness w and private randomness, the prover samples
π ← {πx∈L,w∈R(x)}. Let π = (a1, . . . , aN) where ai is a PCP answer to query i ∈ [N].

(b) Hide the PCP Bits. Using the sampled hash function hα as the index of the hash
function, the prover commits to each of the answers ai independently to get Ci = C(ai)
using Construction 3.21.

(c) Hash Down the PCP. The prover uses a Merkel hash-tree to hash the Boolean string
(C1, . . . , CM) into a single block C of length |C| = m as follows: First pad (C1, . . . , CM)
into m · 2t bits and let (Ct1, . . . , C

t
2t) be the result where |Ctj | = m. Then for “tree layer”

i = t, t− 1, . . . , 1 and for every j ∈ [2i] let Ci−1
j = hα(Ci2j−1, C

i
2j). Finally take C = C0

1 ,
and send C to the receiver.

3. Sending the PCP Queries. The verifier Varg runs the verifier Vpcp of the PCP Π to get
the queries (q1, . . . , qu) and sends them to the prover.

4. Answering the Challenges. The prover rejects if qi is not asked from the i’th block of π
(when π is divided into u equal blocks). Then for each query q ∈ {q1, . . . , qu} the prover sends

25

the following pieces of information to the verifier (all in parallel). (1) The decommitment
Dq for the commitments Cq (where q ∈ [N]) that includes aq and the randomness used in
generating Cq. (2) It reveals the preimages of all the hash values on the path of the Merkel
tree from Ctj to C = C0 for any Ctj that intersects Cq. This, for every such j, consists of two
blocks from each layer i ∈ [t] of the hash-tree.

5. Final Verification. The verifier Varg first makes sure that the revealed decommitments and
the hash preimages are consistent (also with the received message C) and rejects otherwise.
Then it runs Vpcp on the query-answer pairs (q1, aq1), . . . , (qu, aqu) and rejects iff Vpcp rejects.

Now we analyze the properties of the argument system of Construction 6.7.

Round Complexity, Completeness, and Communication Complexity. The round com-
plexity of the protocol is clearly 4. The perfect completeness of the protocol follows from the
completeness of the used PCP and commitment scheme. The first message is of length poly(m).
The second message of the prover is of length m. The third message of the verifier is of length
u · log(N) = u · O(log n). The final message of the prover is of size O(u ·m log n). Therefore the
total communication is of size poly(m) +m · polylog n.

Computational Soundness. The proof of the computational soundness of our scheme is iden-
tical to the proof of the soundness of the basic 4-message construction of Kilian [Kil92]. Roughly
speaking, the soundness follows from (1) the soundness of the PCP Π, (2) the computational
binding of the commitment scheme of Theorem 3.22, and (3) the collision-resistance of the hash
function H. Barak and Goldreich [BG02] and Micali [Mic00] gave gave proofs for the soundness
of such protocol, but for sake of completeness here we give a proof that is similar to the “chain
extraction” algorithm of [MMV13].

Lemma 6.8. Construction 6.7 is computationally sound.

Proof. Suppose P̂arg is a prover that succeeds in convincing Varg with nonnegligible probability ε.

We will show how to use P̂arg as an oracle in a poly(n/ε)-time security reduction R that either finds
a collision in H or finds a PCP that convinces Vpcp with nonnegligible probability ε/4 − negl(n)
(which is a contradiction if x 6∈ L).

The reduction R starts by sampling and fixing α ← {0, 1}poly(m) as the index of the hash
function and getting a commitment C from the prover P̂arg. By an averaging argument, with

probability at least ε/2 over fixing (α,C), the adversary P̂arg still can convince the verifier Varg

with probability ≥ ε/2. In the following we will assume that the sampled (α,C) has this property.
Now the reduction tries to “extract” a PCP π̂ from P̂arg that convinces Vpcp with probability

ε/4 − negl(n) as follows. Let δ = ε/(4N) and k = n/δ. The reduction simply runs k independent
instances of the verifier Varg using the same fixed first message α. For every PCP query q ∈ [N], if
any of the k executions of Varg leads to an accept by asking the query q (as one of its u queries)
we store the decommitted PCP answer aq as the answer to the query q.

First note that, the probability of ever extracting two different answers aq 6= a′q for the same
query q is negligible, because by the definition of a Merkle Tree and the binding property the
commitment of Construction 3.21 proved in Theorem 3.22, any such inconsistent openings can be
efficiently turned into a collision for the hash function H which is assumed to be nω(1)-hard collision

26

resistant. So in the following we assume that there will not be any inconsistent extracted PCP
answers.

For the fixed (α,C), call q ∈ [N] a heavy query, if Pr[Varg asks q and accepts] ≥ δ. Let QH be
the set of heavy queries and QL = [N] \ QH be the set of light queries. The probability of R not
extracting an answer for a q ∈ QH is at most 1 − (1 − δ)n/δ < 1 − 2n. Thus, with probability at
least 1−N2n = 1− negl(n), PCP answers will be extracted for all of QH .

