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Abstract

Recently, Mahloujifar and Mahmoody (TCC’17) studied attacks against learning algorithms using

a special case of Valiant’s malicious noise, called p-tampering, in which the adversary gets to change

any training example with independent probability p but is limited to only choose ‘adversarial’ examples

with correct labels. They obtained p-tampering attacks that increase the error probability in the so called

‘targeted’ poisoning model in which the adversary’s goal is to increase the loss of the trained hypothesis

over a particular test example. At the heart of their attack was an efficient algorithm to bias the average

output of any bounded real-valued function through p-tampering.

In this work, we present new biasing attacks for biasing the average output of bounded real-valued

functions. Our new biasing attacks achieve in polynomial-time the the best bias achieved by MM16

through an exponential time p-tampering attack. Our improved biasing attacks, directly imply improved

p-tampering attacks against learners in the targeted poisoning model. As a bonus, our attacks come with

considerably simpler analysis compared to previous attacks.

We also study the possibility of PAC learning under p-tampering attacks in the non-targeted (aka

indiscriminate) setting where the adversary’s goal is to increase the risk of the generated hypothesis (for

a random test example). We show that PAC learning is possible under p-tampering poisoning attacks

essentially whenever it is possible in the realizable setting without the attacks. We further show that PAC

learning under ‘no-mistake’ adversarial noise is not possible, if the adversary could choose the (still

limited to only p fraction of) tampered examples that she substitutes with adversarially chosen ones.

Our formal model for such ‘bounded-budget’ tampering attackers is inspired by the notions of (strong)

adaptive corruption in secure multi-party computation.
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1 Introduction

Valiant in In his seminal work [Val84] Valiant introduced the Probably Approximately Correct (PAC) model

of learning that triggered a significant amount of work around the theory of machine learning.1 An important

characteristic of learning algorithms is their ability to cope with noise.

Valiant also initiated a study of adversarial noise [Val85] in which each incoming training example is

chosen, with independent probability p, by an adversary. Since no assumptions are made on such modified

examples, this type of noise is called malicious. Subsequently, [KL93] essentially proved impossibility of

PAC learning under such malicious noise by heavily relying on the existence of mistakes (i.e., wrong labels)

in adversarial examples given to the learner under a carefully chosen distribution. Bshouty, et al.[BEK02]

studied a closely related model in which the adversary is allowed to make its choices based on the full

knowledge of the original training examples. While the results of [KL93] make use of particular patholog-

ical distributions from which the malicious samples are drawn2, in this work we are interested in studying

attackers against learners in a setting where the attackers do not have any control over the the original

distributions, but they can choose the malicious distribution in certain (still restricted) ways.

Poisoning attacks. Impossibility results against learning under adversarial noise could be seen as attacks

against learners in which the attacker injects some malicious training examples to the training set and tries

to prevent the learner from finding a hypothesis with low risk. Such attackers, in general, are studied in

the context of poisoning (a.k.a causative) attacks [ABL14, XBB+15, STS16] in which an adversary aims

at directing a learner towards generating a hypothesis that performs badly during the test phase.3 Such

attacks could happen naturally when a learning process happens over time [RNH+09b, RNH+09a] and

1The original model studies learnability in a distribution-free sense, it also make sense for classes of distributions; [BI91].
2This is similar to [BEHW89, EHKV89] that deals with the learning’s sample complexity
3At a technical level, the malicious noise model also allows the adversary to know the full state (and thus the private randomness)

of the learner, while this knowledge is not given to the adversary of the poisoning attacks, who might be limited in various other

ways as well.
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the adversary has some noticeable chance of injecting or substituting malicious training data in an online

manner. A stronger form of poisoning attacks are the so called targeted (poisoning) attacks [STS16], where

the adversary performs the poisoning attack while she has a particular test example in mind, and her goal

is to make the final generated hypothesis fail on that particular test example. While poisoning attacks

against specific learners were studied before [ABL14, XBB+15, STS16], the recent work of Mahloujifar

and Mahmoody [MM17] presented a generic black-box targeted poisoning attack that could adapt to apply

to any learner, so long as there is an initial non-negligible error over the target point.

p-tampering attacks. The work of [MM17] proved their result using a special case of Valiant’s mali-

cious noise, called p-tampering, in which the attacker can only use mistake-free malicious noise. Namely,

similar to Valiant’s model, any incoming training example might be chosen adversarially with indepen-

dent probability p (see Definition 5 for a formalization). The difference between p-tampering noise and

Valiant’s adversarial noise (and even from all of its special cases studied before [Slo95]) is that whenever

the p-tampering adversary is allowed to tamper with a particular example, it can only choose valid tampered

examples (to substitute the original examples) that have correct labels.4 As such, although the attributes can

change pretty much arbitrarily in the tampered examples, the label of the tampered examples shall reflect

the correct label5. Therefore, as opposed to the general model of Valiant’s malicious noise, p-tampering

noise/attacks are ‘defensible’ as the adversary can always claim that a malicious training example is indeed

generated from the same original distribution from which the rest of the training examples are generated.

Similar notions of defensible attacks are previously explored in cryptography [HIK+10, AL07].

Poisoning through biasing. At the heart of the poisoning attacks of [MM17] against learners was a basic

p-tampering attack for biasing the average output of bounded real-valued functions. In particular, [MM17]

proved that for any (efficient) function f mapping inputs drawn from distributions like S ≡ Dn (consisting

of n iid ‘blocks’) to [0, 1], there is always an (efficient) p-tampering attacker A who changes the input

distribution S into Ŝ while increasing the average of the output by at least 2p
3+4p · Var[f(S)] where Var[·]

is the variance. (Note that the bias shall somehow depend on Var[f(S)] since constant functions cannot be

biased.) For the special case of Boolean function f(·), or when the p-tampering attacker could be exponential

time, they could achieve a better bias of p
1+p·µ−p

· Var[f(S)] where µ = E[f(S)] is the original average of

f(S). After obtaining biasing attacks, [MM17] derived their p-tampering targeted poisoning attacks from

them by essentially biasing the average of the loss function Loss(h(x), y) where h is the learned hypothesis

and (x, y) = d is the target test.

Relation to Robustness. The robustness of a learner [XM12, YKW+07, GA15] refers to its behavior when

the test test are close, but not necessarily drawn from the same distribution. The question in that setting is

how well the learned hypothesis performs on the test set. Learning under p-tampering can be seen as a

generalization of algorithmic robustness in which the training distribution can adaptively and adversarially

deviate form the testing distribution without using wrong labels.

Comparison with evasion attacks. In the last few years neural network based architectures explored the

so-called adversarial perturbations for some correctly classified instances so that the perturbed instances are

4This is assuming that the original training distribution only contains correct labels.
5 For example, the adversary can repeatedly present the same example to the learner, thus reducing the effective sample size, or

it can be the case that the adversary returns correct examples that are chosen against the learner’s algorithm and based on the whole

history of the examples so far.
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misclassified [SZS+14]. Such resulting misclassified perturbed instances are called adversarial examples

and attacks aimed at finding such examples are called evasion attacks [BFR14, NRH+12, GSS15, MFF16,

CW17, XEQ17]. The goal of evasion attacks is quite different from poisoning attacks: in poisoning attacks

the tampering happens over the training data, while in evasion attacks no tempering to the training data is

allowed but it is allowed for the test example itself.

1.1 Our Results

Improved p-tampering biasing attacks. Our main technical result in this work is to improve the efficient

(polynomial-time) p-tampering biasing attack of [MM17] to achieve the bias of p
1+p·µ−p

·Var[f(S)] (where

µ = E[f(S)] for S ≡ Dn and Var[·] is the variance) in polynomial time and for real-valued bounded

functions with output in [0, 1] (see Theorem 1). This main result immediately allows us to get improved

polynomial-time targeted p-tampering attacks against learners for scenarios where the loss function is not

Boolean (see Corollary 2). As in [MM17], our attacks are black-box and apply to any learning problem P

and any learner L for P as long as L has a non-negligible error over a specific test example d.

