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Abstract

The motion of leukocytes is significant in studying the
inflammation response of the immune system. In inflamma-
tion conditions, some leukocytes slow down and eventually
adhere to vessel walls. With many cells moving at a variety
of speeds, collisions occur. These collisions result in abrupt
changes in the motion and appearance of leukocytes. In
this paper, we propose a novel method of tracking multiple
cells undergoing collision by modeling the collision states
of cells and testing multiple hypotheses of their motion and
appearance. We demonstrate the results on in vivo intravi-
tal microscopy image sequences. The proposed method re-
sults in 20% more accurate cell position and 82% longer
tracks than a previous approach.

1. Introduction
The study of leukocyte behaviors is an important area

of physiology. For example, rolling velocity and the num-
ber per unit area of leukocytes are used to learn about
the inflammatory process as well as to design and test
anti-inflammatory drugs [5]. Traditionally, detection and
tracking of leukocytes in microscopic images are per-
formed manually. This manual process is tedious and time-
consuming, thus limiting the amount of data for analysis.

Leukocytes usually flow along with blood. In inflamma-
tion conditions, leukocytes slow down to roll along blood
vessels and eventually adhere to the vessel walls. Moving at
such a wide range of speeds, these cells often collide with
each other. The collisions cause abrupt changes in cells’
motion and appearance.

Previous works has addressed the automatic detection
and tracking of leukocytes from video microscopy. An ac-
tive contour approach was proposed by Ray et al. [7]. Cui
et al. [1] proposed a Monte Carlo approach to cell track-
ing that reduces the effect of vessel wall edges when cells
are rolling along the vessel walls. These methods rely on

the intensity gradient of cell boundary. In the case of col-
liding cells, the gradient where the cells collide is minimal.
In addition, these methods are only designed for tracking
a single rolling leukocyte at a time. Eden et al. [2] pro-
posed an automated method with smoothness constraints
to extract leukocytes circulatory velocity. However, these
smoothness constraints do not hold during collisions. Re-
cently, Smith et al. [8] introduced constraints to link the
movement of a target and its appearance. For example, one
constraint linked elongated cells to high velocities. During
collisions, the cells would appear merged and the elongation
often reflects multiple cells rather than high velocity. Li et
al. [6] provided a track linking module which attempted to
link broken track segments to complete cell trajectory. This
method improved the number of continuous tracks, how-
ever, it assumed two physical constraints: that a cell does
not vanish unless it leaves the field of view and a cell does
not appear unless it enters from outside. These constraints
are not valid since our data sets are 2-D slices of complex
3-D vasculature, which means cells can enter and leave any-
where in an image. In this paper, we propose a method for
robustly tracking cells undergoing collisions. The cells are
tracked by assessing multiple hypotheses of their motion
and appearance. These hypotheses are based on possible
transitions from the cells’ current collision state. The colli-
sion state of a cell is recognized based on their motion and
appearance change. The performance of the method has
been demonstrated with the analysis of four in vivo intrav-
ital microscopy image sequences of leukocytes undergoing
collisions. Figure 1 shows how a collision is handled by
a previously published method of Eden et al. [2] and the
proposed method.

2. Methods

In inflammation conditions, more cells start rolling or ad-
hering to the vessel walls, increasing the frequency of col-
lisions. When cells collide, they come to a stop at the point
of collision and appear merged, making it difficult to accu-



Figure 1. The left image contains a frame of rolling leukocytes in a blood vessel from an intravital microscopy video. Region (b), where a
collision takes place, has been enlarged. Cells have been outlined based on the detection results. The results from smoothness constraints
method proposed by Eden et al. [2] are shown in the first row. The tracks get broken during abrupt change in cell appearance and motion
due to collision (top-right image). Our method, is shown in the bottom row, was able to achieve reliable tracking.

rately recognize them as individual cells. In addition, fast-
moving cells decelerate quickly to the speed that is almost
zero. After collision, the cells often resume their original
speed, and they no longer appear merged. Collisions cause
two challenges in automatic tracking. First, the motion and
appearance during collision could be different from before
and after collision. Second, the change in cell motion and
appearance into as well as out of collision is abrupt. There-
fore, the smooth transition between different motion pat-
terns used in traditional motion filtering techniques cannot
be assumed.