Let π̂ be a PCP constructed as follows: for every q ∈ QH , it answers the extracted answer aq, and
for all other queries it answers ⊥. Now, let ρpcp be the probability of Vpcp accepting π̂, and let ρarg
be the probability of Varg accepting the interaction with P̂ without asking any query q ∈ QL. Since
the probability of extracting inconsistent answers is negligible, it holds that ρpcp ≥ ρarg − negl(n).
Now we show that ρarg cannot be too small.

Claim 6.9. ρarg ≥ ε/4.

Proof. For the fixed α,C, by the definition of QH and QL, for every fixed q ∈ QL the probability
of Varg accepting while asking q is at most δ. Since we already assumed that Varg accepts with
probability at least ε/2, by a union bound it follows that she will accept without asking any heavy
queries is at least ε/2−Nδ = ε/2− ε/4 = ε/2.

By the claim above we get ρpcp ≥ ε/4− negl(n) which is nonnegligible if ε is nonnegligible.

Statistical Honest-Verifier Zero-Knowledge. In the following we will describe the simulator
Simarg for the case of honest-verifier, and prove that it is a statistical simulator.

• Simulator’s Algorithm. Since we are in the honest verifier regime, the simulator Simarg

can choose the verifier PCP queries itself from their right distribution and use the simulator
Simpcp of the PCP Π to generate their answers. Namely, Simarg samples the index of the hash
function α← {0, 1}poly(n) and chooses a random seed rpcp for the PCP verifier Vpcp to get the
PCP queries (q1, . . . qu) determined by rpcp. Then it invokes the straight-line (statistical) PCP
simulator Simpcp to generate the answers (aq1 , . . . , aqu) for the sequence of queries (q1, . . . , qu).
Then, it builds a “malformed” PCP π̂ as follows: For every query q ∈ [N], if q ∈ {q1, . . . , qu},
use the simulated answer aq, otherwise use aq = ⊥ where ⊥ is a special symbol in the PCP
alphabet. Using the PCP π̂, the simulator follows the protocol honestly according to the
honest prover Parg by first sending the commitment C to the PCP π̂ and then answering the
(already fixed) sequence of challenges q1, . . . , qu.

• Simulator’s Analysis. We claim that the simulated transcript is statistically close to the
view of the honest verifier in Construction 6.7. This, roughly speaking, follows from the
statistical quality of the simulated PCP answers by Simpcp and the statistical hiding of the
commitment scheme of Theorem 3.22. More formally fix the first message α as the index of
the hash function. Let

WR = ((q1, . . . , qu), (Dq1 , . . . , Dqu), (C1, . . . , CN))

be the random variable in a real execution of the protocol that consists of the verifier’s queries,
commitments to answers of the (honestly generated) PCP π, and the decommitments to the
u queries. Let WS be another random variable that defined similarly to WR, but based on the
malformed simulated PCP π̂. By statistical simulation of the answers to q1, . . . , qu, it follows

27

that (q1, . . . , qu), (Dq1 , . . . , Dqu) are statistically close between WR and WS . Moreover, by the
statistical hiding property of the commitment scheme of Theorem 3.22 for every hash function
(as a first message) the random variables WR and WS remain statistically close even when
we append the commitment to the un-queries PCP answers to (q1, . . . , qu), (Dq1 , . . . , Dqu).
Moreover, other messages that the verifier receives from the prover are uniquely determined
by the random variables WR and WS . Since the statistical distance cannot increase by apply-
ing the same (even randomized) function to two random variables, therefore the simulator’s
output is indeed statistically close to the view of the verifier in an actual interaction.

Remark 6.10. We note that in the analysis of the statistical zero-knowledge property of the
protocol of Construction 6.7, we did not need the full power of query-restricted ZK property of the
PCP, and honest-verifier ZK PCPs (with the extra features mentioned in Corollary 6.6) are indeed
sufficient.

Unconditional Sublinear ZK Arguments in the Random Oracle Model. We observe
that because our construction above only uses CRHFs as a black box, by replacing the CRHF
with a random oracle, we get an (unconditional) ZK arguments for NP with polylogarithmic
communication complexity. Furthermore, since the protocol is public-coin, has negligible soundness
error, and has constant rounds, by applying the Fiat-Shamir [FS86] transformation, we obtain
non-interactive statistical zero-knowledge arguments for NP with polylogarithmic communication
complexity and negligible soundness error in the random oracle model. Pointcheval and Stern
[PS96] proved that such transformation leads to sound arguments when using a random oracle. To
prove the zero-knowledge we cannot follow the footsteps of our honest-verifier simulator anymore,
because the PCP challenges (queries) randomly depend on the commitment C. However, using
the “programmability” of the random oracle, we can still simulate the view of the honest verifier
as follows. The simulator will use a completely malformed PCP (with all answers equal to ⊥) to
compute the commitment. However, this commitment is statistically hiding the PCP answers, and
so given the PCP queries, information theoretically it is possible to decommit into any answers
(e.g. answers generated by the straight-line simulator Simpcp). This is efficiently possible as long as
the simulator can program the random oracle and choose to open a commitments to any answer.