Special case of p-resetting attacks. The biasing attack of [MM17] has an extra property that: for each

block (or training example) di, if the adversary gets to tamper with di, it either does not change di at all,

or it simply ‘resets’ it by re-sampling it from the training distribution D. In this work, we refer to such

limited forms of p-tampering attacks as p-resetting attacks. Interesingly, p-resetting attacks were previously

studied in the work of Bentov, Gabizon, and Zuckerman [BGZ16] in the context of (ruling out) extract-

ing uniform randomness from Bitcoin’s blockchain [Nak08] when the adversary controls p fraction of the

computing power, and thus it has the chance p of obtaining the next block, which she can discard/reset.6

[BGZ16] showed how to achieve bias p/12 when the original (untampered) distribution D is uniform and

the function f is Boolean and balanced.7 As a special case of p-tampering attacks, p-resetting attacks have

interesting properties that are not present in general p-tampering attacks. For example, if the original train-

ing distribution D includes wrong labels with probability ε, this probability will only got up to at most

(1 + p) · ε = ε + p · ε under a p-resetting attack, while it could go up to ε + p under p tampering at-

tacks. Motivated by special applications of p resetting attacks and their the special properties of p-resetting

attacks, in this work we also study such attacks over arbitrary block distributions D and achieve bias of at

least p
1+p·µ

·Var[f(S)], improving upon the previous bias of 2p
3+4p ·Var[f(S)] proved in [MM17].

PAC learning under non-targeted poisoning. We also study the power of p-tampering (and p-resetting)

attacks in the non-targeted setting where the adversary’s goal is simply to increase the risk of the gener-

ated hypothesis.8 In this setting, it is indeed meaningful to study the possibility (or impossibility) of PAC

learning, as the test example is chosen at random. We show that in this model, p-tampering attacks cannot

prevent PAC learnability for ‘realizable’ settings; that is when there is always a hypothesis consistent with

the training data (see Theorem 5).

We further go beyond p-tampering attacks and study PAC learning under more powerful adversaries

who might choose the training examples that are tampered with but are still limited to choose ≤ p · n such

examples. We show that PAC learning under such adversaries depends on whether the adversary makes its

6To compare the terminologies, the work of [BGZ16] studies p-resettable sources of randomness, while here we study p-

resetting attackers that generate such sources.
7The running time of the p-resetting attacker of [BGZ16] was poly(n, 2|D|) where |D| is the length of the binary representation

of any d← D. In contrast, our p-resetting attacks run in time poly(n, |D|).
8In the targeted setting, the ε parameter of (ε, δ)-PAC learning goes away, due to the pre-selection of the target test.
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tampering choices before or after getting to see the original ‘honest’ sample di. We call these two class

of attacks strong/weak p-budget tampering attacks (see Definition 9). Our notions of p-budget tampering

are inspired by notions of (strong) adaptive corruption [CFGN96, GKP15] in cryptographic context. Our

impossibility of PAC readability under strong p-budget attacks (see Theorem 6) shows that PAC learning

under ‘mistake-free’ adversarial noise is not always possible. Using our biasing attacks, we also obtain p-

tampering and p-resetting attackers that increase the failure probability of any PAC learner (see Corollary 3).

Applications beyond attacking learners. Similar to how [MM17] used their biasing attacks in applica-

tions other than attacking learners, our new biasing attacks can also be used to obtain improved polynomial-

time attacks for biasing the output bit of any seedless randomness extractors [VN51, CG85, SV86], as well

as blockwise p-tampering (and p-resetting) attacks against security of certain cryptographic primitives (e.g.,

encryption, secure computation, etc.). As in [MM17], our new improved biasing attacks apply to any joint

distribution (e.g., a martingale). In this work, however, we focus on the case of product distributions that

already includes all the main applications to learning and include all the main ideas even for the general case

of random processes. We refer the reader to the work of [MM17] for such applications.

Ideas behind Our Biasing Attacks. At a high level, the attacks of [MM17] were simple to describe, while

their analyses were extremely complicated and heavily relied on carefully chosen potential functions based

on ideas from [ACM+14] in which authors presented a p-tampering biasing attack for the special case of

uniform Boolean blocks (i.e., D ≡ U1). Our new (polynomial time) attacks use completely different ideas

as they have a more complicated description, while the analysis of our attacks are indeed much simpler.

Our new attacks biasing attacks built upon ideas developed in previous work [RVW04, DOPS04, BEG17,

DY15, BGZ16] in the context of attacking deterministic randomness extractors from Santha-Vazirani sources

[SV86]. In [MM17] the authors generalized the idea of ‘half-space’ sources (introduced in [RVW04,

DOPS04]) to real-valued functions, using which it was shown how to find p-tampering biasing attacks

with same bias p
1+p·µ−p

· Var[f(S)] as ours using inefficient exponential time attacks. Achieving the same

bias efficiently, however, is the main technical challenge resolved in this work.

More formally, let d≤i = (d1, . . . , di) be the first i blocks given as input to a function f (or alternatively

the first i training examples, when we attack learners). Note that some of the blocks in (d1, . . . , di) might be

the result of previous tamperings. Now, suppose the adversary gets the chance to determine a new value d′i
for di in its p-tampering attack (which happens with probability p) knowing only the previously generated

blocks (d1, . . . , di−1). In [MM17] it was shown that there always exists some d′i (that could be found in

exponential time) such that choosing it will lead to the bias p
1+p·µ−p

· Var[f(S)]. They also showed how

to choose d′i efficiently, but that resulted in achieving smaller bias of 2p
3+4p · Var[f(S)]. The analysis of the

efficient attacks of [MM17] relies on potential functions involving ‘partial averages’ of f(·) defined as

f̂ [d≤i] = E
di+1,...,dn←Dn−i

[f(d1, . . . , dn)].

One of the key ideas enabling the attacks of this work is to design our attacks’ algorithms (and not

their analyses) directly based on the (unrealistic) assumption that we have access to an oracle providing the

partial averages f̂ [d≤i] of f(·). By leveraging on the oracle f̂ [d≤i] we design our attacks in a way that we can

compute their achieved biases exactly (rather than bounding them using potential functions as it was done in

[MM17]). Fortunately, although the partial averages f̂ [d≤i] are not exactly computable in polynomial time,

they can indeed be efficiently approximated within arbitrary small additive error. As we show, our attacks

are also robust to such approximation, and by using the approximations of f̂ [d≤i] (rather than their exact

values) we can still control how much bias is achieved. See Sections 5 and Section 5.3 for the details.
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2 Preliminaries

Notation. We use calligraphic letters (e.g., D) for sets and capital non-calligraphic letters (e.g., D) for

distributions. By d ← D we denote that d is sampled from D. For a randomized algorithm L(·), by

y ← L(x) we denote the randomized execution of L on input x outputting y. For joint distributions (X,Y ),
by (X | y) we denote the conditional distribution (X | Y = y). By Supp(D) = {d | Pr[D = d] > 0} we

denote the support set of D. By TD(·) we denote an algorithm T (·) with oracle access to a sampler for D.

By D ≡ G we denote that distributions D,G are identically distributed. By Dn we denote n iid samples

from D. By ε(n) ≤ 1
poly(n) we mean ε(n) ≤ 1

nΩ(1) and by t(n) ≤ poly(n) we mean t(n) ≤ nO(1).