In this paper, we propose to improve the tracking accu-
racy by (1) having separate collision states to describe cells
during collision as well as before and after collision, and
(2) creating and testing multiple hypotheses of cell motion
and appearance as transitions between abrupt motion pat-
terns. Note that the recognition of collision in itself is not
important. The goal is to improve tracking of cells under-
going collisions by creating and testing multiple hypotheses
based on the recognized collision states.

The next sections describe the proposed method in de-
tail. First, the cell detection procedure is illustrated in sec-
tion 2.1. The collision states are explained in section 2.2.
Then, multiple hypotheses of cell motion and appearance
as transitions between the collision states is elaborated in
section 2.3. Next, section 2.4 illustrates how our method
corresponds cells from frame to frame. Finally, the track
update process is described in section 2.5. The overview of
the proposed method is given in Figure 2.

2.1. Cell Detection

The detection of leukocytes is challenging due to a high
noise level in in vivo images and a wide ranging appear-

Figure 2. The overview of the proposed method.

ance of leukocytes in intensity and shape. To reliably de-
tect leukocytes, we use a supervised learning approach to
learn the appearance and classify each pixel p at location
(x, y) as a cell or background. A set of features is com-
puted from a window of lw × lh centered around p. Then,
AdaBoost is used to train a classifier [3]. Unlike previous
methods which use boosting for biomedical image classi-
fication and rely on generic image features [6], we select
a set of features based on the perceived visual differences
between pixel regions corresponding to cells and those of
the background ( e.g. vessels, other tissue). For an lw × lh



Figure 3. The translation of two collision states. The continuous
arrow denotes the smooth change in motion while the dashed ar-
row denotes the abrupt change in motion. Hφ is the appropriate
hypothesis for each state transition.

window, our features are: (1) mean intensity, (2) standard
deviation of intensity, and (3) normalized radial mean. The
normalized radial mean is defined as µ1

µ1+µ2+µ3
where µ1,

µ2, and µ3 are mean intensities of pixels within radius range
of [0, ω3 ], [ω3 + 1, 2ω

3 ], and [ 2ω3 + 1, ω+ 3], respectively, and
ω is the diameter (in pixels) of a typical leukocyte.

We select a set of 100 cell and 100 background sam-
ples from various locations of the training sequence. These
samples are evenly divided into training and validation sets.
Based on the returned decision rule, each pixel is classified
as cell or background. Groups of cell pixels are clustered
into cell observations using connected component labeling.
For cell observation k, the cell location (xk, yk) and ak area
are calculated as the centroid and the number of pixels of k,
respectively. In frame t, we define the observation vector
as zk(t) = [xk, yk, ak]T . In the next sections, we present
the proposed tracking process, from the definition of col-
lision states to the development of multiple hypotheses of
cell motion and appearance.

2.2. Collision States

To handle different cell motion and appearance during
collision as well as before and after collision, we use sep-
arate collision states: no collision (s = 0) or collision
(s = 1). In the first frame, all cells are initialized to s = 0.
Let φ = stst+1 denote the transition between two collision
states in time t and t + 1. We define two types of transi-
tions: staying in the same state (φ = {00, 11}) or moving
to another state (φ = {01, 10}). When φ = {00, 11}, the
motion pattern is mostly smooth and can be predicted by a
traditional Kalman filter [4]. However, when φ = {01, 10},
the motion pattern is no longer smooth since the collision
results in abrupt changes in motion. The collision state tran-
sitions are illustrated in Figure 3. We incorporate multiple
hypotheses of motion and appearance to handle transitions
between collision states in the next section.