6.2 Black-Box Sublinear Malicious Verifier ZK Arguments for NP

In this subsection, we prove Part 2 of Theorem 6.1 to achieve (computational) zero-knowledge
against malicious verifiers as well. Our protocol is an extension of the protocol of Construction 6.7.
At a high level, the idea is to use a variant of the Goldreich-Kahan (GK) [GK96] technique: Namely,
we ask the verifier to commit to its queries in advance, and then open these queries later. There
is a fundamental difficulty in directly applying the same analysis as that of [GK96] which yields a
proof system, whereas in our setting we can only hope to achieve an argument system. What we
show is that, nevertheless, by having the verifier use a statistically hiding commitment to commit
to its queries initially, and then having the prover use another statistically hiding commitment to
commit to the PCPs, everything still works out.

Construction 6.11 (Black-Box Sublinear Malicious Verifier ZK Argument for NP). The setup is
the same as that of Construction 6.7.

1. The prover samples an index α̃← {0, 1}poly(m) of hα̃ ← H and sends α̃ to the verifier.

28

2. The verifier Varg executes an independent instance of the PCP verifier Vpcp to get the queries
(q1, . . . , qu). Let (b1 . . . bv) = (q1 . . . qu) be a Boolean representation of the queries (note that
|qi| = logN = O(log n), and so v = O(log3 n)). Using the hash index α̃ in commitment
scheme of Theorem 3.22, the verifier commits to all bits b1, . . . , bv independently and gets the
commitments (C̃1, . . . , C̃v). These commitments are sent to the prover.

3. In the rest of the protocol, the verifier and the prover engage in executing the protocol of
Construction 6.7 with the following modifications:

• Instead of sampling the PCP queries in Step 3, the verifier will send the already sam-
pled PCP queries q1, . . . , qu along with the relevant decommitments D̃1, . . . , D̃v for the
commitments C̃1, . . . , C̃v to the bits (b1 . . . bv) = (q1 . . . qu).

• When the prover receives the queries, q1, . . . , qu and decommitments D̃1, . . . , D̃v, in
Step 4, the prover Parg first makes sure that the decommitments are consistent with the

commitments C̃1, . . . , C̃v, and only in this case answers the PCP challenges (by sending
the relevant decommitments and hash preimages).

Round Complexity, Completeness, and Communication Complexity. The Commitments
sent by the verifier in Step 2 can be sent along the first message of the following sub-protocol (of
Construction 6.7). So the total number of messages are 5. The perfect completeness of the protocol
follows from the completeness of the used PCP and commitment scheme. The communication
complexity overhead compared to that of Construction 6.7 is the verifier’s commitments to v =
O(log3 n) bits, each takes O(m) plus the opening to these commitments that also takes O(m) bits
each. So the total communication complexity remains poly(m) +m× polylog(n).

Computational Zero-Knowledge. The zero-knowledge property of our scheme follows the orig-
inal GK analysis. For sake of completeness, here we sketch the GK analysis. The simulator simply
proceeds in the protocol acting as the prover, but commits to an arbitrary string instead of com-
mitting to an actual PCP. If the verifier refuses or fails to open her commitment to any of its PCP
queries, then the simulator aborts (similarly to what the honest prover would do). However, if
the verifier decommits her PCP queries successfully, then the simulator rewinds the verifier back
to the point after she committed to her queries. The simulator now “knows” the PCP queries
committed by the verifier (more precisely, by continuing the interaction, the verifier cannot de-
commit to anything different, or else the collision-resistance of the hash function could be broken
efficiently). The simulator then runs the PCP simulator to obtain the simulated PCP answers.
She can always do so, because the prover enforces the restriction on the places that the queries are
being asked and for such set of queries the PCP simulator’s output is statistically close to actual
PCP answers. The simulator uses the simulated answers (and puts ⊥ for other answers) in the
PCP, and follows Prover’s strategy using this PCP. The simulator keeps rewinding the verifier till
the verifier opens the commitments successfully and the simulator can finish the simulation. Since
the prover/simulator commitments are statistically hiding, the distribution of the commitments
after rewinding is statistically close to the distribution of the commitments before rewinding. This
means that the probability that the verifier properly opens her commitments will not change after
the rewinding (by more than a negligible), so the average number of rewindings is O(1).

29

Intuition behind Computational Soundness. The main novelty of our approach lies in the
proof of (computational soundness). In the original GK transformation, soundness was easy to argue
because the prover is statistically bound to its commitments, whereas the verifier is statistically
hiding the commitment to her queries. Thus, a simple statistical argument showed that a cheating
prover must get caught with high probability. In our setting, however, since both sides are only
computationally bound to their commitments, in order to rule out a cheating prover that succeeds
too often, we need to give a computationally efficient reduction that converts such a prover into
an entity that breaks the binding property of our commitment scheme. However, in order to
“catch” the prover, the reduction will need to be able to efficiently open the verifier’s commitment
to its query in multiple ways8. Of course, by assumption, it is not possible to efficiently open
our commitments in multiple ways. We resolve this deadlock by using non-uniformity: We non-
uniformly fix a prefix to the protocol including and up to the verifier’s commitment to the bits of
its query along with openings of each commitment to both 0 and 1, such that the cheating prover’s
overall success probability is not affected by this non-uniform fixing. Then, since the reduction can
now open the query to be anything it likes, we can immediately apply the soundness argument for
Kilian’s protocol to finish the proof of soundness.