A learning problem P = (X ,Y,D,H,Loss) is specified by the following components. The set X is the

set of possible instances, Y is the set of possible labels, D is a class of distributions containing some joint

distributions D ∈ D over X × Y .9 The set H ⊆ YX is called the hypothesis space or hypothesis class. We

consider loss functions Loss : Y × Y 7→ R+ where Loss(y′, y) measures how different the ‘prediction’ y′

(of some possible hypothesis h(x) = y′) is from the true outcome y.10 We call a loss function bounded if

it always takes values in [0, 1]. A natural loss function for classification tasks is to use Loss(y′, y) = 0 if

y = y′ and Loss(y′, y) = 1 otherwise. For a given distribution D ∈ D, the risk of a hypothesis h ∈ H is the

expected loss of h with respect to D, namely RiskD(h) = E(x,y)←D [Loss(h(x), y)].
An example s is a pair s = (x, y) where x ∈ X and y ∈ Y . An example is usually sampled from a

distribution D. A sample set (or sequence) S of size n is a set (or sequence) of n examples. A hypothesis h
is consistent with a sample set (or sequence) S if and only if h(x) = y for all (x, y) ∈ S . We assume that

instances, labels, and hypotheses are encoded as strings over some alphabet such that given a hypothesis h
and an instance x, h(x) is computable in polynomial time.

Definition 1 (Realizability). We say that the problem P = (X ,Y,D,H,Loss) is realizable, if for all D ∈ D,

there exists an h ∈ H such that RiskD(h) = 0.

We can now define Probably Approximately Correct (PAC) learning. Our definition is with respect to a

given set of distributionsD, and it can be instantiated with one distribution {D} = D to get the distribution-

specific case. We can also recover the distribution-independent scenario, whenever the projection of D over

X covers all distributions.

Definition 2 (PAC Learning). A realizable problem P = (X ,Y,D,H,Loss) is (ε, δ)-PAC learnable if there

is a (possibly randomized) learning algorithm L such that for every n and every D ∈ D, it holds that

Pr
S←Dn

h←L(S)

[RiskD(h) ≤ ε(n)] ≥ 1− δ(n).

We call P simply PAC learnable if ε(n), δ(n) ≤ 1/ poly(n), and we call it efficiently PAC learnable if, in

addition, L is polynomial time.

Definition 3 (Average Error of a Test). For a problem P = (X ,Y,D,H,Loss), a (possibly randomized)

learning algorithm L, a fixed test sample (x, y) = d ← D for some distribution S over Supp(D)n (e.g.,

9By using joint distributions over X × Y , we jointly model a set of distributions over X and a concept class mapping X to Y
(perhaps with noise and uncertainty).

10Natural loss functions such as the 0-1 loss or the square loss assign the same amount of loss for same labels computed by h

and c regardless of x.
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S ≡ Dn) for some n ∈ N, the average error11 of the test example d (with respect to S,L) is defined as:

ErrS,L(d) = E
S←S

h←L(S)

[Loss(h(x), y)].

When L is clear from the context, we simply write ErrS(d) to denote ErrS,L(d).

It is easy to see that a realizable problem P = (X ,Y,D,H,Loss) with bounded Loss is PAC learnable

iff there is a learner L (for P) such that the average of test’s average error γ = Ed←D[ErrDn(d)] is bounded

by a fixed 1/ poly(n) function for all D ∈ D.12

Poisoning Attacks. PAC learning under adversarial noise is already defined in the literature, however,

poisoning attacks include broader classes of attacks. For example, a poisoning adversary might add adver-

sarial examples to the training data (thus, increasing it) or remove some of it adversarially. A more powerful

form of poisoning attack is the so called targeted poisoning attacks where the adversary gets to know the

targeted test example before poisoning the training examples. More formally, suppose S = (d1, . . . , dn)
is the training examples iid sampled from D ∈ D. For a poisoning attacker A, by Ŝ ← A(S) we denote

the process through which A generates Ŝ based on S . Note that, this notation does not specify the exact

limitations of how A is allowed to tamper with S , and that is part of the definition of A. In the targeted

case, the adversary A is also given a test example (x, y) = d ← D. So, we would denote this by writing

Ŝ ← A(d,S) to emphasize that d is the test example given as input to A. We usually use A to denote a

general adversary class. Note that a particular adversary A ∈ A might try to poison a training set S based

on the knowledge of a problem P = (X ,Y,D,H,Loss). On the other hand, because sometimes we would

like to limit adversary’s power based on the specific distribution D (e.g. by always choosing tampered data

to be in Supp(D)). By AD ⊆ A we denote the adversary class for D.

Definition 4 (Learning under poisoning). Suppose P = (X ,Y,D,H,Loss) is a problem, A = ∪D∈DAD is

an adversary class, and L is a (possibly randomized) learning algorithm for P.

• PAC learning under poisoning. If problem P is realizable, then L is an (ε, δ)-PAC learning for P

under poisoning attacks of A, if for every D ∈ D, n ∈ N, and every adversary A ∈ AD:

Pr
S←Dn

Ŝ←A(S)

h←L(Ŝ)

[RiskD(h) ≤ ε(n)] ≥ 1− δ(n).

PAC learnability and efficient PAC learnability are then defined similarly to Definition 2.

• Average error under targeted poisoning. If A contains targeted poisoning attackers, for a distribu-

tion D ∈ D, and an attack A ∈ AD the average error ErrADn(d) for a test example d = (x, y) under

poisoning attacker A is equal to Err
Ŝ
(d) where Ŝ ≡ A(d, S) for S ≡ Dn.

We now define the class of poisoning attacks studied in this work. Informally speaking, p-tampering

attacks model attackers who will manipulate the training sequence S = (d1, . . . , dn) in an online way,

meaning while tampering with di, they do not rely on the knowledge of dj , j > i. Moreover, such attacks

11The work [MM17] called the same notion the ‘cost’ of d.
12Suppose Loss(·) is bounded (i.e., always in [0, 1]). On one hand, if P is (ε, δ)-PAC learnable, then γ is at most ε+ δ. On the

other hand, L is an (
√
γ,
√
γ)-PAC learner.
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get to tamper with di only with independent probability p, modeling scenarios where the tampering even is

random and outside the adversary’s choice. A crucial point about p-tampering attacks is that they always

stay in Supp(D). The formal definition follows.

Definition 5 (p-tampering/resetting attacks). The class of p-tampering attacksAp
tam = ∪D∈DAD is defined

as follows. For a distribution D ∈ D, any A ∈ AD has a (potentially randomized) tampering algorithm

Tam such that (1) given oracle access to D, TamD(·) ∈ Supp(D), and (2) given any training sequence

S = (d1, . . . , dn), the tampered Ŝ = (d̂1, . . . , d̂n) is generated by A inductively (over i ∈ [n]) as follows:

• With probability 1− p, let d̂i = di.

• Otherwise (this happens with probability p), get d̂i ← Tam
D(1n, d̂1, . . . , d̂i−1, di).

The class of p-resetting attacks Ap
res ⊂ A

p
tam include special cases of p-tampering attacks where the tam-

pering algorithm Tam is restricted as follows. Either Tam(1n, d̂1, . . . , d̂i−1, di) outputs di, or otherwise, it

will output a fresh sample d′i ← D. In the targeted case, the adversary AD and its tampering algorithm Tam

are also given the final test example d0 ← D as extra input (that they can read but not tamper with). An

attacker AD is called efficient, if its oracle-aided tampering algorithm Tam
D runs in polynomial time.

Subtle aspects of the definition. Even though one can imagine a more general definition for tampering

algorithms, in all the attacks of [MM17] and the attacks of this work, the tampering algorithms do not need

to know the original un-tampered values d1, . . . , di−1. Since our goal here is to design p-tampering attacks,

we use the simplified definition above, while all of our positive results for the stronger version in which

the tampering algorithm is given the full history of the tampering algorithm. Another subtle issue is about

whether di is needed to be given to the tampering algorithm. As already noted in [MM17], when we care

about p-tampering distributions of Dn, di is not necessary to be given to the tampering algorithm Tam, as

Tam can itself sample a copy from D and treat it like di. Therefore the ‘stronger’ form of such attacks

(where di is given) is equivalent to the ‘weaker’ form where di is not given. In fact, if D is efficiently

samplable, then this equivalence holds with respect to efficient adversaries (with efficient Tam algorithm)

as well. In this work, for both p-resetting and p-resetting attacks we choose to always give di to Tam.

