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Abstract

Motion and behavior analysis of social insects such as
ants requires tracking many ants over time. This process
is highly labor-intensive and tedious. Automatic tracking
is challenging as ants often interact with one another, re-
sulting in frequent occlusions that cause drifts in tracking.
In addition, tracking many objects is computationally ex-
pensive. In this paper, we present a robust and efficient
method for tracking multiple ants. We first prevent drifts by
maximizing the coverage of foreground pixels at at global
scale. Secondly, we improve speed by reducing markov
chain length through dynamically changing the target pro-
posal distribution for perturbed ant selection. Using a real
dataset with ground truth, we demonstrate that our algo-
rithm was able to improve the accuracy by 15% (resulting
in 98% tracking accuracy) and the speed by 76%.

1. Introduction

The social network formed by an ant colony is of sig-
nificant interest to biologists. It is relevant to understand-
ing social organization in animal groups, and, in the case
of social insects, deriving the self-organized algorithms by
which collective behavior is optimized. Analysis of such
social networks requires tracking the ants’ motion and in-
teractions. Manually following every ant in a colony is ex-
tremely time consuming, limiting research progress in this
field. Therefore, in recent years there have been attempts to
automate the process.

There are two main challenges that we address in this
paper. First, due to the social nature of ants, they inter-
act frequently. Interaction often involves them coming very
close and touching or crawling over each other. Moreover,
they can bend and turn away from the camera. Both cases
lead to noisy measurements which cause drifting of track-
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Figure 1. Tracking multiple ants. Results over 1000 frames are
shown in black trails.

ing onto nearby ants. This makes the algorithm vulnerable
to multiple tracks latching onto the same ant (Figure 2). The
second challenge is speed. Ant colonies often contain more
than 50 interacting ants and, to study their interaction net-
works, they may be filmed for more than 5 minutes (9K
frames). The automated tracking is even more computa-
tionally expensive as the ants are tracked simultaneously.
Markov Chain Monte Carlo [2] has been shown to reduce
the computation requirement; however, with such a large
dataset, further increasing the speed of the algorithm is im-
portant.

In this paper, we propose to improve the reliability and
speed of multiple ant tracking. First, we reduce the drift-
ing onto a nearby ant by adding a global measure to ensure
proper tracking. We noted that during occlusions and/or
non-rigid motion (such as bending), the score space be-
comes less reliable often resulting in multiple local max-
ima ultimately leading to tracking error (Figure 2). In many
cases, the number of objects tracked stays constant (thus no
object leaving or entering the scene) for a certain period of
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Figure 2. Occlusion and Non-rigid motion causing a drift in tracking. The ant (boxed in cyan) was initialized while it was bending (frame
#1). It unbends and is occluded by another ant at frame #430 which causes a drifting onto that ant. The scoring space of frame #440 is
shown on the far right. The color of each point reflects the score of the best orientation centered at that point. Red indicates high score
(likeliness). Note the local maxima which lead to drifting. Eventually, tracking of two ants (cyan and blue) are following the same ant in

frame #500.
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Figure 3. Movement distribution of ants. A histogram of distance
traveled between two adjacent frames is computed from 49 manu-
ally tracked ants in 1000 frames. Note that y-axis is log scale, and
most of the ants are not moving much.

time. In our dataset, the entire colony was included in the
images, so the number of ants in each frame did not vary
often. We leverage the assumption that all ants pixels are
tracked to reduce drifting by encouraging the tracking of all
ants to collectively (globally) cover as much foreground as
possible. Second, we significantly increase the efficiency of
the algorithm by using a variable target proposal distribu-
tion. We noted that not all ants move at all times (Figure
3), a fact that could apply not only to insect tracking, but
to many other tracked objects as well. Rather than using a
fixed target proposal distribution in Markov Chain Monte
Carlo MCMC) [2], we dynamically vary the distribution
of targets to perturb based on the level of expected motion.
This results in a higher level of sampling for ants that are
likely to move more, without increasing the total number of
samples needed to achieve the same performance.

This paper is organized in the following manner: Section
2 discusses related work, Section 3 provides an overview of
MCMC-based tracking, Section 4 describes the appearance
model we use, Section 5 explains how we use global fore-
ground maximization to prevent drift, Section 6 describes
how we vary a target proposal distribution based on pre-

dicted motion, and the remainder presents the performance
evaluation.