Analysis of Computational Soundness. To argue computational soundness, we present a
non-uniform reduction of the soundness of Construction 6.11 to the soundness of the basic Con-
struction 6.7. Let P̃ be a cheating prover that is able to convince the honest verifier to accept x
with noticeable probability ε while x /∈ L. We will show how to derive a malicious prover P̂ for
Construction 6.7 that succeeds with probability ε− negl(n).

We consider an inefficient verifier Ṽarg who is the same as Varg with the following modifications:

• Instead of committing to (b0 . . . bv) = (q1 . . . qu), Ṽarg simply commits to v zeros (indepen-

dently) and gets (C̃1, . . . , C̃v). Then, for every i ∈ [v], Ṽarg samples two commitment random

seeds r0
i , r

1
i where rbi is a uniformly sampled random seed that is consistent with opening C̃i

into the bit b. (Ṽarg would abort if such random seed does not exist).

• When Ṽarg is asked to open the commitments (C̃1, . . . , C̃v):

1. Ṽarg samples PCP queries (q1, . . . , qu) represented in Boolean as: (b1 . . . bv) = (q1 . . . qu).

2. Ṽarg returns the decommitments (D̃1, . . . , D̃u) where D̃i = (bi, r
bi
i).

Claim 6.12. The transcript of the transcript of the interaction when the verifier is Varg is statis-

tically close to the case the verifier is Ṽarg.

Proof. This directly follows from the statistical hiding property of the commitment scheme Con-
struction 3.21 as proved in Theorem 3.22. More formally, for every i ∈ [v], the commitment C̃i

8We stress that if this were not the case, it could reflect a real vulnerability in the protocol and not just a problem
with the proof. Namely, it could reflect a malleability problem that allows the prover to somehow maul the verifier’s
commitment and opening into a commitment and opening of the PCP in a way that satisfies the verifier. Our proof
rules this out. At a more intuitive level (for specialists in this area), the reason such a malleability attack does not
arise is because the prover must choose the hash function underlying the verifier’s commitment scheme before the
verifier chooses the hash function that will underly the prover’s commitment. Because an honest verifier will choose
this hash function at random, and by this time the prover has already chosen the other hash function, the cheating
prover will no longer have the power to maul anything that the verifier provides.

30

where the verifier commits to 0 is statistically close to where she commits to some bit b ∈ {0, 1}.
By Lemma 3.1, the joint distribution of (C̃1, . . . , C̃v) is also statistically close when comparing the
execution of Varg to that of Ṽarg. Finally, we can always pretend (as a mental experiment) that Varg

also chooses the randomness ri needed for the decommitment D̃i, after sending the commitment C̃i.
Thus, the statistical distance between two games cannot increase in the decommitment step.

The above claim shows that P̃ succeeds in convincing Ṽarg with probability ε − negl(n) = ε̃.

By an averaging argument, we can always fix the randomness r of P̃ (that also fixes α̃), the
commitments (C̃1, . . . , C̃v), and the random seeds (r0

1, r
1
1), . . . , (r0

v , r
1
v) so that when P̃ uses r as

its randomness (denoted by P̃r) and Ṽarg uses the commitments (C̃1, . . . , C̃v) and random seeds

(r0
1, r

1
1), . . . , (r0

v , r
1
v), P̃r still succeeds to convince Ṽarg with probability ≥ ε− negl(n). Using these

fixed strings as nonuniform advice, we efficiently construct a prover P̂ that uses P̃r as a black-box
and convinces the verifier of Construction 6.7 to accept with the same probability ε̃ as follows.

• Fixing r, (C̃1, . . . , C̃v), (r
0
1, r

1
1), . . . , (r0

v , r
1
v) has already fixed the first message P̃r sends (i.e.

α̃) and the commitment messages it receives.

• It starts P̂ receives the hash index α and forwards it to P̃r (along with the already fixed
commitments (C̃1, . . . , C̃v)).

• P̂ receives the commitment C from P̃r and forwards it to the verifier.

• P̂ receives the PCP queries (q1 . . . qu) = (b1 . . . bv) from the verifier. For each bi, it lets
D̃i = (bi, r

bi
i) and sends the decommitments D̃1, . . . , D̃v to P̃r.

• P̂ forwards the last message of P̃r to the verifier.

It is immediate that the behavior of P̂ when interacting with the external verifier of Construc-
tion 6.7 is identical to the behavior of P̃r when interacting with Ṽarg. Therefore, P̂ also manages
to succeed with nonnegligible probability ε̃.

Acknowledgement. We thank Vipul Goyal for collaboration at an early stage of this work.
We would also like to thank Kai-Min Chung and Rafael Pass for insightful discussions.

References

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be rec-
ognized in two rounds. Journal of Computer and System Sciences, 42(3):327–345,
1991. Preliminary version in FOCS’87.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, 1998. Preliminary version in FOCS’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new charac-
terization of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in
FOCS’92.