Interestingly, as we will see in Section 4.1, if the adversary can choose the p · n locations of tampering, the

weak and strong attackers will have different powers!

3 Improved p-Tampering and p-Resetting Poisoning Attacks

In this section we study the power of p-tampering attacks in the targeted setting and improve upon the p-

tampering and p-resetting attacks of [MM17]. Our main tool is the following theorem giving new improved

p-tampering and p-resetting attacks to bias the output of bounded real-valued functions.

Theorem 1 (Improved biasing attacks). Let D be any distribution, S ≡ Dn, and f : Supp(S) → [0, 1].
Suppose µ = E[f(S)] and ν = Var[f(S)] be the average and the variance of f(S) respectively. For every

constant p ∈ (0, 1), there is a p-tampering attack Atam such that

E

Ŝ←Atam(S)
[f(Ŝ)] ≥ µ+

p · ν

1 + p · µ− p

and a p-resetting attacker Ares achieving bias of p·ν
1+p·µ

. Moreover, if D is efficiently sampleable and f(·) is

efficiently computable, then Atam (resp. Ares) could be implemented in time poly(|D| · n/ε) (where |D| is
the bit length of d← D) while achieving bias at least p·ν

1+p·µ−p
− ε (resp. p·ν

1+p·µ
− ε).
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See Section 5 and Section 5.3 for the full proof of Theorem 1.

By using our improved biasing attacks, we can obtain the following improved attacks in the targeted

setting against any learner. In particular, for any fixed (x, y) = d ← D, the following corollary follows

from Theorem 1 by letting f(S) = Eh←L(S)[Loss(h(x), y)].

Corollary 2 (Improved targeted p-tampering attacks). Given a problem P = (X ,Y,D,H,Loss) with a

bounded loss function Loss, for any distribution D ∈ D, test example (x, y) = d ← D, learner L, and

n ∈ N, let µ = ErrD(d) be the average error of d, and let

ν = Var
S←Dn

[
E

h←L(S)
[Loss(h(x), y)]

]
.

Then, there is a p-tampering (resp. p-resetting) attack Atam (resp. Ares) that increases the average error

µ = ErrD(d) by p·ν
1+p·µ−p

(resp. p·ν
1+p·µ

). Moreover, if D is efficiently samplable and f,Loss are efficiently

computable, then Atam,Ares could achieve arbitrarily close biases in polynomial time.

Even if the average error µ = ErrD(d) is not small, the variance ν (as defined in Theorem 2) could

be negligible. However, for natural cases this cannot happen. For example, if the loss function Loss(·) is

Boolean (e.g., P is a classification) and if L is a deterministic learner, then ν = µ · (1− µ).
We also demonstrate the power of p-tampering and p-resetting attacks on PAC learners by using them to

increase the failure probability of deterministic PAC learners. In particular, the following corollary follows

from Theorem 1 by letting f(S) = 1 if RiskD(h) ≥ ε and f(S) = 0 otherwise.

Corollary 3 (p-tampering attacks on PAC learners). Given a problem P = (X ,Y,D,H,Loss), D ∈ D, n ∈
N, and deterministic learner L, suppose PrS←Dn, h=L(S)[RiskD(h) ≥ ε] = δ. Then, there a p-tampering

attack Atam and a p-resetting attack Ares such that such that

Pr
S←Dn

Ŝ←Atam(S)

h=L(Ŝ)

[RiskD(h) ≥ ε] ≥ δ +
p · (δ − δ2)

1 + p · δ − p
= δ ·

(
1 + p ·

1− δ

1 + p · δ − p

)

and similarly Ares can achieve bias of
p·(δ−δ2)
1+p·δ

. Moreover, if D is efficiently samplable and both L,Loss are

efficiently computable, then both Atam,Ares could be implemented in polynomial time and make RiskD(h) ≥
0.99 · ε happen with similar probabilities.

4 Feasibility of PAC Learning under Non-Targeted Poisoning Attacks

In this section, we study the non-targeted case where PAC learning could be defined. We show that realiz-

able problems that are PAC learnable (without attacks), are usually PAC learnable under p-tampering attacks

as well. Essentially we bound the probability of some bad event happening (see Definition 7) in a manner

similar to Occam algorithms [BEHW87] by relying on the realizability assumption and relying on the spe-

cific property of the p-tampering attacks. In particular, we crucially rely on the fact that any p-tampering

distribution D̂ of a distribution D contains a (1− p) ·D measure in itself. In fact, we show (see Theorem 6)

that in a close scenario to p-tampering in which the adversary can choose the (≤ p fraction of the) tampering

locations, PAC learning might suddenly become impossible. This shows that the ‘mistake-free’ nature of

p-tampering is indeed not enough for PAC learnability.13

13We note that bounded-budget noise and in fact malicious has also been discussed outside of PAC learning; e.g., [AKST97] in

the membership query model of Angluin [Ang87].
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Definition 6. For problem P = (X ,Y,D,H,Loss), distribution D ∈ D, and training sequence S =
((x1, y1), . . . , (xn, yn)) ← Dn, we say that the event Badε(D,S) holds, if there exists an h ∈ H such that

h(xi) = yi for every i ∈ [n] and RiskD(h) > ε.

Definition 7 (Special PAC Learnability). A realizable problem P = (X ,Y,D,H,Loss) is called special

(ε(n), δ(n))-PAC learnable if for all D ∈ D, n ∈ N, PrS←Dn [Badε(D,S)] ≤ δ(n). Special (ε(n), δ(n))-
PAC learnability under poisoning attacks is defined similarly, where we demand the inequality to hold for

every A ∈ AD tampering with the training set Ŝ ← A(S).

It is easy to see that if P is special (ε(n), δ(n))-PAC learnable, then it is (ε(n), δ(n))-PAC learnable

through a ‘canonical’ learner L who simply finds and outputs a hypothesis h consistent with the training

sample set S . Such an h always exists due to the realizability assumption. In fact, many efficient PAC

learning results follow this very recipe.14 That motivates our next definition.

Definition 8 (Efficient Realizability). We say that the problem P = (X ,Y,D,H,Loss) is efficiently realiz-

able, if there is a polynomial-time algorithm M , such that for all D ∈ D, and all S ← Dn, M(S) outputs

some h ∈ H such that RiskD(h) = 0.

Theorem 4. For any p ∈ (0, 1), if a realizable problem P = (X ,Y,D,H,Loss) is (ε(n), δ(n))-special PAC

learnable, then for any q ∈ (0, 1 − p), P is also (ε′(m), δ′(m))-special PAC learnable under p-tampering

poisoning attacks for ε′(m) = ε(m · (1 − p − q)), δ′(m) = e−2m·q
2
+ δ(m · (1 − p − q)). Thus, if P is

efficiently realizable and special PAC learnable, then P is also efficiently PAC learnable under p-tampering.

Proof. Suppose we sample S ← Dm. By a Chernoff bound, an adversary that tampers with each of the

examples in S independently with probability p, will not change more than a p+q fraction of the elements of

S except with probability at most e−2mq2 . Thus, with high probability, at least (1−p−q) ·m ≥ n examples

in the tampered training sequence Ŝ are sampled from D without any control from the adversary. Since P is

special (ε(n), δ(n))-PAC learnable, with probability at least 1− δ(n), these n ‘untampered’ examples from

D will eliminate any hypothesis with risk larger than ε. Since the tampered sequence Ŝ of a p-tampering

attack is in the support set Supp(D)n, due to realizability, there is at least one h such that RiskD(h) = 0.

Hence, the learner can still find and output at least one h ∈ H for which RiskD(h) ≤ ε. If further, P is

efficiently realizable, h can be found in polynomial time.

4.1 Bounded Budget Attackers

A p-tampering attacker does not have a control over which training examples become tamperable, and

they each become so with independent probability p. Here we define two types of tampering attackers

who do have control over which examples they tamper with, yet with a ‘bounded budged’ limiting the

number of such instances. Our definitions are inspired by the notions of adaptive corruption [CFGN96]

and strong adaptive corruption defined by Goldwasser, Kalai, and Park [GKP15] in the secure multi-party

(coin-flipping) protocols.