2. Related Work

Object tracking has been studied extensively, and can be
surveyed in [9]. Recently, there has been a growing inter-
est in tracking animals and biological objects. A general
framework for recognizing animal behavior using an affin-
ity graph has been demonstrated on a synthetic animal video
[8]. A large number of flying bats have been tracked using
two cluster data association [|]. Honeybees in a hive have
been tracked with adaptive appearance models [5] and their
motion behavior was recognized using HMM [7]. Flying
animals also have been tracked in 3D using multiple cam-
eras using Extended Kalman Filter with data association [6].
Multiple ants have been tracked using MCMC [2, 3]. One
of main challenges in tracking social insects is that they of-
ten interact. This interaction causes multiple tracks to over-
lap and occlude. Assuming that targets usually remained
separate from one another, Khan et al. proposed an interac-
tion factor to discourage tracks from overlapping [2]. In a
later approach, they allowed merged measurements due to
overlap and used a constant motion model to correctly track
the targets after interaction [3]. In a densely populated ant
colony like our dataset, however, ants often change their
motion direction after interaction with others.

3. MCMC Multi-target Tracking

We build our tracking based on a multi-target track-
ing using Metropolis-Hastings Markov Chain Monte Carlo
MCMC) [2]. Compared to a joint particle filter, an
MCMC-based method was shown to be much more efficient
with a given number of “particles.” We include a brief ex-
planation for the portion of MCMC that is related to the
proposed method.

Each ant is parameterized by its position (z, y) and ori-
entation (). The joint state X contains the state of all
ants. First, we initialize the markov chain sampler by tak-
ing a random sample from the markov chain of the previous
frame. Let that sample be X°. Each iteration of MCMC is
listed below. Let n denote each iteration.



Figure 4. Appearance Model. Original image (left), color classifi-
cation image (middle), and appearance model (right)

1. Let X* be the previous sample, X"~ 1.

2. Select one target m™* to perturb from a target proposal
distribution, 7T". Note that this is uniform and fixed, and
we propose to vary it over time (Section 6).

3. Perturb only the state of target m™* according to a
single-target proposal distribution (state evolution).

P(Zp | Xmx)

4. Compute the acceptance ratio as o = & b e

5. Add X* as X™ to the markov chain with probability
of a. If the proposed configuration is rejected, then
X"~ 1is repeated as X™.

The single-target proposal distribution is modeled with
a zero-mean normal distribution. We use 0, = 2,0, =
2,09 = 4. We draw N samples where N is the sum
of Npyrn burn-in samples and N,,;, samples to form
the markov chain. The locations of ants are estimated
as the joint state (a sample in markov chain) in which
[L,, P(Zm| X ) is maximized. In our dataset, many ants
move less than one pixel per frame, and their motion tends
to be rather jittery. We found the single-target proposal dis-
tribution to spread the particles sufficiently for tracking, so
we omit the motion model.

4. Appearance Modeling

Previously, unmarked ants have been tracked, and their
appearance was modeled by t-distributions [2]. Such an ap-
proach is suitable in video with a lower density where occlu-
sion is relatively infrequent. Our dataset contains over twice
as many ants as in [2], and subsequently has a higher rate
of occlusion. The directionality of motion often changes
during occlusion, so motion prediction such as [3] does not
suffice. To achieve higher reliability in long-term tracking
of interacting ants, we proposed to track paint-marked ants.
Note that even with the colored marks, the tracking can eas-
ily drift off due to occlusion and non-rigid motion (Figure
2).

To leverage the unique appearances of color marks, we
have modeled the appearance of each ant as a template of
pixels. Simply using the color of each pixel in the tem-
plate, even after transforming to colorspaces such as LUV,
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Figure 5. Improvement in Score Space due to Global Foreground
Maximization. The color of each point reflects the score of the
best orientation centered at that point. Red indicates high score
(likeliness). Note that the extra local maxima are eliminated with
global foreground maximization, resulting in accurate tracking.

was found to be unstable. Rather than using color itself,
we model the appearance based on a template of classified
color (Figure 4). There are 6 colors: 4 paint colors, nat-
ural ant color and background color. We model and clas-
sify each color class using a single Gaussian in LUV color
space for each. The appearance model for each ant is ini-
tialized based on manual initialization for the first frame of
the video (Figure 4). Then, the weight for each guess of an
ant is computed as
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where z is the number of pixels in the template for that

position that do not match the model. We used a = 45 and
k=.7.