2.3. Multiple Hypotheses

Let Hφ be the hypothesis for the state transition φ.
Since there are four possible state transitions, the multiple
hypotheses approach consists of four possible hypotheses:
H00, H01, H11, and H10. Each Hφ predicts a motion and
appearance model. The motion and appearance models are
described as

x(t+ 1) = Aφx(t) + Bφu(t) + qs(t) (1)

where x(t) = [x, y, u, v, a]T is the state vector describing
cell motion and appearance at time t, (x, y) is the cell posi-
tion, (u, v) is the cell velocity, and a is the cell area. Aφ and
Bφ are the state transition and control input matrices for the
hypothesisHφ, u(t) is an control input vector which is used
to accommodate sudden changes in cell motion and appear-
ance, qs(t) is the process noise vector, which is a Gaussian
process with zero mean and covariance Qs. The motion and
appearance models share a measurement model:

z(t) = Cx(t) + r(t) (2)

where z(t) is the measurement vector containing the posi-
tion (x, y) and the area a, C is the measurement transition
matrix, and r(t) is the measurement noise vector, which is
a Gaussian process with zero mean and covariance R.

Let xi(t) = [xi, yi, ui, vi, ai]T be the state vector of
cell i. The proposed method initializes the state vector
xi(0) = [x0

i , y
0
i , u

0
i , v

0
i , a

0
i ]
T of cell i without explicit track-

ing. While the position (x0
i , y

0
i ) and area a0

i can be initial-
ized directly from the observation vector zk(0), the velocity
(u0
i , v

0
i ) is initialized based on the adherence probability ρi.

Let {∀zk(t) = [xk, yk, ak]T , t = 1..T} be the set of obser-
vations (obtained from Section 2.1) where T is the length
of the sequence. Adherence probability ρi is defined as the
ratio

nf
T

. We compute nf as the number of consecutive

frames t where zk(t) contains a location (xk, yk) such that
the Euclidean distance between (xk, yk) and (x0

i , y
0
i ) is less

than the leukocyte diameter ω. Note that when a cell has
high ρi, it tends to move slowly or to remain adhered. Thus,
the velocity is initialized to be a small value. When a cell
has low ρi, it tends to move along with the blood flow di-
rection θ. The velocity then is initialized as ψ, which is the
average speed of leukocytes. We initialize the velocity as

[u0
i , v

0
i ] = (1− ρi)ψ[cos θ, sin θ] (3)

The blood flow direction θ can be automatically estimated
using vessel segmentation. However, the vessel segmenta-
tion method is out of the scope of this paper. We estimate
the blood flow direction of a vessel manually by clicking
two positions along the vessel.

The predicted state vector x̂φi (t + 1) and predicted co-
variance P̂

s

i of hypothesis Hφ are computed using Kalman
filter’s prediction step [4]:



x̂φi (t+ 1) = Aφxi(t) + Bφui(t) (4)

P̂
s

i = AφPsiA
φT + Qs (5)

where Psi is the covariance of cell i. In the next subsections,
we derive Aφ and Bφ of Equation 4 to reflect the changes in
each hypothesis Hφ.

2.3.1 H00: No Collision→ No collision.

When cell i is not colliding, its motion is rather smooth.
We derived A00 so that Equation 4 uses a constant velocity
motion model.

A00 =


1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Since B00 and ui(t) are not required in describing

smooth motion, we set them to zero matrix and vector, re-
spectively.

2.3.2 H01: No Collision→ Collision.

When cell i collides with cell j, both cells usually stop at the
point of collision (ẋ, ẏ). We first estimate x̂00

i (t+1) of cell i
and x̂00

j (t+1) of cell j using hypothesisH00. Let Li be the
trajectory line formed by the location component (xi, yi)
of the state vector xi(t) and (x̂i, ŷi) of the predicted state
vector x̂00

i (t+ 1) . Similarly, Lj is the trajectory line of cell
j. Figure 4 illustrates a collision location of two cells. Since
a typical cell is ω pixels in diameter, the collision location
is not the intersection of Li and Lj ; it could happen even if
Li and Lj did not intersect. Thus, we define di(x, y) and
dj(x, y) as the distance transforms at pixel location (x, y)
of line Li and Lj , respectively. The point of collision can
be estimated as