31

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT,
pages 722–739, 2011.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. In FOCS, pages 16–25, 1990.

[BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations in polylogarithmic time.
In STOC: ACM Symposium on Theory of Computing (STOC), 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 103–112, 1988.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. pages
194–203, 2002.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Advances in Cryptology – CRYPTO ’88, volume 403 of Lecture Notes in Computer
Science, pages 37–56. Springer, 1988.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In STOC, pages 113–
131, 1988.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short inter-
active proofs? Information Processing Letters, 25:127–132, 1987.

[CDSMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure one.
In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science,
pages 427–444. Springer, 2008.

[CDSMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple,
black-box constructions of adaptively secure protocols. In Omer Reingold, editor,
TCC, volume 5444 of Lecture Notes in Computer Science, pages 387–402. Springer,
2009.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In EUROCRYPT, pages 545–562, 2008.

[CLMP13] Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the power
of nonuniformity in proofs of security. In Proceedings of the 4th conference on Inno-
vations in Theoretical Computer Science, ITCS ’13, pages 389–400, New York, NY,
USA, 2013. ACM.

32

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low com-
munication 2-prover zero-knowledge proofs for NP. In CRYPTO, pages 215–227,
1992.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

[DMMQN13] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Implementing
resettable uc-functionalities with untrusted tamper-proof hardware-tokens. In TCC,
pages 642–661, 2013.

[DPP97] Damgard, Pedersen, and Pfitzmann. On the existence of statistically hiding bit
commitment schemes and fail-stop signatures. Journal of Cryptology, 10, 1997.

[DPP98] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical secrecy and
multibit commitments. IEEE Transactions on Information Theory, 44(3):1143–1151,
1998.

[For89a] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in Computing
Research: Randomness and Computation, 5:327–343, 1989.

[For89b] Lance Jeremy Fortnow. Complexity-theoretic aspects of interactive proof systems.
PhD thesis, Massachusetts Institute of Technology, Dept. of Mathematics, 1989.

[FRS94] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover
interactive protocols. Theoretical Computer Science, 134(2):545–557, 1994.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In CRYPTO, pages 186–194, 1986.

[FV02] Feige and Verbitsky. Error reduction by parallel repetition–A negative result. COM-
BINAT: Combinatorica, 22, 2002.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive
locking, zero-knowledge PCPs, and unconditional cryptography. In Tal Rabin, edi-
tor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 173–190.
Springer, 2010.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages 308–326.
Springer, 2010.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, 2000.

33

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy Rothblum. One-time programs. In
CRYPTO, Lecture Notes in Computer Science, pages 39–56. Springer, 2008.

[GMOS07] Vipul Goyal, Ryan Moriarty, Rafail Ostrovsky, and Amit Sahai. Concurrent statisti-
cal zero-knowledge arguments for NP from one way functions. In Kaoru Kurosawa,
editor, ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 444–
459. Springer, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.
Preliminary version in STOC’85.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(1):691–729, 1991. Preliminary version in FOCS’86.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[GOVW12] Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable statis-
tical zero knowledge. In Ronald Cramer, editor, TCC, volume 7194 of Lecture Notes
in Computer Science, pages 494–511. Springer, 2012.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Lance Fortnow and Salil P. Vadhan, editors, STOC, pages 695–704. ACM, 2011.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
Black-box constructions of protocols for secure computation. SIAM J. Comput,
40(2):225–266, 2011.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In In CRYPTO ’96, pages 201–215. Springer-Verlag,
1996.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152,
2009.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
PCPs. In Ronald Cramer, editor, TCC, volume 7194 of Lecture Notes in Computer
Science, pages 151–168. Springer, 2012.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In EUROCRYPT, Lecture Notes in Computer Science, pages 115–128.
Springer, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(STOC), pages 723–732, 1992.

34

[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In TCC, pages 327–342, 2010.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In STOC: ACM Symposium on Theory of Computing (STOC), 1997.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP (2), pages 536–547,
2008.

[Mei09] Or Meir. Combinatorial PCPs with efficient verifiers. In FOCS, pages 463–471. IEEE
Computer Society, 2009.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000. Preliminary version in FOCS’94.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, ITCS ’13, pages 373–388, New York, NY, USA, 2013. ACM.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In EUROCRYPT, pages 527–544,
2008.

[MV03] Daniele Micciancio and Salil Vadhan. Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 282–298. Springer, 2003.

[MX13] Mohammad Mahmoody and David Xiao. Languages with efficient zero-knowledge
PCPs are in SZK. In TCC, pages 297–314, 2013.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991. Preliminary version in CRYPTO’89.

[Oka96] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC),
pages 649–658. ACM Press, 1996.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and com-
mitments. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer
Science, pages 482–500. Springer, 2008.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Proceedings of the 2nd Israel Symposium on Theory of Computing
Systems, pages 3–17. IEEE Computer Society, 1993.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli
Maurer, editor, Advances in Cryptology—EUROCRYPT 96, volume 1070 of Lecture
Notes in Computer Science, pages 387–398. Springer-Verlag, 12–16 May 1996.

35

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in
Computer Science, pages 403–418. Springer, 2009.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages
1–20. Springer, 2004.