P(Zm|Xm*) =

5. Drift Prevention with Global Foreground
Maximization

During occlusions, measurements become less reliable
as some part of the appearance model could be hidden and
occupied by other ants. A series of unreliable measurements
could result in drifting onto a wrong ant nearby. Moreover,
as ants are articulated objects, they frequently bend their
head and abdomen. A rigid, fixed appearance model would
not be able robustly track during such motion. However,
nonrigid motion models would increase the dimensionality
of state X and increase complexity of the tracking. Note
that a general appearance model such as [4] is not suitable
as we would like to leverage the unique colors of each ant.

We noted that, in many cases, the number of ants present
in video stays constant for a certain finite duration. Our
dataset is a video of the entire colony with a very low fre-
quency in entering and exiting from the colony. Within such
duration, the mis-tracking tend to increase the untracked
(not enclosed by the rectangle appearance model) ant pixels
by drifting onto the background or another ant. We propose
to minimize the drifting by maximizing the tracked fore-
ground pixels.



One method is individual maximization, which mini-
mizes drift onto the background. In addition to the differ-
ence in appearance model (z) of scoring (Equation 1), we
add a term for penalizing the inclusion of background pixels
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where b is the number of background pixels covered by the
tracking. Here we use a = 450, and k£ = 1.7. Figure 5
shows how this eliminates maxima on the background, and
creates a local maximum in the correct location, even when
the appearance model is a poor match.

When those ants undergoing nonrigid motion are also oc-
cluded by other ants, the individual foreground maximiza-
tion would not be able prevent multiple trackings from drift-
ing onto the same ant. Thus, we propose to minimize such
drifting by maximizing the foreground coverage globally,
as multiple trackings latching onto same ant would reduce
the coverage at the global level. The error space for global
maximization in Figure 5 has eliminated the local maximum
that would cause drift onto another ant. We discourage joint
states with higher amounts of untracked ant pixels by mul-
tiplying the original appearance scoring (Equation 1) by a
global factor

P(ZM|Xm*) =

Q(Z:|Xe) = 17 3)

where f is the number of foreground pixels included in
any template, and + is a constant, which we found experi-
mentally to work most effectively when v = 2750 in our
dataset. Combining this factor with the basic appearance
modeling yeilds the following equation for computing the
acceptance ratio.

P(Zmt| X i) Q(Z:|X3)
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6. Speed up with Variable Target Proposal Dis-
tribution

With a uniform target distribution, N iterations are
evenly distributed among all targets. However, we noted
that the vast majority of ants in our dataset do not move
much between frames (Figure 3). Considerable variation
among individuals in their behavior is frequently observed
in biology. In ants it is particularly common, given that dif-
ferent ants have different roles in the colony. In fact, with
all social insects a considerable proportion of individuals
are usually observed as being inactive. For these very slow
moving ants, it is likely that many fewer perturbations are
required to adjust to the distribution in the next frame.

Thus, we speed up the algorithm by using a variable
target distribution. By allowing the moving targets to be
selected more often for perturbing, we reduce the overall
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Figure 6. Variable target proposal distribution visualization. A
specific color is assigned to each ant. The target proposal dis-
tribution is visualized for each frame (x-axis), with the height of
each color indicating each ant’s probability of selection.

length of markov chain needed (/V) to achieve the same per-
formance. We first estimate the expected level of motion by
using the temporal difference (d,,,). The difference in color
classification between the previous and current frames at
the previous location of target is computed as d,,. To pre-
vent assigning ants zero probability of selection, a certain
percentage of the total iterations (F,) are split uniformly
among all ants. The remainder are distributed in proportion
to the temporal differences. Thus the target proposal distri-
bution is

d

1
- p - _ Ym
I'(m|d) = P, S dn

M+(1_Pu)

®)

where M is the number of ants.

Variable distribution for our dataset is visualized in Fig-
ure 6. At each time point (x-axis), the cumulative distribu-
tion of all ants are shown on y-axis. Each ant is visualized
with a specific color. The length of vertical line with same
color indicates the fraction of 7' (Equation 5) assigned to
that particular ant. The fluctuation of each color illustrates
the change of the distribution for each associated ant. Note
the sudden change near frame 900. That was due to a cock-
roach (not part of the actual experiment) crossing over a
tracked ant causing a large increase in temporal difference.
As a result, the ant was assigned a large number of pertur-
bation. It was tracked successfully.