(ẋ, ẏ) = arg max
x,y

(∆(x, y)) (6)

where ∆(x, y) = e−di(x,y)
2/ω ∗ e−dj(x,y)

2/ω .
To predict the state vector using Equation 4, A01 and B01

are set as below:

A01 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

; B01 =


1 0 1 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1


Since A01 contains all zeros in the first four rows, the

first four components of x̂i(t + 1) do not depend on xi(t) .
Rather, they depend on the vector ui(t) = [ẋ, ẏ, ui, vi, aj ]T

where (ẋ, ẏ) is the predicted collision location calculated in
Equation 6 , (ui, vi) is the current velocity of cell i and are

(a) (b)

(c) (d)
Figure 4. Finding collision location of two cells. (a) Trajectory
lines Li and Lj using H00. The collision location (ẋ, ẏ) denoted
by the red dot. In (b) (c) and (d), we visualize in color scale using
jet color-map (blue presents lower value and red presents higher
value) (b) Distance transform of Li. (c) Distance transform of Lj
(d) Values of ∆ at all (x, y) locations. Note that the reddish blob
contains the maximum value of ∆, and the location of that value
can be estimated as the collision location.

estimated from its state vector, aj is the area of cell j and is
estimated from its state vector. Thus, Equation 4 becomes
x̂01
i (t + 1) = [ẋ, ẏ, 0, 0, ai + aj ]T . Here, the cell velocity

is adjusted to zero to compensate for sudden deceleration.
Since colliding cells appear merged, the hypothesized area
is estimated as the sum of areas of colliding cells.

2.3.3 H11: Collision→ Collision.

During collision, cells move at much slower speed. How-
ever, their motion is still smooth. Therefore, the state transi-
tion and optional control matrices are the same as described
in Section 2.3.1. However, the collision state s has been set
to 1. In order to preserve the cell motion though out the
collision, a separate covariance matrix Ps is used.

2.3.4 H10: Collision→ No Collision.

When colliding cells split away from one another, they often
accelerate to their original velocity and appear as individual
cell. The state transition and optional control matrices are
designed so that cells’ original velocity and area are used as
prediction:

A10 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

; B10 =


0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1


Thus, Equation 4 becomes x̂10

i (t + 1) = [xi + ui, yi +
vi, ui, vi, ai − aj ]T . The original velocity (ui, vi), which



is preserved in ui, is used as the predicted velocity. The
original area is also predicted as the different between the
merged cell area and the area of the other colliding cell j,
which is also preserved in ui. In the next section, the predic-
tions x̂φi (t+ 1) from Hφ is compared with the observations
zk(t+ 1) from section 2.1 to correspond cells.

2.4. Correspondence

To track multiple colliding cells, we establish correspon-
dences between cells in frame t− 1 and the observations in
frame t. In frame t, multiple hypotheses are generated for
each cell i. If cell i’s collision state s = 0, hypotheses H00

and H01 are generated. While there’s only one H00, multi-
ple H01 hypotheses can be generated for all pairs of i and j
such that the Euclidean distance between locations of i and
j is less than 2ψ where ψ the average speed of leukocytes.
If cell i’s collision state s = 1, hypothesis H11 and hypoth-
esis H10 are generated. Given x̂φi (t) from each hypotheses,
the measurement model is described as

ẑφi (t) = Cx̂φi (t) (7)

where ẑφi (t) = [xi, yi, ai]T is the hypothesized measure-
ment vector, C is the measurement transition matrix.