Definition 9 (p-budget tampering). The class of strong p-budget tampering attacks Ap
bud = ∪D∈DAD is

defined as follows. For D ∈ D, any A ∈ AD has a (randomized) tampering algorithm Tam such that:

1. Given oracle access to D, TamD(·) always outputs something in Supp(D).

14For example, properly learning monomials [Val84], or using 3-CNF formulae to learn 3-term DNF formulae [PV88]; the latter

is an example of realizable but not proper learning. As an example where the realizability assumption does not necessarily hold,

see e.g., [Dio16], for learning monotone monomials under a class of distributions - including uniform.
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2. Given any training sequence S = (d1, . . . , dn), the tampered output Ŝ = (d̂1, . . . , d̂n) is generated

by A inductively (over i ∈ [n]) as d̂i ← Tam
D(1n, d̂1, . . . , d̂i−1, di).

3. The number of locations that Tam actually changes di is bounded as |{i | di 6= d̂i}| ≤ p · n.

Weak p-budged tampering attacks are defined similarly, with the following difference. The tampering cir-

cuit’s execution Tam
D(1n, d̂1, . . . , d̂i−1, d1, . . . , di−1) is not given di, but instead it could either output

d̂i ∈ Supp(D) or a special symbol ⊥, in which case AD will itself choose d̂i = di.

Below, we prove that PAC learning is possible under weak p-budget poisoning attacks while it is not

possible under strong p-budget poisoning attacks in general. Our positive result (Theorem 5) holds even if

the tampering algorithm is given all the history of tampered and untampered blocks (i.e., it is given given

input (1n, d̂1, . . . , d̂i−1, d1, . . . , di)), and our impossibility result (Theorem 6) holds even if the tampering

algorithm is given only di.

Theorem 5 (PAC learning under weak p-budget poisoning). For any p ∈ (0, 1), if a realizable problem

P = (X ,Y,D,H,Loss) is (ε(n), δ(n))-special PAC learnable, then, P is also (ε(n · (1−p)), δ(n · (1−p)))-
special PAC learnable under weak p-budget tampering (poisoning) attacks.

Proof. Intuitively, in any weak p-budget tampering attack, the adversary can choose the locations of the

tampering but has no control over the sampled di when di is not tampered with.15 More formally, compare

the actual attack to the following ‘ideal’ experiment. In the ideal experiment, we first choose m = n ·(1−p)
samples e1, . . . , em ← D before even running the adversary. Then, we run the adversary AD who internally

runs the tampering algorithm Tam inductively as follows. We let a counter initially ℓ = 0 counting how

many of ei’s we have used so far. For every i ∈ [n], if TamD(1n, d̂1, . . . , d̂i−1, d1, . . . , di−1) outputs ⊥,

then we increase ℓ by one choose the next eℓ, and if ℓ > m we simply use a fresh di ← D. It is easy to see

that this ideal execution is statistically identical to the real attack experiment. On the other hand, because

AD has is p-budget, Tam will output ⊥ at least n · (1− p) times, meaning that we will use all of ei’s (i.e. ℓ
gets eventually increased to m). Because all the initial samples e1, . . . , em ← D eventually find their way

into the tampered training example sequence Ŝ , by the special PAC learnability of P, it holds that the same

learner L for P still outputs with probability 1− δ(m) a hypothesis with risk at most ε(m).

Theorem 6 (Impossibility of PAC learning under strong p-budget tampering). For any constant p ∈ (0, 1),
there is a problem P = (X ,Y,D,H,Loss) that is PAC learnable (under no attack), but it is not PAC learnable

under strong p-budget tampering (poisoning) attacks.

Proof. Suppose X = [k] for a constant k where 1/p < k ≤ 2/p. (Such integer k exists because p < 1
implies 2/p − 1/p > 1.) Let Y = {0, 1}, and suppose D consists of all (x, c(x))x←X where x ← X is

the uniform sample from X and c is an an arbitrary function (concept) in YX , H contains all of YX , and

Loss(b0, b1) = |b0 − b1| is the natural loss for classifiers.

PAC learnability of P trivially follows from the fact that |X | = k is finite. Therefore, enough samples

will reveal the concept function c (defined through D) completely. On the other hand, consider two concepts

c0, c1 where c0(x) = 0 for all x ∈ [k], and c1(x) = 0 for all x ∈ [k−1] and c1(k) = 1. Let D0 ≡ (U, c0(U)).
Consider the following strong p-budget tampering attacks AD for D ∈ {D0, D1}: whenever di = (k, b) for

b ∈ {0, 1}, AD substitutes di with d̂i = (0, 0). If AD manages to tamper with all di = (k, b) examples,

15This seems to be also the case in strong p-budget attacks, but as we see in Theorem 6, the fact that the adversary can first see

di and then choose not to tamper with them in the strong case, will allow her to essentially choose ‘untampered’ di’s and prevent

PAC learnability.
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then the (tampered) training examples would be identically distributed for both cases of D0, D1. On the

other hand, the probability that AD runs out of its p · n tampering budget is 2Ω(−n) which is at most o(n)
for sufficiently larger n. Therefore, if there is any (ε(n), δ(n)) PAC learning for P under such strong p-

tampering attacks, it would require ε(n) + δ(n) ≥ Ω(1/k) ≥ Ω(1/p).

5 Our p-Tampering and p-Resetting Biasing Attacks: Proving Theorem 1

In this section we prove Theorem 1. Recall Definition 5 and that the p-tampering attacker has an internal

‘tampering’ algorithm Tam that is executed with independent probability p. In this section, we only focus on

describing the relevant tampering algorithms Tam and the general attacks will be defined accordingly. We

will first describe our tampering algorithms in an ideal model where the certain parameters (see Definition

10) of the function f are given for free by an oracle. In Section 5.3 we eliminate this idealized assumption

by approximating the needed parameters efficiently.

Definition 10 (Function f̂ ). Let D be an distribution, f : Supp(S) 7→ R be defined over Dn for some

n ∈ N, and d≤i ∈ Supp(D)i for some i ∈ [n]. We define the following functions.

• fd≤i
(·) is a function defined as fd≤i

(d≥i+1) = f(z) where z = (d≤i, d≥i+1) = (d1, . . . , dn).

• f̂ [d≤i] = Ed≥i+1←Dn−i [fd≤i
(d≥i+1)]. We also use µ = f̂ [∅] to denote f̂ [d≤0] = E[f(S)].

The key idea in both of our attacks is to design them (efficiently) based on oracle access to f̂ . The point

is that f̂ could later be approximated withing arbitrarily small 1/ poly(n) factors, thus leading to sufficiently

close approximations of our attacks. Due to lack of space, we will only sketch the main ideas that are used

in making the attacks efficient in the appendix.

5.1 New p-Tampering Biasing Attack

In both of our attacks, we describe our attacks using functions with range [−1,+1] instead. To get the results

of Theorem 1 we simply need to scale the parameters back appropriately.

Our Ideal p-Tam attack below, might repeat a loop indefinitely, but as we will see in Section 5.3, we can

cut this rejection sampling procedure after a large enough polynomial number of rounds.

Construction 11 (Ideal p-Tam tampering). Let D be an arbitrary distribution and S ≡ Dn for some n ∈ N .

Also let f : Supp(D)n 7→ [−1,+1] be an arbitrary function. For any i ∈ [n], given a prefix d≤i−1 ∈
Supp(D)i−1,16 ideal p-Tam is a p-tampering attack defined as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
.

2. With probability 1− r[d≤i] return di. Otherwise, sample a fresh di ← D and go to step 1.

Proposition 7. Ideal p-Tam attack is well defined. Namely, r[d≤i] ∈ [0, 1] for all d≤i ∈ Supp(D)i.