[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1999.

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM
Journal on Computing, 36(4):1160–1214, 2006. Preliminary version in FOCS’04.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In FOCS, pages 531–540. IEEE Computer Society, 2010.

A Omitted Proofs

Lemma 3.10 (Restated). For a constant k, let L1, . . . , Lk be a set of promise languages all in
SZK, and let F be a constant-size k-input formula with operations: complement, conjunction, and
disjunction as in Definition 3.2. Then F (L1, . . . , Lk) ∈ SZK.

Proof Sketch. We will use the following:

Theorem A.1 ([Oka96]). The class SZK is closed under complement.

Since k is constant, we just need to prove the claim for formulas which have only a single

operation, and then the lemma follows by an induction. Moreover since L1 ∨ L2 = L1 ∧ L1, we
just need to prove the claim for complement and conjunction operations. Theorem A.1 proves this
for the complement. To obtain L1 ∧ L2 ∈ SZK, given the input (x1, x2), the prover provides an
(interactive) SZK proof that x1 ∈ LY

1 and then (if the first interaction is accepted), he also provides
a SZK proof that x2 ∈ LY

2 . (More formally, the prover and the verifier start with an amplified
version of the original protocols with soundness error < 1/6, the soundness error of the sequential
composition in this case remains < 1/3). On the other hand, if either of x1 ∈ LN

1 , x2 ∈ LN
2 holds,

the corresponding interaction rejects with probability at least 2/3.

Lemma 3.16 (Restated). (Conditional Entropy to Statistical Distance). Suppose Supp(X) ⊆
{0, 1}n. Then it holds that EY←Y ∆((X | Y),Un) ≤

√
n−H(X | Y).

Proof. We use the following definition.

Definition A.2 (Kullback-Leibler Divergence). For random variables X,Y such that Supp(X) ⊆
Supp(Y), the Kullback-Leibler divergence is defined as KL(X,Y) = EX log(Pr[X=X]

Pr[Y=X]).

36

It can be verified by straightforward calculation that H(X) = n−KL(X,Un).
Pinsker’s inequality states that for any random variables X,Y, it holds that ∆(X,Y) ≤√

KL(X,Y). Applying Pinsker’s inequality to (X | Y) and Un for every fixed value of Y ← Y and
using Jensen’s inequality, we have:

E
Y←Y

∆(X | Y,Un) ≤ E
Y←Y

[
√
n−H(X | Y)] ≤

√
E

Y←Y
[n−H(X | Y)] =

√
n−H(X | Y)

Lemma 3.17 (Restated). (Statistical Distance to Conditional Entropy). For ε ∈ [0, 1] let H(ε) =
ε log(1/ε) + (1− ε) log(1/1−ε). Suppose ∆((X,Y), (X′,Y′)) ≤ ε and Supp(X)∪ Supp(X′) ⊆ {0, 1}n.
Then it holds that |H(X | Y)−H(X′ | Y′)| ≤ 4(H(ε) + ε · n).

To prove this lemma, we need the following:

Lemma A.3. Suppose ∆((X,Y), (X′,Y′)) ≤ ε and let Z = (X′′,Y) be a random variable dis-
tributed as follows. The component Y ← Y is sampled, and then X′′ conditioned on Y is distributed
similar to (X′|Y′ = Y). Then it holds that ∆((X,Y),Z) ≤ 2ε.

Proof. It is sufficient to show that ∆((X′,Y′),Z) ≤ ε, which is true because the second components
have statistical distance at most ε and the first components have statistical distance zero conditioned
on the second components being equal.

Proof of 3.17. We first prove the lemma for the case that Y,Y′ do not exist (i.e. ∆(X,X′) ≤ ε).
It is well known that in this case there is a random variable X which has a measure of 1− ε in both
of X and X′. Namely, one can think of a Boolean random variable b jointly distributed with X,X′

such that Pr[b = 0] = ε and (X | b = 1) ≡ X ≡ (X′ | b = 1). Based on this “decomposition” we
get:

H(X) ≥ H(X | b) ≥ (1− ε) H(X | b = 1) = (1− ε) H(X).

On the other hand it holds that

H(X) ≤ H(b)+H(X | b) = H(ε)+εH(X | b = 0)+(1−ε) ·H(X | b = 1) ≤ H(ε)+εn+(1−ε) H(X).

Namely, both of H(X),H(X′) are lower-bounded by (1− ε) H(X) an upper-bounded by H(ε) +
εn+ (1− ε) H(X), and therefore |H(X)−H(X′)| ≤ H(ε) + εn.

Now, using the result above, we prove the conditional case through a hybrid argument. Given
the two pairs of random variables (X,Y), (X′,Y′) define the hybrid random variable Z = (X′′,Y)
as defined in the statement of Lemma A.3. We claim that

1. |H(X′′ | Y)−H(X | Y)| ≤ 2(H(ε) + εn), and

2. |H(X′′ | Y)−H(X′ | Y′)| ≤ 2εn.

Using these two bounds, Lemma 3.17 follows by a triangle inequality.
We obtain the first bound as follows.