For cell i and observation k, the error of each hypothesis
εφi,k(t) is computed as the weighted sum of squared of dif-

ferent between its hypothesized measurement ẑφi (t) and the
observations zk. This error can be computed as

εφi,k(t) = wφ(zk(t)− ẑφi (t)) (8)

where wφ is the weight used to regulate the importance of
each component in the state vector. wφ depends on the hy-
pothesis. For example, w01, emphasizes the area compo-
nent since the increase in area is the main indication of a
collision. Cell i is corresponded to observation k in a greedy
manner by establishing correspondence which returns the
lowest error first. When a cell is corresponded, all of its
hypotheses are removed from further consideration.

The greedy method continues corresponding cells un-
til εφi,k(t) > δ where δ is an error threshold of unlikely
(i, k) pairs. Any remaining observation zh(t) which has
ah > π ω

2

4 , where ω is the diameter of typical leukocyte, is
considered for tracking as a new cell. Any remaining cell
g which does not have a correspondence is continued to be
predicted in the next frame using its predicted state vector
x̂φg (t) without the update step (section 2.5). If cell g is not
corresponded for three frames, it is considered to have dis-
appeared from the video and is no longer tracked.

2.5. Update

After obtaining the predicted state vector x̂φi (t), pre-
dicted covariance P̂

s

i , and the correspondence observation

zk(t), we used Kalman filter’s update step [4] to update the
state vector xφi (t) and covariance Psi :

xφi (t) = x̂φi (t) + Ki(t)(zk(t)− Cx̂φi (t)) (9)

Psi = P̂
s

i −Ki(t)CP̂
s

i (10)

where Ki(t) = P̂
s

iC
′(CP̂

s

iC
′ + R)−1 is the Kalman gain,

xφi (t) is the updated state vector, Psi is the covariance of cell
i in state s. Note that each cell i maintains two separate co-
variances Psi (s = 0, 1) and each gets updated depending on
the cell current state s. Thus, the abrupt change in collision
(s = 1) does not effect the motion and appearance of a cell
when it returns to no collision state (s = 0).

The updated state vector xφi (t) is added to a track seg-
ment which is a set of state vectors that are corresponded to
cell i. In the next time step, xφi (t) is used to compute the
predictions.

3. Experiments

3.1. Data

Our data set consists of four in vivo image sequences of
leukocytes in liver capillaries. These image sequences were
acquired using an intravital microscope. Each sequence has
an average of 200 frames captured at 1000 x 1000 pixel
resolution and at 30 frames/second. We obtained a ground
truth from a biology technician who manually tracked the
cells’ centroid in the main vessel region for a total of 124
cells (1936 cell positions).

An independent sequence along with its ground truth was
also acquired using the same imaging protocol to use as
training data. The training samples in the detection pro-
cedure are obtained from this sequence. In addition, using
this training sequence, we estimate and fine-tune several pa-
rameters including the process noise covariance Qs, mea-
surement noise covariances R, set of weights wφ, and error
threshold δ. The diameter of leukocyte ω and leukocyte’s
average speed ψ are estimated by the biology technician.

3.2. Evaluation

We evaluated and compared our method against two ex-
isting methodologies. First is the work by Eden et al. [2] is
a method for tracking multiple cells in in vivo microscopic
video similar to our data. Second is the single hypothesis
Kalman-based method which is equivalent to the proposed
method using only the constant velocity motion model in
subsection 2.3.1. Two methods were chosen to access the
effect of proposed multiple hypotheses approach on track-
ing colliding cells.

Each method is evaluated using the three metrics in
which the first two were adapted from Cui et al [1]. First,



colliding cells only all cells
Eden [2] Kalman Proposed Eden [2] Kalman Proposed

RMSE (pix) 7.1 7.5 5.7 7.4 6.6 5.9
PTP (%) 53.3 67.1 92.4 56.2 66.9 74.1
TL (frames) 7.1 14.0 19.2 9.1 15.1 16.7

Table 1. Comparisons of the proposed method to the Eden [2] and Kalman methods in accuracy (RMSE), number of positions tracked
(PTP), and average track length (TL). The best performance value in each metric is bold faced.