Proof. Both f̂ [d≤i], f̂ [d≤i−1] are in [−1, 1]. Therefore 0 ≤ 1− f̂ [d≤i] ≤ 2 and 3−p−(1−p) · f̂ [d≤i−1] ≥ 2
which implies 0 ≤ r[d≤i] ≤ 1.

16Note that here di is the ‘original’ untampered value for block i, while d1, . . . , di−1 might be the result of tampering.
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In the following, let Atam be the p-tampering adversary using tampering algorithm.17

Claim 8. Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed on S ≡ Dn using

ideal p-Tam tampering algorithm. For every prefix d≤i ∈ Supp(D)i we have:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
=

2− p · (1− f̂ [d≤i])

2− p · (1− f̂ [d≤i−1])
.

Proof. During its execution, ideal p-Tam keeps sampling examples and rejecting them until a sample is

accepted. For ℓ ∈ N we define Rℓ to be the event that is true if the ℓ’th sample in the tampering algorithm is

rejected, conditioned on reaching the ℓth sample. We have

Pr[Rℓ] =
∑

di

Pr[D = di] ·

(
1− f̂ [d≤i]

3− p− (1− p) · f̂ [d≤i−1]

)

=

∑
di
Pr[D = di] · (1− f̂ [d≤i])

3− p− (1− p) · f̂ [d≤i−1]

=
1− f̂ [d≤i−1]

3− p− (1− p) · f̂ [d≤i−1]
.

Let c[d≤i−1] =
1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
. Then we have

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·



∞∑

j=0

(1− r[d≤i]) ·

j∏

ℓ=1

Pr[Rℓ]




= 1− p+ p ·



∞∑

j=0

(1− r[d≤i]) · c[d≤i−1]
j




= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)

=
2− p+ p · f̂ [d≤i]

2− p+ p · f̂ [d≤i−1]
.

The following corollary follows from Claim 8 and induction.

Corollary 9. By applying the attack Atam based on ideal p-Tam tampering algorithm, the distribution after

the attack would be as follows

Pr[Ŝ = z] =
2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z].

Corollary 10. The p-tampering attack Atam (based on Ideal p-Tam tampering algorithm) biases f(·) by
p·ν

2−p+p·µ
where µ = E[f(S)], ν = Var[f(S)].

17Therefore, AD , inductively runs p-Tam over the current sequence with probability p. See Definition 5.
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Proof. It holds that E[f(Ŝ)] is equal to:

∑

z∈Supp(D)n

Pr[Ŝ = z] · f(z) =
∑

z∈Supp(D)n

2− p+ p · f(z)

2− p+ p · µ
· Pr[S = z] · f(z)

=
2− p

2− p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2− p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)2




=
(2− p) · µ

2− p+ p · µ
+

p · (ν + µ2)

2− p+ p · µ
= µ+

p · ν

2− p+ p · µ
.

5.2 New p-Resetting Biasing Attack

Construction 12 (Ideal p-Res). Let D be an arbitrary distribution and S ≡ Dn for some n ∈ N . Also let

f : Supp(D)n 7→ [−1,+1]. For any i ∈ [n], and given a prefix d≤i−1 ∈ Supp(D)i−1, the p-Res tampering

algorithm works as follows.

1. Let r[d≤i] =
1−f̂ [d≤i]

2+p·(1+f̂ [d≤i−1])
.

2. With probability 1− r[d≤i] output the given di.

3. Otherwise sample d′i ← D (i.e., ‘reset’ di) and return d′i.

Proposition 11. Ideal p-Res algorithm is well defined. I.e., r[d≤i] ∈ [0, 1] for all d≤i ∈ Supp(D)i.

Proof. We have f̂ [d≤i] ∈ [−1,+1] and f̂ [d≤i−1] ∈ [−1,+1]. Therefore 0 ≤ 1 − f̂ [d≤i] ≤ 2 and 2 + p ·
(1 + f̂ [d≤i−1]) ≥ 2 which implies 0 ≤ r[d≤i] ≤ 1.

In the following let Ares be the p-tampering adversary using ideal p-Res. (See Definition 5.)

Claim 12. Let Ŝ = (D̂1, . . . , D̂n) be the distribution after the attack Ares (using ideal p-Res tampering

algorithm) is performed on S ≡ Dn. For all d≤i ∈ Supp(D)i it holds that:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
=

2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

Proof. We define R0 to be the event that is true if the given sample is rejected. We have

Pr[R0] =
∑

di

Pr[D = di] ·

(
1− f̂ [d≤i]

2 + p · (1 + f̂ [d≤i−1])

)

=

∑
di
Pr[D = di] · (1− f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])

=
1− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])
.
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Therefore, we conclude that:

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p · (1− r[d≤i] + Pr[R0])

= 1− p+ p ·

(
1 +

f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)

= 1 + p ·

(
f̂ [d≤i]− f̂ [d≤i−1]

2 + p · (1 + f̂ [d≤i−1])

)

=
2 + p · (1 + f̂ [d≤i])

2 + p · (1 + f̂ [d≤i−1])
.

The following corollary follows from Claim 12 and induction.

Corollary 13. By applying attack Ares (using ideal p-Res), the distribution after the attack is:

Pr[Ŝ = z] =
2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z].

Corollary 14. The p-resetting attack Ares (using ideal p-Res) biases the function by p·ν
2+p+p·µ

where µ =
E[f(S)], ν = Var[f(S)].

Proof. It holds that µ̂ = E[f(Ŝ)] is equal to:

∑

z∈Supp(D)n

Pr[Ŝ = z] · f(z) =
∑

z∈Supp(D)n

2 + p+ p · f(z)

2 + p+ p · µ
· Pr[S = z] · f(z)

=
2 + p

2 + p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)


+

p

2 + p+ p · µ
·


 ∑

z∈Supp(D)n

Pr[S = z] · f(z)2




=
(2 + p) · µ

2 + p+ p · µ
+

p(ν + µ2)

2 + p+ p · µ
= µ+

p · ν

2 + p+ p · µ
.

5.3 Approximating the Ideal Attacks in Polynomial Time

In this subsection, we describe the efficient version of the attacks of Theorem 1 and prove their properties.

We first describe the efficient version of our p-resetting attack, where achieving efficiency is indeed simpler.

We then go over the efficient variant of our p-tampering attack. In both cases, we describe the modifications

needed for the tampering algorithms and it is assumed that such tampering algorithms are used by the main

efficient attackers (see Definition 5).
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5.3.1 Efficient p-Resetting Biasing

The p-resetting attack of Construction 12 is not efficient since it needs oracle access to the idealized ora-

cle providing partial averages. In general, we can not compute such averages exactly in polynomial time,

however in order to make those attacks efficient, we can rely on approximating the partial averages and

consequently the corresponding rejection probabilities. To get the efficient version of the attack of Con-

struction 12 we can pursue the following idea. For every prefix d≤i, the efficient attacker first approximates

the partial average f̂ [d≤i] by sampling a sufficiently large polynomial number of random continuations

d
(1)
≤n−i, . . . d

(ℓ)
≤n−i and getting the average Ej∈[ℓ][f(d≤i, d

(j)
≤n−i] as an approximation for the partial average.

By Hoeffding inequality, this average is a good approximation of f̂ [d≤i] with exponentially high probability.

Consequently, the rejection probabilities can be approximated well making the final distributions statically

close to the distribution of the ideal attack, meaning that the amount of bias is close to the ideal bias as well.

Now we formalize the ideas above.

Definition 13 (Semi-ideal oracle f̃ [·]). For distribution D, if for all d≤i ∈ Supp(D)i we have f̃ε[d≤i] ∈
f̂ [d≤i] ± ε, then, we call f̃ε[·] an ε-approximation of f̂ [·]. For simplicity, and when it is clear from the

context, we simply write f̃ [·] and call it a semi-ideal oracle.

The following lemma immediately follows from the Hoeffding inequality.