37

|H(X′′ | Y)−H(X | Y)| ≤ E
Y←Y

[
|H(X′′ | Y)−H(X | Y)|

]
≤ E

Y←Y

[
H(∆(X′′ | Y,X | Y)) + ∆(X′′ | Y,X | Y) · n

]
(by concavity of Entropy) ≤ H

(
E

Y←Y

[
∆(X′′ | Y,X | Y)

])
+ E
Y←Y

[
∆(X′′ | Y,X | Y)

]
· n

(by Lemma A.3) ≤ H(2ε) + (2ε) · n
(by concavity of Entropy) ≤ 2(H(ε) + ε · n).

To obtain the second bound we do as follows.

|H(X′′ | Y)−H(X′ | Y′)| =
∣∣∣ E
Y←Y

[
H(X′ | Y′ = Y)

]
− E
Y←Y′

[
H(X′ | Y′ = Y)

] ∣∣∣
=

∣∣∣∣∣∣
∑

Y ∈Supp(Y)∪Supp(Y′)

(
Pr[Y = Y]− Pr[Y′ = y]

)
·H(X′ | Y′ = Y)

∣∣∣∣∣∣
≤

∑
Y ∈Supp(Y)∪Supp(Y′)

∣∣Pr[Y = Y]− Pr[Y′ = y]
∣∣ · n

≤ 2∆(Y,Y′) · n

Lemma 3.13 (Restated). For any ε > 1/ poly(n), CEAε ∈ SZK.

Proof. We give a reduction from CEAε to CEA1, which is known to be SZK-complete [Vad06].
The reduction maps

(X,Y, r) 7→ ((X1, . . . ,X1/ε), (Y1, . . . ,Y1/ε), r/ε)

where for every i ∈ [1/ε], (Xi,Yi) is sampled identically to (X,Y) and independently of all other
components (i.e. by an independent copy of the circuit C). It is easy to see that

H((X1, . . . ,X1/ε) | (Y1, . . . ,Y1/ε)) =
1

ε
·H(X | Y).

B Using Locking Schemes in Bounded-Query ZK-PCPs

In this section we briefly sketch the results of [KPT97, DFK+92] which are relevant to us.
The proof of [DFK+92] for Theorem 6.2 was used by [KPT97] to show how to convert any

PCP for a language L (possibly out of NP) into another PCP for the same language L which is
zero-knowledge against running the honest verifier a few times independently. More formally let
Π′ = ({π′x},V′) be a PCP with the following properties:

1. For π′x ← π′x, |x| = n, the PCP length is at most |π′x| ≤ N .

38

2. V′ tosses O(logN) many random bits and asks O(1) PCP queries.

3. Π′ has completeness 1 and soundness error c′ < 1.

The PCP Π′ could be any PCP for NP of polynomial length [AS98, ALM+98], or a PCP
for NEXP of exponential length [BFL90]. Lemma 2.1 in [KPT97] shows that using the proof of
[DFK+92] for Theorem 6.2 and some elegant combinatorial tricks one can compile Π′ into a new
PCP Π = ({πx},V) with the following properties (k and m are two given parameters).

1. The length of the new PCP is at most |πx| ≤ poly(N, k,m).

2. V uses O(logN + log k + logm) many random bits, and asks O(1) PCP queries.

3. Π has completeness 1 and soundness error at most 1− 1/Θ(k3).

4. Suppose Vm is a verifier who runs m independent copies of V over a given PCP and accepts
if all of them accept. Then the view of Vm, denoted as View〈πx,Vm〉, can be simulated by
an efficient straight-line simulator Sim up to statistical error 1/mk.

Note that running Vm (i.e. m independent copies of V) will decrease the soundness error from
1 − 1/O(k3) to 2−Θ(m/k3). Moreover, if one set the compiler’s parameter m = nω(1) the new PCP
becomes statistically zero-knowledge against any Vpoly(n) verifiers. [KPT97] shows how to use a
locking scheme to essentially enforce any malicious poly(n)-query verifier to gain its information
from the PCP oracle similarly to Vpoly(n) (see Construction B.2 below).

Unfortunately [KPT97] does not give a full description of the exact modifications one needs to
do to the proof of the main result of [DFK+92] to get the compiler above. In particular, [KPT97]
works with Boolean PCPs (of binary alphabets), while the result of [DFK+92] uses O(1) alphabet
size. We first describe the result of [DFK+92] and then explain how it can be concluded there.

Theorem B.1 (Weakly-Sound Bounded-Query ZK-PCP for NP —Implicit in [DFK+92]). For
every language L ∈ NP, there is a PCP Π = (P = {πx},V) for L such that:

• The PCP length is |πx| ≤ poly(|x|, k) for every πx ← πx, and its alphabet size is O(1).

• The honest verifier V asks only two PCP queries.

• Completeness one: If x ∈ L, then Prπ←πx [Vπ(x) = 1] = 1.

• Weak Soundness: For every x 6∈ L, and every oracle π̂ it holds that

Pr[Vπ̂(x) = 1] < 1−O(1/k).