100 103 106 112 115 099-118
Figure 5. Example of the results on a cell colliding and rolling around an adhered cell. Cells have been outlined based on the detection
results. Tracking results are provided in sequences in the 100th, 103rd, 106th, 112th and 115th frames. The last column illustrates the
entire tracks in time order (blue denotes earlier frames and red denotes later frames). Result of Eden [2] (top row in red), Kalman (middle
row in yellow) and our methods (bottom row in green) are shown. As cells collide (frame 103), both of the Eden and Kalman method failed
to recognize individual cells. Our method was able to reliably track two cells. Also note the improvement in accuracy of position during
collision (refer to right most images).

the root mean squared error (RMSE) of positions is com-
puted. Second, the positions tracked percentage (PTP) of
ground truth tracks is computed as the percentage of frames
with automatic tracking within ω

2 pixels from ground truth.
Third, the average track length (TL) is computed for all au-
tomatic tracks corresponding to ground truth tracks. Note
that as tracking gets broken up, the average track length will
decrease.

The results are shown in Table 1. The data support the
proposed method’s performance over both the Eden and
Kalman methods in tracking colliding cells as well as track-
ing all cells. Considering only colliding cells, the loca-
tion predictions in multiple hypotheses helped provide 20%
more accurate in cell positions (in terms of RMSE) when

comparing with the Eden method and 25% more accurate
when comparing with the Kalman method. Both the Eden
and Kalman methods return less accurate results in RMSE
because they predict locations based on smooth change in
motion which does not hold in cell collisions. In addition,
multiple hypotheses of cell motion and appearance enables
the proposed method to track 92% of the total ground truth
cell positions. This is 74% more cell positions than the
Eden method and 38% more than the Kalman method. Dur-
ing collision when cells appear merged and are detected as
one observation , the proposed method is able to recognizes
multiple colliding cells by generating and selecting the ap-
propriate hypotheses. Average track length is also improved
significantly from 7.1 frames in Eden and 14.0 frames in



Kalman to 19.2 frames in the proposed method. As multi-
ple cells appear merged with each other during collision and
then split away from each other after the collision, multi-
ple broken tracks are created by both the Eden and Kalman
methods. The proposed method recognizes the transition
between different collision states and thus produces contin-
uous and longer tracks. The visual comparisons are shown
for a cell colliding and rolling around (Figure 5).

For all cells, the proposed method improves overall ac-
curacy by reducing RMSE by 20% comparing with Eden
and 10% with Kalman. Proposed method’s TL remains
relatively high (82% more than Eden and 11% more than
Kalman). Although the improvements in PTP are still sig-
nificant (32% and 11% to Eden and Kalman, respectively),
the proposed method achieves only 74% of the total ground
truth positions. This is due to two reasons. First, the de-
tection fails when cells are going out of the imaging plane.
Second, an incorrect selection of transition between colli-
sion sates results in incorrect prediction of motion and ap-
pearance. The proposed method does not have a way to
recover back to the previous state and the error simply ac-
cumulates. recover from incorrectly selected hypotheses.

Collisions of more than two cells are not explicitly ad-
dressed in this paper. They could be handled by generating
additional hypotheses of already colliding cells to be col-
lided with new ones. Note that with an increasing number
of colliding cells, the correct tracking after splitting would
be more difficult as the appearance and motion become less
distinctive.

4. Conclusion
The leukocytes in inflammation conditions often begin to

roll and eventually stop resulting in collisions. We proposed
a method for reliably tracking multiple cells during colli-
sions in in vivo microscopy image sequences. The method
incorporated Kalman filter and multiple hypotheses for cell
motion and appearance during as well as before and after
collision. As part of future work, we plan to further im-
prove tracking of leukocytes as follows. First, we are cur-
rently adding appropriate features to the supervised learning
method to improve detection results. Second, we focus on
incorporating a probabilistic approach to the transition be-
tween collision states to recover from incorrectly selected
hypotheses. We plan to expand this frame work for tracking
colliding cells with more complex and unpredictable mo-
tions.
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