Lemma 15 (Approximating f̂ [·] efficiently). Consider an algorithm that on inputs d≤i and ε performs as

follows where ℓ = −10 ln(ε/2)/ε2.

1. Sample (d1≤n−i, . . . , d
ℓ
≤n−i)← (Dn−i+1)ℓ.

2. Output f̃ε[d≤i] = Ej∈[ℓ] f(d≤i, d
j
≤n−i).

Then it holds that Pr[|f̃ε[d≤i]− f̂ [d≤i]| ≥ ε] ≤ ε.

The above lemma implies that if f is efficiently computable and D is efficiently samplable, any q-query

algorithm can approximate the semi-ideal oracle f̃ [·] in time poly(q · n/ε) and total error (of failing in one

of the queries) by at most ε. Based on this efficient approximation of f̃ [·], we now describe our efficient

version of the Ideal p-Res attack in the semi-ideal oracle model of f̃ [·], by essentially using the semi-ideal

oracle f̃ [·] instead of the ideal oracle f̂ [·].

Construction 14 (Efficient p-Res). Efficient p-Res is the same as ideal p-Res of Construction 12 but it calls

the semi-ideal oracle f̃ε[·] instead of the ideal oracle f̂ [·].

In the following we analyze the bias achieved by the Efficient p-Res algorithm. We simply pretend that

all the queries to the semi-ideal oracle are within ±ε approximation of the ideal oracle, knowing that the

error of ε-approximating all of the queries is itself at most ε and can affect the average also by at most O(ε).
First we show that the rejection probabilities are approximated well.

Lemma 16. Let r[.] and r̃[.] respectively be the rejection probabilities of the Ideal and Efficient p-Res. Then,

for every d≤i ∈ Supp(D)i we have |r[d≤i]− r̃[d≤i]| ≤ O(ε).

Proof. Let p′ ∈ p± ε, q′ ∈ q ± ε for p, q ∈ (0, 1). We first show that p′

1+q′
∈ p

1+q
±O(ε).

∣∣∣∣
p′

1 + q′
−

p

1 + q

∣∣∣∣ =
∣∣∣∣
p′ − p+ p′ · q − p · q′

(1 + q) · (1 + q′)

∣∣∣∣ ≤
∣∣p′ − p+ p′ · (q − q′) + q′ · (p′ − p)

∣∣ ≤ 3 · ε

Now using this general statement we conclude that |r[d≤i]− r̃[d≤i]| ≤ 3 · ε.
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Now we want to argue that when we approximate the p-resetting tampering algorithm’s rejection prob-

abilities as proved in Lemma 16, it leads to ‘close probabilities’ of sampling final outputs. We prove the

following general lemma that will be also useful for the case of Efficient p-Tam attack. For the case of

p-resetting, we only need the special case of k = 1.

Notation. For p ∈ [0, 1] and distributions X,Y , by Z ≡ (1 − p)X + pY we denote the distribution Z in

which we sample from X with probability 1− p, and otherwise (i.e., with probability p) we sample from Y .

Definition 15 ((p, k, ρ)-variations). For any distribution D, function ρ : Supp(D)→ [0, 1], and k ∈ N, the

(p, k, ρ)-variation of D is Dp,k,ρ ≡ (1− p)D + pZ, where Z is defined as follows.

1. Sample (d1, . . . , dk)← Dk.

2. Sequentially go over d1, . . . , dk, and with probability ρ[di] return di and exit.

3. If nothing was returned after reading all the k samples, return a fresh sample dk+1 ← D.

Lemma 17 (Implication of approximating rejection probabilities). Let D be a distribution and ρ : Supp(D)→
[0, 1] and ρ′ : Supp(D) → [0, 1] be two functions such that ∀d ∈ Supp(D), |ρ(d) − ρ′(d)| ≤ ε. Then, for

every k ∈ N and every d ∈ Supp(D), it holds that
∣∣∣∣ln
(
Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤
p

1− p
· (k2 + k) · ε.

Before proving the lemma above, we note that it indeed implies that the max divergence [DRV10] of

Dp,k,ρ and Dp,k,ρ′ is at most O(k2 · ε).

Proof. Let a = Ed←D[ρ(d)] and a′ = Ed←D[ρ
′(d)]. We have

Pr[Dp,k,ρ = d]

Pr[D = d]
= (1− p) + p · ((1− a)k +

∑

i∈[k−1]

ρ(d) · (1− a)i).

With a similar calculation for Pr[Dp,k,ρ′ = d] we get

Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]
=

(1− p) + p · ((1− a)k +
∑

i∈[k−1] ρ(d) · (1− a)i)

(1− p) + p · ((1− a′)k +
∑

i∈[k−1] ρ(d) · (1− a′)i)

= 1 +
p · ((1− a)k − (1− a′)k +

∑
i∈[k−1] ρ(d) · (1− a)i − ρ′(d) · (1− a′)i)

(1− p) + p · ((1− a′)k +
∑

i∈[k−1] ρ(d) · (1− a′)i)

≤ 1 +
p · (k · ε+

∑
i∈[k−1](2i+ 1) · ε)

1− p

= 1 +
p

1− p
(k2 + k) · ε

≤ e
p

1−p
(k2+k)·ε

.

Similarly, we have
Pr[Dp,k,ρ′=d]

Pr[Dp,k,ρ=d] ≤ e
p

1−p
(k2+k)ε

which implies that

∣∣∣∣ln
(
Pr[Dp,k,ρ = d]

Pr[Dp,k,ρ′ = d]

)∣∣∣∣ ≤
p

1− p
· (k2 + k) · ε.
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The following lemma states that the averages of a function over two distributions that are ‘close’ (under

max divergence) are indeed close real numbers.

Lemma 18. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two joint distributions such that Supp(X) =
Supp(Y ) and for every prefix x≤i such that Pr[Xi = xi|x≤i−1] > 0, we have

∣∣∣∣ln
(
Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣ ≤ ε.

Then, for any function f : Supp(X)→ [−1,+1] we have

E[f(X)] ≥ E[f(Y )]− eε·n + 1.

Proof. First, we note that for every x ∈ Supp(X) it holds that

∣∣∣∣ln
(
Pr[X = x]

Pr[Y = x]

)∣∣∣∣ =

∣∣∣∣∣∣

∑

i∈[n]

ln

(
Pr[Xi = xi | x≤i−1]

Pr[Yi = xi | x≤i−1]

)∣∣∣∣∣∣
≤ n · ε.

Now we can show that E[f(Y )]−E[f(X)] is equal to

∑

x∈Supp(X)

(Pr[Y = x]− Pr[X = x]) · f(x)

≤
∑

x∈Supp(X)

|(Pr[Y = x]− Pr[X = x]) · f(x)|

≤
∑

x∈Supp(X)

∣∣∣∣min(Pr[X = x],Pr[Y = x]) ·

(
max(Pr[X = x],Pr[Y = x])

min(Pr[X = x],Pr[Y = x])
− 1

)
· f(x)

∣∣∣∣

≤ (en·ε − 1) ·
∑

x∈Supp(X)

|min(Pr[X = x],Pr[Y = x]) · f(x)| ≤ en·ε − 1.