• k-Query Zero-Knowledge: There is an efficient simulator Sim which, up to a negligible statis-
tical distance, simulates the view of every malicious verifier V̂ who (perhaps adaptively) asks
at most k PCP queries. Moreover, this simulator is straight-line and does not need to know
the randomness of V in order to simulate its view.

39

In what follows we point out the minor modifications required for the proof of [DFK+92] to get
Theorem B.1 above and (use its proof to get) the compiler of [KPT97]: In the proof of Theorem 6.2
the authors of [DFK+92] start from any language L ∈ NP and an input X and apply the PCP
construction of [ALM+98, AS98] to get a 3-SAT instance XSAT such that (1) if X ∈ L, then all the
clauses of XSAT are satisfiable, and (2) if X 6∈ L, then a constant fraction of the clauses of XSAT

are false, no matter how the Boolean variables (x1, . . . , xn) in XSAT are set. At the beginning of
their proof, [DFK+92] substitutes any Boolean variable xi of XSAT with the exclusive-or of three
random Boolean variables conditioned on xi = x1

i ⊕x2
i ⊕x3

i . By this transformation, if one asks the
value of any two variables (from the larger set of new variables), they gain no information about
the assignment of (x1, . . . , xn) because the returned answers are totally random. All one has to do
to make the compiler of [KPT97] work, is to add more dummy variables as follows. Recall that
k is one of the parameters of the compiler. For each Boolean variable xi, we would substitute it
with the exclusive-or of k new random Boolean variables conditioned on xi = x1

i ⊕ . . . ⊕ xki . This
minor modification allows [KPT97] to use the proof of [DFK+92] to conclude the existence of their
compiler. (The other parameter of the compiler, m, comes from the combinatorial arguments of
[KPT97] itself.)

Finally, for sake of completeness we also describe the construction of [KPT97] in which they use
locking schemes to convert the compiled PCP above into variants of ZK-PCPs (i.e. a bounded-query
PCP for NP and an inefficient PCP for NEXP).

Construction B.2 ([KPT97]). Let Π = ({πx},V) be a PCP of length N where the verifier V
tosses t random bits and asks q PCP queries. Also let Σ = ({σx}, R) be a locking scheme for the
message space {0, 1}t and input/output length (i.e. security parameter) `(n) to be chosen later. In
the new PCP ΠKPT = ({πKPT

x },VKPT) the PCP oracle πKPT first generates π ← πx from scheme
Π and then encodes it in three parts (PCP,PER,MIX) described below:

1. PCP: Let π = [π1, . . . , πN]. For each i ∈ [N], generate a locking oracle and key (Locki,Keyi)
containing πi and put PCP[i] = Locki (as the i-th answer block in PCP).

2. PER: Generate a random permutation rand over {0, 1}t and for each r ∈ {0, 1}t generate a
locking oracle and key (Lockr,Keyr) with the content rand(r) and put PER[r] = Lockr.

3. MIX: If for the randomness r ∈ {0, 1}t, the verifier of Π chooses to read the blocks πi1 , . . . , πiq ,
then we put MIX[rand(r)] = [r,Keyr,Keyi1 , . . . ,Keyiq].

Remark B.3 (Choosing `(n)). Depending on whether the final goal is an efficient bounded-query
ZK-PCP for L ∈ NP or that we want a ZK-PCP for some L ∈ NEXP, different security parameters
`(n) for the locking scheme are employed in Construction B.2. (n was used as the security parameter
of our locking scheme in Construction 5.2 should not be confused with the input length n = |x|
of the PCP construction here.) For the case of L ∈ NP one can use `(n) = c · log(n) for a large
enough constant c (which depends on the bounded-query parameter of the verifier), and for the
case of L ∈ NEXP one can use `(n) = n.

In Section 4 of [KPT97] the authors show that if one starts from a PCP which is zero-knowledge
only against m random executions of the verifier (this PCP comes as the result of their compiler
described above), then Construction B.2 can convert it into a new PCP that is zero-knowledge
against general verifiers (which are bounded-query ZK-PCPs in the case of L ∈ NP or inefficient
PCPs in the case of L ∈ NEXP). See Section 4 of [KPT97] for the details.

40

	Introduction
	Our Results and Techniques
	Efficient ZK-PCPs are Limited to SZK
	Motivation and Related Work
	Technique

	Simplifying Bounded-Query ZK-PCPs
	Motivation and Related Work
	Technique

	Black-Box Sublinear ZK Arguments
	Motivation and Related Work
	Technique

	Preliminaries
	Promise Problems
	Proof Systems and Zero Knowledge
	Shannon Entropy and Related Computational Problems
	Statistical Distance vs Conditional Entropy
	Commitments from Collision Resistance

	Languages with Efficient ZK-PCPs are in SZK
	Proof of Claim 4.3: the Case x LY
	Proof of Claim 4.3: the Case x LN

	A Combinatorial Locking Scheme
	Black-Box Sublinear Zero-Knowledge Arguments
	Black-Box Sublinear Honest-Verifier ZK Arguments for NP
	Black-Box Sublinear Malicious Verifier ZK Arguments for NP

	Omitted Proofs
	Using Locking Schemes in Bounded-Query ZK-PCPs