7. Results
7.1. Dataset

We evaluated the performance on a video of 49 Tem-
nothorax rugatulus ants over 1000 frames, taken at thirty
frames per second. A ground truth was obtained expedi-
ently by executing a single-target tracking and manually
reinitializing whenever it drifted.
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Figure 7. Comparison of Tracking Error over time. Each row cor-
responds to a different ant, and the x-axis is frame number. Y-axis
indicates different ants. The error has been capped at 50 (red) to
show the details in the lower error range. Locations in red (> 50
pixel error) indicates drifting.

7.2. Tracking Accuracy

We measure tracking error as the distance between track-
ing positions and ground truth. The average of Euclidean
distance between the centers, fronts, and abdomen is as-
sessed. The error over time is visualized for three ap-
proaches of scoring: (1) appearance only, (2) with indi-
vidual foreground maximization and (3) with global fore-
ground maximization. Refer to Figure 7. Addition of in-
dividual foreground maximization reduces the drifts found
without it. With global maximization, by the end of 1000
frames, only 4 out of 49 ants have drifted with error greater
than 25 pixels. Examples of successful tracking during non-
rigid motion, occlusion and occlusion during initialization

Method Accuracy
Appearance only 82%
Appearance + Individual Foreground Max 92%
Appearance + Global Foreground Max 98%

Table 1. Improvement in tracked percentage using global fore-
ground maximization.
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Figure 9. Variable distribution improves the tracked percentage for
the same length of markov chain. Each point is the average per-
formance of 100 trials. The dotted line indicates the maximum
performance achieved when N=4000 was used.

are shown in Figure 8.

7.3. Tracked Percentage

Second, we measured the percentage of frames that were
successfully tracked. For each ant in each frame, we con-
sider it “tracked” if the average Euclidean distance is less
than the typical width of head (20 pixels). Then we com-
puted the percentage of the incidences of “tracked” out of
49,000 (= 49 ants/frame x 1000 frames). When tracked with
N = 2500 (which resulted in the best performance), the
tracked percentage was 82% with appearance only, 92%
with individual foreground maximization and 98% with
global maximization (Table 1). Note that the type of tar-
get proposal distribution used does not affect the maximum
performance.

7.4. Level of Speed up

To evaluate the degree to which a variable distribution
could reduce the necessary length of Markov chain (V), we
executed tracking with NV of 100 to 4000 using global fore-
ground maximization. For a uniform distribution, this is
equivalent to approximately 2 to 80 perturbations per ant.
As MCMC involves randomization, we ran 100 times for
each IV, which allowed us to conduct statistical testing for
equivalence. Averages of 100 executions at each N are

1] 00 1000 1500 2000 2500 3000 3500 4000
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(a) Nonrigid Motion. The ant (boxed in green) is successfully tracked even when it curls up significantly.
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(c) Occlusion during initialization. The ant (boxed in green) in the first frame was occluded by another ant (boxed in pink) .
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Figure 8. Sample Tracking Results.

shown in Figure 9. To keep the computation load to a rea-
sonable level, we conducted finer sampling of N near where
the performance was changing more dramatically (lower
N).

We found that the tracked percentage quickly increased
with V. The performance increase dramatically slowed
down beyond N = 1500, so we used the performance at
N = 4000 as its maximum performance. Tracked percent-
age was 98%. As expected, the performance at N = 4000
was statistically same between the two distributions (uni-
form and variable).

To compute the speed up, we estimated N needed to
reach the maximum tracked percentage for both distribu-
tions by comparing the performance at each N to the per-
formance at N = 4000, using t-tests. Since the speed is di-
rectly proportional to /N and the time required for comput-
ing temporal difference is minimal, we use the difference
in N to estimate the speed up. We found that N = 2500
was needed for the uniform distribution while only 600 was
needed for the variable distribution. Thus, the usage of vari-
able distribution reduced the required NV to achieve the max-
imum performance by 76%.

With variable distribution, the performance improve-
ment slows down near N = 150. The performance was a
very reasonable 94%. In comparison, the performance with
the uniform distribution at N = 150 was 80%.

8. Conclusions and Future Work

We have demonstrated that globally maximizing tracked
foreground pixels minimizes the drifting due to non-rigid
motion and occlusions with other targets. Furthermore, we
have shown that dynamically varying the target proposal
distribution to concentrate more on the targets with greater
movement enables a speed up by reducing the length of
markov chain by 76%. We have noted that the level of activ-
ity (motion) varies over time, especially with a longer video.
Thus, our future work includes varying the overall length of
markov chain in addition to the distribution of markov chain
to further increase the speed of tracking.
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