Putting things together. Now we show how to choose the parameters of the Efficient p-Res. Suppose ε′

is the parameter of Theorem 1. If we choose ε as the parameter of our attack we can bound the final bias

as follows. Firstly, if the approximation algorithm of Lemma 15 gives us a semi-ideal oracle f̃ε[.], then

based on Lemma 16 we can approximate the rejection probabilities with error at most O(ε). Then based

on Lemma 17 the attack Ares that uses efficient p-Res generates a distribution that is O( p
1−p · ε)-close to

the distribution of the attack Ares that uses ideal p-Res. Now we can use Lemma 18 (for k = 1) to argue

that bias of efficient adversary is (e
O(n·ε· p

1−p
) − 1)-close to bias of ideal adversary. Also note that, if the

approximation algorithm fails to provide a semi-ideal oracle for all queries, then bias of efficient attack is

at least −2 because the function range is [−1,+1]. However, the probability of this event is bounded by

O(n · ε) because adversary needs at most 2n number of queries to f̃ . Therefore, the difference of bias of

efficient and ideal adversary is at most O(n · ε)+e
O(n·ε· p

1−p
)−1 which is at most O(n · ε+n · ε · p

1−p) if the

exponent in e
O(n·ε· p

1−p
)

is at most 1. As a result, if we choose ε = o(ε′/(n · p
1−p)) = o(ε′ · (1− p)/(n · p)),

we can indeed guarantee that bias of efficient adversary is ε′-close to bias of ideal adversary.
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5.3.2 Efficient p-Tampering Biasing

Building upon the ideas developed above to make our Ideal p-Res tampering algorithm polynomial time, here

we focus on our Ideal p-Tam attack. We start by describing a variant of the original attack of Construction 11

where we cut the rejection sampling procedure after k iterations.

Construction 16 (Ideal k-cut p-Tam). Ideal k-cut p-Tam is the same as ideal p-Tam of Construction 11 but

it is forced to stop and return a fresh sample if the first k samples were rejected.

Now we show that the new modified attack of Construction 16 will lead to a close distribution compared

to the original attack of Construction 11.

Lemma 19. Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed on S ≡ Dn

using ideal p-Tam tampering algorithm. Also, let Ŝ′ = (D̂′1, . . . , D̂
′
n) be the joint distribution after Atam

attack is performed on S using Ideal k-cut p-Tam tampering algorithm. For every prefix d≤i ∈ Supp(D)i:
∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2 · (2− p)k−1
.

Proof. Let r[d≤i] =
1−f̂ [d≤i]

3−p−(1−p)·f̂ [d≤i−1]
and c[d≤i−1] =

1−f̂ [d≤i−1]

3−p−(1−p)·f̂ [d≤i−1]
as it was defined in proof of

Claim 8. We have

Pr[D̂′i = di | d≤i−1]

Pr[D = di]
= (1− p) + p ·


(c[d≤i−1])

k +
∑

j∈[k−1]

(1− r[d≤i]) · (1− c[d≤i)]
j)




= (1− p) + p ·

(
(c[d≤i−1])

k +
(1− r[d≤i]) · (1− c[d≤i−1]

k)

1− c[d≤i−1]

)
.

Also, in the proof of Claim 8 we showed that

Pr[D̂i = di | d≤i−1]

Pr[D = di]
= 1− p+ p ·

(
1− r[d≤i]

1− c[d≤i−1]

)
.

Therefore, we conclude that

Pr[D̂′i = di | d≤i−1]

Pr[D̂i = di | d≤i−1]
=

(1− p) + p ·
(
(c[d≤i−1])

k +
(1−r[d≤i])·(1−c[d≤i−1]

k)
1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

)

= 1 +
p ·
(
(r[d≤i]−c[d≤i−1])·c[d≤i−1]

k

1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

) .

We also know that c[d≤i−1] ≤
1

2−p because f̂ [d≤i−1] ∈ [−1,+1]. So we have

Pr[D̂′i = di | d≤i−1]

Pr[D̂i = di | d≤i−1]
= 1 +

p ·
(
(r[d≤i]−c[d≤i−1])·c[d≤i−1]

k

1−c[d≤i−1]

)

1− p+ p ·
(

1−r[d≤i]
1−c[d≤i−1]

)

≤ 1 +
p · c[d≤i−1]

k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2(2− p)k−1
≤ e

p

(1−p)2(2−p)k−1 .
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Also for the inverse ratio, we have

Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di | d≤i−1]
= 1 +

p ·
(
(c[d≤i−1]−r[d≤i])·c[d≤i−1]

k

1−c[d≤i−1]

)

(1− p) + p ·
(
(c[d≤i−1])k +

(1−r[d≤i])·(1−c[d≤i−1]k)
1−c[d≤i−1]

)

≤ 1 +
p · c[d≤i−1]

k

(1− p) · (1− c[d≤i−1])

≤ 1 +
p

(1− p)2(2− p)k−1
≤ e

p

(1−p)2(2−p)k−1 .

Therefore, we can finally conclude that

∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2(2− p)k−1
.

Lemma 20. Let Ŝ = (D̂1, . . . , D̂n) be the joint distribution after Atam attack is performed on S ≡ Dn using

ideal p-Tam tampering algorithm. Also, let Ŝ′ = (D̂′1, . . . , D̂
′
n) be the joint distribution after Atam attack is

performed on S using Ideal k-cut p-Tam tampering algorithm where k = ln(2−p)−2 ln((1−p)ε)
ln(2−p) . Then:

E[f(Ŝ′)] ≥ E[f(Ŝ)]− en·ε + 1.

Proof. Using Lemma 19, for every prefix d≤i ∈ Supp(D)i we have:

∣∣∣∣∣ln
(
Pr[D̂i = di | d≤i−1]

Pr[D̂′i = di|d≤i−1]

)∣∣∣∣∣ ≤
p

(1− p)2(2− p)k−1
≤ ε.

Now, using Lemma 18 we get E[f(Ŝ′)] ≥ E[f(Ŝ)]− en·ε + 1.

We can now describe the actual efficient variant of our Ideal p-Tam attack.

Construction 17 (Efficient k-cut p-Tam). Efficient k-cut p-Tam is the same as Ideal k-cut p-Tam of Con-

struction 16 but it it calls the semi-ideal oracle f̃ε[·] instead of the ideal oracle f̂ [·].

Lemma 21. Let r[.] and r̃[.] respectively be the rejection probabilities of the Ideal and Efficient k-cut p-Tam.

Then, for every d≤i ∈ Supp(D)i we have |r[d≤i]− r̃[d≤i]| ≤ O(ε).

The proof of above Lemma is similar to the proof of Lemma 16.

Putting things together. Now we show how to choose the parameters of the Efficient k-cut p-Tam. Sup-

pose ε′ is the parameter of Theorem 1. If we choose ε as the parameter of our attack we can bound the

final bias as follows. Firstly, if the approximation algorithm of Lemma 15 gives us a semi-ideal oracle

f̃ε[.], then based on Lemma 21 we can approximate the rejection probabilities with error at most O(ε).
Then based on Lemma 17 the attack Atam that uses efficient k-cut p-Tam generates a distribution that is

O( p
1−p · k

2 · ε)-close to the distribution of the attack Atam that uses ideal k-cut p-Tam. Now we can use

Lemma 18 to argue that bias of efficient adversary is
(
e
O(n·ε·k2· p

1−p
) − 1

)
-close to bias of ideal adversary.
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Also note that, if the approximation algorithm fails to provide a semi-ideal oracle for all queries, then bias of

efficient attack is at least −2 because the function range is [−1,+1]. However, the probability of this event

is bounded by O(k · n · ε) because adversary needs at most (k + 1) · n number of queries to f̃ . Therefore,

the difference of bias of efficient and ideal adversary is at most O(k · n · ε) + e
O(k2·n·ε· p

1−p
) − 1 which is

at most O(n · ε + k2 · n · ε · p
1−p) if the exponent in e

O(k2·n·ε· p

1−p
)

is at most 1. As a result, if we choose

ε = o(ε′/(k2 · n · p
1−p)) = o(ε′ · (1 − p)/(k2 · n · p)), we can indeed guarantee that bias of efficient

adversary (that uses efficient k-cut p-Tam tampering algorithm) is ε′-close to bias of ideal adversary (that

uses ideal k-cut p-Tam). Now we want to select our other parameter k. Based on Lemma 20, if we choose

k = ω( ln((1−p)ε
′)

ln(2−p) ) the bias of attack Atam that uses ideal k-cut p-Tam would be ε′-close to the bias of attack

Atam that uses ideal p-Tam. Therefore, the bias of the Atam that uses efficient k-cut attack is 2 · ε′-close to

the bias of Atam that uses ideal p-Tam.
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